Skip to main content
Top
Published in: Diabetologia 3/2012

01-03-2012 | Article

Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)–nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction

Authors: R. Barazzoni, M. Zanetti, G. Gortan Cappellari, A. Semolic, M. Boschelle, E. Codarin, A. Pirulli, L. Cattin, G. Guarnieri

Published in: Diabetologia | Issue 3/2012

Login to get access

Abstract

Aims/hypothesis

Insulin effects reportedly involve reactive oxygen species (ROS) and oxidative stress in vitro, but skeletal muscle oxidative stress is an emerging negative regulator of insulin action following high-fat feeding. NEFA may enhance oxidative stress and insulin resistance. We investigated the acute impact of insulin with or without NEFA elevation on muscle ROS generation and insulin signalling, and the potential association with altered muscle mitochondrial function.

Methods

We used hyperinsulinaemic–euglycaemic clamping, 150 min, without or with lipid infusion to modulate plasma NEFA concentration in lean rats.

Results

Insulin and glucose (Ins) infusion selectively enhanced xanthine oxidase-dependent muscle ROS generation. Ins with lipid infusion (Ins+NEFA) lowered whole-body glucose disposal and muscle insulin signalling, and these effects were associated with high muscle mitochondrial ROS generation and activation of the proinflammatory nuclear factor-κB inhibitor (IκB)–nuclear factor-κB (NFκB) pathway. Antioxidant infusion prevented NEFA-induced systemic insulin resistance and changes in muscle mitochondrial ROS generation, IκB-NFκB pathway and insulin signalling. Changes in insulin sensitivity and signalling were independent of changes in mitochondrial enzyme activity and ATP production, which, in turn, were not impaired by changes in ROS generation under any condition.

Conclusions/interpretation

Acute muscle insulin effects include enhanced ROS generation through xanthine oxidase. Additional NEFA elevation enhances mitochondrial ROS generation, activates IκB–NFκB and reduces insulin signalling. These alterations are not associated with acute reductions in mitochondrial enzyme activity and ATP production, and are reversed by antioxidant infusion. Thus, NEFA acutely cause systemic and muscle insulin resistance by enhancing muscle oxidative stress through mitochondrial ROS generation and IκB–NFκB activation.
Literature
1.
go back to reference Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279:37716–37725PubMedCrossRef Meng TC, Buckley DA, Galic S, Tiganis T, Tonks NK (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279:37716–37725PubMedCrossRef
2.
go back to reference Mahadev K, Motoshima H, Wu X et al (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24:1844–1854PubMedCrossRef Mahadev K, Motoshima H, Wu X et al (2004) The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction. Mol Cell Biol 24:1844–1854PubMedCrossRef
3.
go back to reference Goldstein BJ, Mahadev K, Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311–321PubMedCrossRef Goldstein BJ, Mahadev K, Wu X (2005) Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets. Diabetes 54:311–321PubMedCrossRef
4.
go back to reference Loh K, Deng H, Fukushima A et al (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–272PubMedCrossRef Loh K, Deng H, Fukushima A et al (2009) Reactive oxygen species enhance insulin sensitivity. Cell Metab 10:260–272PubMedCrossRef
5.
go back to reference Urakawa H, Katsuki A, Sumida Y et al (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676PubMedCrossRef Urakawa H, Katsuki A, Sumida Y et al (2003) Oxidative stress is associated with adiposity and insulin resistance in men. J Clin Endocrinol Metab 88:4673–4676PubMedCrossRef
6.
go back to reference Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMed Furukawa S, Fujita T, Shimabukuro M et al (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114:1752–1761PubMed
7.
go back to reference Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCrossRef Anderson EJ, Lustig ME, Boyle KE et al (2009) Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 119:573–581PubMedCrossRef
8.
go back to reference Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294:E345–E351PubMedCrossRef Wei Y, Sowers JR, Clark SE, Li W, Ferrario CM, Stump CS (2008) Angiotensin II-induced skeletal muscle insulin resistance mediated by NF-kappaB activation via NADPH oxidase. Am J Physiol Endocrinol Metab 294:E345–E351PubMedCrossRef
9.
go back to reference Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148:293–299PubMedCrossRef Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in l6 rat skeletal muscle cells. Endocrinology 148:293–299PubMedCrossRef
10.
go back to reference Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299:E1096–E1105PubMedCrossRef Yuzefovych L, Wilson G, Rachek L (2010) Different effects of oleate vs palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 299:E1096–E1105PubMedCrossRef
11.
go back to reference Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23PubMedCrossRef Boden G, Shulman GI (2002) Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 32(Suppl 3):14–23PubMedCrossRef
12.
go back to reference Han DH, Hancock C, Jung SR, Holloszy JO (2009) Is “fat-induced” muscle insulin resistance rapidly reversible? Am J Physiol Endocrinol Metab 297:E236–E241PubMedCrossRef Han DH, Hancock C, Jung SR, Holloszy JO (2009) Is “fat-induced” muscle insulin resistance rapidly reversible? Am J Physiol Endocrinol Metab 297:E236–E241PubMedCrossRef
13.
go back to reference Bonnard C, Durand A, Peyrol S et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800PubMed Bonnard C, Durand A, Peyrol S et al (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118:789–800PubMed
14.
go back to reference Valerio A, Cardile A, Cozzi V et al (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116:2791–2798PubMed Valerio A, Cardile A, Cozzi V et al (2006) TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 116:2791–2798PubMed
15.
go back to reference Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15PubMedCrossRef Morino K, Petersen KF, Shulman GI (2006) Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55(Suppl 2):S9–S15PubMedCrossRef
16.
go back to reference Kim YI, Lee FN, Choi WS, Lee S, Youn JH (2006) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes 55:2311–2316PubMedCrossRef Kim YI, Lee FN, Choi WS, Lee S, Youn JH (2006) Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes 55:2311–2316PubMedCrossRef
17.
go back to reference Haber CA, Lam TK, Yu Z et al (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753PubMed Haber CA, Lam TK, Yu Z et al (2003) N-acetylcysteine and taurine prevent hyperglycemia-induced insulin resistance in vivo: possible role of oxidative stress. Am J Physiol Endocrinol Metab 285:E744–E753PubMed
18.
19.
go back to reference Guzik TJ, Channon KM (2005) Measurement of vascular reactive oxygen species production by chemiluminescence. Methods Mol Med 108:73–89PubMed Guzik TJ, Channon KM (2005) Measurement of vascular reactive oxygen species production by chemiluminescence. Methods Mol Med 108:73–89PubMed
20.
go back to reference Barazzoni R, Zanetti M, Cattin MR et al (2007) Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rat. Obesity 15:2614–2623PubMedCrossRef Barazzoni R, Zanetti M, Cattin MR et al (2007) Ghrelin enhances in vivo skeletal muscle but not liver AKT signaling in rat. Obesity 15:2614–2623PubMedCrossRef
21.
go back to reference Edelman JC, Edelman PM, Kniggee KM, Schwartz IL (1965) Isolation of skeletal muscle nuclei. J Cell Biol 27:365–377PubMedCrossRef Edelman JC, Edelman PM, Kniggee KM, Schwartz IL (1965) Isolation of skeletal muscle nuclei. J Cell Biol 27:365–377PubMedCrossRef
22.
go back to reference Barazzoni R, Zanetti M, Bosutti A et al (2005) Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle—tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 146:2098–2106PubMedCrossRef Barazzoni R, Zanetti M, Bosutti A et al (2005) Moderate caloric restriction, but not physiological hyperleptinemia per se, enhances mitochondrial oxidative capacity in rat liver and skeletal muscle—tissue-specific impact on tissue triglyceride content and AKT activation. Endocrinology 146:2098–2106PubMedCrossRef
23.
go back to reference Lanza IR, Nair KS (2009) Functional assessment of isolated mitochondria in vitro. Methods Enzymol 457:349–372PubMedCrossRef Lanza IR, Nair KS (2009) Functional assessment of isolated mitochondria in vitro. Methods Enzymol 457:349–372PubMedCrossRef
24.
go back to reference Lecarpentier Y (2007) Physiological role of free radicals in skeletal muscles. J Appl Physiol 103:1917–1918PubMedCrossRef Lecarpentier Y (2007) Physiological role of free radicals in skeletal muscles. J Appl Physiol 103:1917–1918PubMedCrossRef
25.
go back to reference Varela LM, Ortega A, Bermudez B et al (2011) A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes. Am J Clin Nutr 93:918–925PubMedCrossRef Varela LM, Ortega A, Bermudez B et al (2011) A high-fat meal promotes lipid-load and apolipoprotein B-48 receptor transcriptional activity in circulating monocytes. Am J Clin Nutr 93:918–925PubMedCrossRef
26.
go back to reference Hancock CR, Han DH, Chen M et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105:7815–7820PubMedCrossRef Hancock CR, Han DH, Chen M et al (2008) High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci USA 105:7815–7820PubMedCrossRef
27.
go back to reference Lefort N, Glancy B, Bowen B et al (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452PubMedCrossRef Lefort N, Glancy B, Bowen B et al (2010) Increased reactive oxygen species production and lower abundance of complex I subunits and carnitine palmitoyltransferase 1B protein despite normal mitochondrial respiration in insulin-resistant human skeletal muscle. Diabetes 59:2444–2452PubMedCrossRef
Metadata
Title
Fatty acids acutely enhance insulin-induced oxidative stress and cause insulin resistance by increasing mitochondrial reactive oxygen species (ROS) generation and nuclear factor-κB inhibitor (IκB)–nuclear factor-κB (NFκB) activation in rat muscle, in the absence of mitochondrial dysfunction
Authors
R. Barazzoni
M. Zanetti
G. Gortan Cappellari
A. Semolic
M. Boschelle
E. Codarin
A. Pirulli
L. Cattin
G. Guarnieri
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 3/2012
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-011-2396-x

Other articles of this Issue 3/2012

Diabetologia 3/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.