Skip to main content
Top
Published in: Diabetologia 9/2012

01-09-2012 | Short Communication

SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion

Authors: F. H. Sansbury, S. E. Flanagan, J. A. L. Houghton, F. L. Shuixian Shen, A. M. S. Al-Senani, A. M. Habeb, M. Abdullah, A. Kariminejad, S. Ellard, A. T. Hattersley

Published in: Diabetologia | Issue 9/2012

Login to get access

Abstract

Aims

The gene SLC2A2 encodes GLUT2, which is found predominantly in pancreas, liver, kidney and intestine. In mice, GLUT2 is the major glucose transporter into pancreatic beta cells, and biallelic Slc2a2 inactivation causes lethal neonatal diabetes. The role of GLUT2 in human beta cells is controversial, and biallelic SLC2A2 mutations cause Fanconi–Bickel syndrome (FBS), with diabetes rarely reported. We investigated the potential role of GLUT2 in the neonatal period by testing whether SLC2A2 mutations can present with neonatal diabetes before the clinical features of FBS appear.

Methods

We studied SLC2A2 in patients with transient neonatal diabetes mellitus (TNDM; n = 25) or permanent neonatal diabetes mellitus (PNDM; n = 79) in whom we had excluded the common genetic causes of neonatal diabetes, using a combined approach of sequencing and homozygosity mapping.

Results

Of 104 patients, five (5%) were found to have homozygous SLC2A2 mutations, including four novel mutations (S203R, M376R, c.963+1G>A, F114LfsX16). Four out of five patients with SLC2A2 mutations presented with isolated diabetes and later developed features of FBS. Four out of five patients had TNDM (16% of our TNDM cohort of unknown aetiology). One patient with PNDM remains on insulin at 28 months.

Conclusions

SLC2A2 mutations are an autosomal recessive cause of neonatal diabetes that should be considered in consanguineous families or those with TNDM, after excluding common causes, even in the absence of features of FBS. The finding that patients with homozygous SLC2A2 mutations can have neonatal diabetes supports a role for GLUT2 in the human beta cell.
Literature
1.
go back to reference Thorens B, Cheng Z-Q, Brown DF, Lodish HF (1990) Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol 259(Cell Physiol 28):C279–C285PubMed Thorens B, Cheng Z-Q, Brown DF, Lodish HF (1990) Liver glucose transporter: a basolateral protein in hepatocytes and intestine and kidney cells. Am J Physiol 259(Cell Physiol 28):C279–C285PubMed
2.
go back to reference Guillam M-T, Hümmler E, Schaerer E et al (1997) Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 17:327–330PubMedCrossRef Guillam M-T, Hümmler E, Schaerer E et al (1997) Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nat Genet 17:327–330PubMedCrossRef
3.
go back to reference Guillam M-T, Dupraz P, Thorens B (2000) Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 49:1485–1491PubMedCrossRef Guillam M-T, Dupraz P, Thorens B (2000) Glucose uptake, utilization, and signaling in GLUT2-null islets. Diabetes 49:1485–1491PubMedCrossRef
4.
go back to reference De Vos A, Heimberg H, Quartier E et al (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96:2489–2495PubMedCrossRef De Vos A, Heimberg H, Quartier E et al (1995) Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J Clin Invest 96:2489–2495PubMedCrossRef
5.
go back to reference Richardson CC, Hussain K, Jones PM et al (2007) Low levels of glucose transporters and K+ ATP channels in human pancreatic beta cells early in development. Diabetologia 50:1000–1005PubMedCrossRef Richardson CC, Hussain K, Jones PM et al (2007) Low levels of glucose transporters and K+ ATP channels in human pancreatic beta cells early in development. Diabetologia 50:1000–1005PubMedCrossRef
6.
go back to reference McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648PubMedCrossRef McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol Genet Metab 104:648PubMedCrossRef
7.
go back to reference Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326PubMedCrossRef Santer R, Schneppenheim R, Dombrowski A, Götze H, Steinmann B, Schaub J (1997) Mutations in GLUT2, the gene for the liver-type glucose transporter, in patients with Fanconi-Bickel syndrome. Nat Genet 17:324–326PubMedCrossRef
8.
go back to reference Santer R, Steinmann B, Schaub J (2002) Fanconi-Bickel syndrome—a congenital defect of facilitative glucose transport. Curr Mol Med 2:213–227PubMedCrossRef Santer R, Steinmann B, Schaub J (2002) Fanconi-Bickel syndrome—a congenital defect of facilitative glucose transport. Curr Mol Med 2:213–227PubMedCrossRef
9.
go back to reference Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4:200–213PubMedCrossRef Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4:200–213PubMedCrossRef
10.
go back to reference Yoo H-W, Shin Y-L, Seo E-J, Kim G-H (2002) Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 161:351–353PubMedCrossRef Yoo H-W, Shin Y-L, Seo E-J, Kim G-H (2002) Identification of a novel mutation in the GLUT2 gene in a patient with Fanconi-Bickel syndrome presenting with neonatal diabetes mellitus and galactosaemia. Eur J Pediatr 161:351–353PubMedCrossRef
12.
13.
go back to reference Garty R, Cooper M, Tabachnik E (1974) The Fanconi syndrome associated with hepatic glycogenosis and abnormal metabolism of galactose. J Pediatr 85:821–823PubMedCrossRef Garty R, Cooper M, Tabachnik E (1974) The Fanconi syndrome associated with hepatic glycogenosis and abnormal metabolism of galactose. J Pediatr 85:821–823PubMedCrossRef
14.
go back to reference Chesney RW, Kaplan BS, Colle E et al (1980) Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res 14:209–215PubMedCrossRef Chesney RW, Kaplan BS, Colle E et al (1980) Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res 14:209–215PubMedCrossRef
15.
go back to reference Taha D, Al-Harbi N, Al-Sabban E (2008) Hyperglycemia and hypoinsulinemia in patients with Fanconi–Bickel syndrome. J Pediatr Endocrinol Metab 21:581–586PubMed Taha D, Al-Harbi N, Al-Sabban E (2008) Hyperglycemia and hypoinsulinemia in patients with Fanconi–Bickel syndrome. J Pediatr Endocrinol Metab 21:581–586PubMed
16.
go back to reference De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood–brain barrier as a cause of hypoglycorrhachia, seizures and developmental delay. N Engl J Med 325:703PubMedCrossRef De Vivo DC, Trifiletti RR, Jacobson RI, Ronen GM, Behmand RA, Harik SI (1991) Defective glucose transport across the blood–brain barrier as a cause of hypoglycorrhachia, seizures and developmental delay. N Engl J Med 325:703PubMedCrossRef
17.
go back to reference Seidner G, Alvarez MG, Yeh J-I et al (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet 18:188–191PubMedCrossRef Seidner G, Alvarez MG, Yeh J-I et al (1998) GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood–brain barrier hexose carrier. Nat Genet 18:188–191PubMedCrossRef
18.
go back to reference Baroni MG, Sentinelli F, Massa O (2001) Single-strand conformation polymorphism analysis of the glucose transporter gene GLUT1 in maturity-onset diabetes of the young. J Mol Med 79:270–274PubMedCrossRef Baroni MG, Sentinelli F, Massa O (2001) Single-strand conformation polymorphism analysis of the glucose transporter gene GLUT1 in maturity-onset diabetes of the young. J Mol Med 79:270–274PubMedCrossRef
19.
go back to reference Whitesell RR, Powers AC, Regen DM, Abumrad NA (1991) Transport and metabolism of glucose in an insulin-secreting cell line, beta TC-1. Biochemistry 30:11560–11566PubMedCrossRef Whitesell RR, Powers AC, Regen DM, Abumrad NA (1991) Transport and metabolism of glucose in an insulin-secreting cell line, beta TC-1. Biochemistry 30:11560–11566PubMedCrossRef
20.
go back to reference MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Phil Trans R Soc B 360:2211PubMedCrossRef MacDonald PE, Joseph JW, Rorsman P (2005) Glucose-sensing mechanisms in pancreatic beta-cells. Phil Trans R Soc B 360:2211PubMedCrossRef
21.
go back to reference Leturque A, Brot-Laroche E, Le Gall M (2009) GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 296:E985–E992PubMedCrossRef Leturque A, Brot-Laroche E, Le Gall M (2009) GLUT2 mutations, translocation, and receptor function in diet sugar managing. Am J Physiol Endocrinol Metab 296:E985–E992PubMedCrossRef
22.
go back to reference Hughes SD, Quaade C, Johnson JH, Ferber S, Newgard CB (1993) Transfection of AtT-20ins cells with GLUT-2 but not GLUT-1 confers glucose-stimulated insulin secretion. J Biol Chem 268:15205–15212PubMed Hughes SD, Quaade C, Johnson JH, Ferber S, Newgard CB (1993) Transfection of AtT-20ins cells with GLUT-2 but not GLUT-1 confers glucose-stimulated insulin secretion. J Biol Chem 268:15205–15212PubMed
23.
go back to reference Brown GK (2000) Glucose transporters: structure, function and consequences of deficiency. J Inherit Metab Dis 23:237–246PubMedCrossRef Brown GK (2000) Glucose transporters: structure, function and consequences of deficiency. J Inherit Metab Dis 23:237–246PubMedCrossRef
24.
go back to reference Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116PubMedCrossRef Dupuis J, Langenberg C, Prokopenko I et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42:105–116PubMedCrossRef
25.
go back to reference Ingelsson E, Langenberg C, Hivert MF et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266–1275PubMedCrossRef Ingelsson E, Langenberg C, Hivert MF et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 59:1266–1275PubMedCrossRef
Metadata
Title
SLC2A2 mutations can cause neonatal diabetes, suggesting GLUT2 may have a role in human insulin secretion
Authors
F. H. Sansbury
S. E. Flanagan
J. A. L. Houghton
F. L. Shuixian Shen
A. M. S. Al-Senani
A. M. Habeb
M. Abdullah
A. Kariminejad
S. Ellard
A. T. Hattersley
Publication date
01-09-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 9/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-012-2595-0

Other articles of this Issue 9/2012

Diabetologia 9/2012 Go to the issue