Skip to main content
Top
Published in: Diabetologia 7/2009

01-07-2009 | Article

Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft

Authors: E. H. Liu, B. J. Digon III, B. Hirshberg, R. Chang, B. J. Wood, Z. Neeman, A. Kam, R. A. Wesley, S. M. Polly, R. M. Hofmann, K. I. Rother, D. M. Harlan

Published in: Diabetologia | Issue 7/2009

Login to get access

Abstract

Aims/hypothesis

We measured serum C-peptide (at least 0.167 nmol/l) in 54 of 141 (38%) patients with chronic type 1 diabetes and sought factors that might differentiate those with detectable C-peptide from those without it. Finding no differences, and in view of the persistent anti-beta cell autoimmunity in such patients, we speculated that the immunosuppression (to weaken autoimmune attack) and euglycaemia accompanying transplant-based treatments of type 1 diabetes might promote recovery of native pancreatic beta cell function.

Methods

We performed arginine stimulation tests in three islet transplant and four whole-pancreas transplant recipients, and measured stimulated C-peptide in select venous sampling sites. On the basis of each sampling site’s C-peptide concentration and kinetics, we differentiated insulin secreted from the individual’s native pancreatic beta cells and that secreted from allografted beta cells.

Results

Selective venous sampling demonstrated that despite long-standing type 1 diabetes, all seven beta cell allograft recipients displayed evidence that their native pancreas secreted C-peptide. Yet even if chronic immunosuppression coupled with near normal glycaemia did improve native pancreatic C-peptide production, the magnitude of the effect was quite small.

Conclusions/interpretation

Some native pancreatic beta cell function persists even years after disease onset in most type 1 diabetic patients. However, if prolonged euglycaemia plus anti-rejection immunosuppressive therapy improves native pancreatic insulin production, the effect in our participants was small. We may have underestimated pancreatic regenerative capacity by studying only a limited number of participants or by creating conditions (e.g. high circulating insulin concentrations or immunosuppressive agents toxic to beta cells) that impair beta cell function.

Trial registration

ClinicalTrials.gov NCT00246844 and NCT00006505.
Literature
1.
go back to reference No authors listed (1998) Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 128:517–523 No authors listed (1998) Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med 128:517–523
2.
go back to reference Madsbad S (1983) Factors of importance for residual beta-cell function in type I diabetes mellitus. A review. Acta Med Scand Suppl 671:61–67PubMed Madsbad S (1983) Factors of importance for residual beta-cell function in type I diabetes mellitus. A review. Acta Med Scand Suppl 671:61–67PubMed
3.
go back to reference Madsbad S, Faber OK, Binder C et al (1978) Prevalence of residual beta-cell function in insulin-dependent diabetics in relation to age at onset and duration of diabetes. Diabetes 27(Suppl 1):262–264PubMed Madsbad S, Faber OK, Binder C et al (1978) Prevalence of residual beta-cell function in insulin-dependent diabetics in relation to age at onset and duration of diabetes. Diabetes 27(Suppl 1):262–264PubMed
4.
go back to reference Eff C, Faber O, Deckert T (1978) Persistent insulin secretion, assessed by plasma C-peptide estimation in long-term juvenile diabetics with a low insulin requirement. Diabetologia 15:169–172PubMedCrossRef Eff C, Faber O, Deckert T (1978) Persistent insulin secretion, assessed by plasma C-peptide estimation in long-term juvenile diabetics with a low insulin requirement. Diabetologia 15:169–172PubMedCrossRef
5.
go back to reference Scholin A, Bjorklund L, Borg H et al (2004) Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide Diabetes Incidence Study in Sweden. J Intern Med 255:384–391PubMedCrossRef Scholin A, Bjorklund L, Borg H et al (2004) Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide Diabetes Incidence Study in Sweden. J Intern Med 255:384–391PubMedCrossRef
6.
go back to reference Steffes MW, Sibley S, Jackson M, Thomas W (2003) Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 26:832–836PubMedCrossRef Steffes MW, Sibley S, Jackson M, Thomas W (2003) Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 26:832–836PubMedCrossRef
7.
go back to reference Madsbad S (1983) Prevalence of residual B cell function and its metabolic consequences in type 1 (insulin-dependent) diabetes. Diabetologia 24:141–147PubMed Madsbad S (1983) Prevalence of residual B cell function and its metabolic consequences in type 1 (insulin-dependent) diabetes. Diabetologia 24:141–147PubMed
8.
go back to reference Gepts W, de Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–261PubMed Gepts W, de Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27(Suppl 1):251–261PubMed
9.
go back to reference Stefan Y, Orci L, Malaisse-Lagae F et al (1982) Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 31:694–700PubMedCrossRef Stefan Y, Orci L, Malaisse-Lagae F et al (1982) Quantitation of endocrine cell content in the pancreas of nondiabetic and diabetic humans. Diabetes 31:694–700PubMedCrossRef
10.
go back to reference Lohr M, Kloppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762PubMedCrossRef Lohr M, Kloppel G (1987) Residual insulin positivity and pancreatic atrophy in relation to duration of chronic type 1 (insulin-dependent) diabetes mellitus and microangiopathy. Diabetologia 30:757–762PubMedCrossRef
11.
go back to reference Foulis AK, Liddle CN, Farquharson MA et al (1986) The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29:267–274PubMedCrossRef Foulis AK, Liddle CN, Farquharson MA et al (1986) The histopathology of the pancreas in type 1 (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29:267–274PubMedCrossRef
12.
go back to reference Gepts W (1984) Islet morphology in type I diabetes. Behring Inst Mitt 75:39–41PubMed Gepts W (1984) Islet morphology in type I diabetes. Behring Inst Mitt 75:39–41PubMed
13.
go back to reference Pinkse GG, Tysma OH, Bergen CA et al (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 102:18425–18430PubMedCrossRef Pinkse GG, Tysma OH, Bergen CA et al (2005) Autoreactive CD8 T cells associated with beta cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A 102:18425–18430PubMedCrossRef
14.
go back to reference Kent SC, Chen Y, Bregoli L et al (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435:224–228PubMedCrossRef Kent SC, Chen Y, Bregoli L et al (2005) Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature 435:224–228PubMedCrossRef
15.
go back to reference Yokota I, Matsuda J, Naito E et al (1998) Comparison of GAD and ICA512/IA-2 antibodies at and after the onset of IDDM. Diabetes Care 21:49–52PubMedCrossRef Yokota I, Matsuda J, Naito E et al (1998) Comparison of GAD and ICA512/IA-2 antibodies at and after the onset of IDDM. Diabetes Care 21:49–52PubMedCrossRef
16.
go back to reference Simone E, Eisenbarth GS (1996) Chronic autoimmunity of type I diabetes. Horm Metab Res 28:332–336PubMedCrossRef Simone E, Eisenbarth GS (1996) Chronic autoimmunity of type I diabetes. Horm Metab Res 28:332–336PubMedCrossRef
17.
go back to reference Jaeger C, Allendorfer J, Hatziagelaki E et al (1997) Persistent GAD 65 antibodies in longstanding IDDM are not associated with residual beta-cell function, neuropathy or HLA-DR status. Horm Metab Res 29:510–515PubMedCrossRef Jaeger C, Allendorfer J, Hatziagelaki E et al (1997) Persistent GAD 65 antibodies in longstanding IDDM are not associated with residual beta-cell function, neuropathy or HLA-DR status. Horm Metab Res 29:510–515PubMedCrossRef
18.
go back to reference Chiovato L, Latrofa F, Braverman LE et al (2003) Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med 139:346–351PubMed Chiovato L, Latrofa F, Braverman LE et al (2003) Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med 139:346–351PubMed
19.
go back to reference Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594PubMedCrossRef Meier JJ, Butler AE, Saisho Y et al (2008) Beta-cell replication is the primary mechanism subserving the postnatal expansion of beta-cell mass in humans. Diabetes 57:1584–1594PubMedCrossRef
20.
go back to reference Meier JJ, Bhushan A, Butler AE et al (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef Meier JJ, Bhushan A, Butler AE et al (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef
21.
go back to reference Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110PubMedCrossRef
22.
go back to reference Meier JJ, Lin JC, Butler AE et al (2006) Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 49:1838–1844PubMedCrossRef Meier JJ, Lin JC, Butler AE et al (2006) Direct evidence of attempted beta cell regeneration in an 89-year-old patient with recent-onset type 1 diabetes. Diabetologia 49:1838–1844PubMedCrossRef
23.
go back to reference Yoon KH, Ko SH, Cho JH et al (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRef Yoon KH, Ko SH, Cho JH et al (2003) Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J Clin Endocrinol Metab 88:2300–2308PubMedCrossRef
24.
go back to reference Teta M, Rankin MM, Long SY et al (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12:817–826PubMedCrossRef Teta M, Rankin MM, Long SY et al (2007) Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev Cell 12:817–826PubMedCrossRef
25.
go back to reference Kushner JA (2006) Beta-cell growth: an unusual paradigm of organogenesis that is cyclin D2/Cdk4 dependent. Cell Cycle 5:234–237PubMed Kushner JA (2006) Beta-cell growth: an unusual paradigm of organogenesis that is cyclin D2/Cdk4 dependent. Cell Cycle 5:234–237PubMed
26.
go back to reference Teta M, Long SY, Wartschow LM et al (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef Teta M, Long SY, Wartschow LM et al (2005) Very slow turnover of beta-cells in aged adult mice. Diabetes 54:2557–2567PubMedCrossRef
27.
go back to reference Bonner-Weir S (2001) Beta-cell turnover: its assessment and implications. Diabetes 50(Suppl 1):S20–S24PubMedCrossRef Bonner-Weir S (2001) Beta-cell turnover: its assessment and implications. Diabetes 50(Suppl 1):S20–S24PubMedCrossRef
28.
29.
go back to reference Sherry NA, Kushner JA, Glandt M et al (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55:3238–3245PubMedCrossRef Sherry NA, Kushner JA, Glandt M et al (2006) Effects of autoimmunity and immune therapy on beta-cell turnover in type 1 diabetes. Diabetes 55:3238–3245PubMedCrossRef
30.
go back to reference Zorina TD, Subbotin VM, Bertera S et al (2003) Recovery of the endogenous beta cell function in the NOD model of autoimmune diabetes. Stem Cells 21:377–388PubMedCrossRef Zorina TD, Subbotin VM, Bertera S et al (2003) Recovery of the endogenous beta cell function in the NOD model of autoimmune diabetes. Stem Cells 21:377–388PubMedCrossRef
31.
go back to reference von Herrath MG, Wolfe T, Mohrle U et al (2001) Protection from type 1 diabetes in the face of high levels of activated autoaggressive lymphocytes in a viral transgenic mouse model crossed to the SV129 strain. Diabetes 50:2700–2708CrossRef von Herrath MG, Wolfe T, Mohrle U et al (2001) Protection from type 1 diabetes in the face of high levels of activated autoaggressive lymphocytes in a viral transgenic mouse model crossed to the SV129 strain. Diabetes 50:2700–2708CrossRef
32.
go back to reference Ryu S, Kodama S, Ryu K et al (2001) Reversal of established autoimmune diabetes by restoration of endogenous beta cell function. J Clin Invest 108:63–72PubMed Ryu S, Kodama S, Ryu K et al (2001) Reversal of established autoimmune diabetes by restoration of endogenous beta cell function. J Clin Invest 108:63–72PubMed
33.
go back to reference Pechhold K, Koczwara K, Zhu X et al (2009) Blood glucose levels regulate pancreatic beta-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice. PLoS ONE 4(3):e4827PubMedCrossRef Pechhold K, Koczwara K, Zhu X et al (2009) Blood glucose levels regulate pancreatic beta-cell proliferation during experimentally-induced and spontaneous autoimmune diabetes in mice. PLoS ONE 4(3):e4827PubMedCrossRef
34.
go back to reference Karges B, Durinovic-Bello I, Heinze E et al (2004) Complete long-term recovery of beta-cell function in autoimmune type 1 diabetes after insulin treatment. Diabetes Care 27:1207–1208PubMedCrossRef Karges B, Durinovic-Bello I, Heinze E et al (2004) Complete long-term recovery of beta-cell function in autoimmune type 1 diabetes after insulin treatment. Diabetes Care 27:1207–1208PubMedCrossRef
35.
go back to reference Kuroda A, Yamasaki Y, Imagawa A (2003) Beta-cell regeneration in a patient with type 1 diabetes mellitus who was receiving immunosuppressive therapy. Ann Intern Med 139:W81PubMed Kuroda A, Yamasaki Y, Imagawa A (2003) Beta-cell regeneration in a patient with type 1 diabetes mellitus who was receiving immunosuppressive therapy. Ann Intern Med 139:W81PubMed
36.
go back to reference Hirshberg B, Rother KI, Digon BJ et al (2003) Solitary islet transplantation for type 1 diabetes mellitus using steroid sparing immunosuppression: The NIH experience. Diabetes Care 26:3288–3295PubMedCrossRef Hirshberg B, Rother KI, Digon BJ et al (2003) Solitary islet transplantation for type 1 diabetes mellitus using steroid sparing immunosuppression: The NIH experience. Diabetes Care 26:3288–3295PubMedCrossRef
37.
go back to reference Teuscher AU, Kendall DM, Smets YF et al (1998) Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes 47:324–330PubMedCrossRef Teuscher AU, Kendall DM, Smets YF et al (1998) Successful islet autotransplantation in humans: functional insulin secretory reserve as an estimate of surviving islet cell mass. Diabetes 47:324–330PubMedCrossRef
38.
go back to reference Pugliese A, Zeller M, Fernandez A Jr et al (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15:293–297PubMedCrossRef Pugliese A, Zeller M, Fernandez A Jr et al (1997) The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes. Nat Genet 15:293–297PubMedCrossRef
39.
go back to reference Narendran P, Neale AM, Lee BH et al (2006) Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proc Natl Acad Sci U S A 103:16430–16435PubMedCrossRef Narendran P, Neale AM, Lee BH et al (2006) Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proc Natl Acad Sci U S A 103:16430–16435PubMedCrossRef
40.
go back to reference Kojima H, Fujimiya M, Matsumura K et al (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci U S A 101:2458–2463PubMedCrossRef Kojima H, Fujimiya M, Matsumura K et al (2004) Extrapancreatic insulin-producing cells in multiple organs in diabetes. Proc Natl Acad Sci U S A 101:2458–2463PubMedCrossRef
41.
go back to reference Digon BJ III, Rother KI, Hirshberg B, Harlan DM (2003) Sirolimus-induced interstitial pneumonitis in an islet transplant recipient. Diabetes Care 26:3191PubMedCrossRef Digon BJ III, Rother KI, Hirshberg B, Harlan DM (2003) Sirolimus-induced interstitial pneumonitis in an islet transplant recipient. Diabetes Care 26:3191PubMedCrossRef
42.
go back to reference Ganda OP, Srikanta S, Brink SJ et al (1984) Differential sensitivity to beta-cell secretagogues in “early” type I diabetes mellitus. Diabetes 33:516–521PubMedCrossRef Ganda OP, Srikanta S, Brink SJ et al (1984) Differential sensitivity to beta-cell secretagogues in “early” type I diabetes mellitus. Diabetes 33:516–521PubMedCrossRef
43.
go back to reference D'Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRef D'Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401PubMedCrossRef
44.
go back to reference Terauchi Y, Takamoto I, Kubota N et al (2007) Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117:246–257PubMedCrossRef Terauchi Y, Takamoto I, Kubota N et al (2007) Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest 117:246–257PubMedCrossRef
45.
go back to reference Heit JJ, Apelqvist AA, Gu X et al (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443:345–349PubMedCrossRef Heit JJ, Apelqvist AA, Gu X et al (2006) Calcineurin/NFAT signalling regulates pancreatic beta-cell growth and function. Nature 443:345–349PubMedCrossRef
46.
go back to reference Meier JJ, Ritzel RA, Maedler K et al (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia 49:83–89PubMedCrossRef Meier JJ, Ritzel RA, Maedler K et al (2006) Increased vulnerability of newly forming beta cells to cytokine-induced cell death. Diabetologia 49:83–89PubMedCrossRef
47.
go back to reference Zhang C, Todorov I, Lin CL et al (2007) Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice. Proc Natl Acad Sci U S A 104:2337–2342PubMedCrossRef Zhang C, Todorov I, Lin CL et al (2007) Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice. Proc Natl Acad Sci U S A 104:2337–2342PubMedCrossRef
48.
go back to reference Liu EH, Siegel RM, Harlan DM, O’Shea JJ (2007) T cell-directed therapies: lessons learned and future prospects. Nat Immunol 8:25–30PubMedCrossRef Liu EH, Siegel RM, Harlan DM, O’Shea JJ (2007) T cell-directed therapies: lessons learned and future prospects. Nat Immunol 8:25–30PubMedCrossRef
Metadata
Title
Pancreatic beta cell function persists in many patients with chronic type 1 diabetes, but is not dramatically improved by prolonged immunosuppression and euglycaemia from a beta cell allograft
Authors
E. H. Liu
B. J. Digon III
B. Hirshberg
R. Chang
B. J. Wood
Z. Neeman
A. Kam
R. A. Wesley
S. M. Polly
R. M. Hofmann
K. I. Rother
D. M. Harlan
Publication date
01-07-2009
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 7/2009
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-009-1342-7

Other articles of this Issue 7/2009

Diabetologia 7/2009 Go to the issue