Skip to main content
Top
Published in: Diabetologia 12/2008

01-12-2008 | Article

Common variants in the TCF7L2 gene help to differentiate autoimmune from non-autoimmune diabetes in young (15–34 years) but not in middle-aged (40–59 years) diabetic patients

Authors: E. Bakhtadze, C. Cervin, E. Lindholm, H. Borg, P. Nilsson, H. J. Arnqvist, J. Bolinder, J. W. Eriksson, S. Gudbjörnsdottir, L. Nyström, C.-D. Agardh, M. Landin-Olsson, G. Sundkvist, L. C. Groop

Published in: Diabetologia | Issue 12/2008

Login to get access

Abstract

Aims/hypothesis

Type 1 diabetes in children is characterised by autoimmune destruction of pancreatic beta cells and the presence of certain risk genotypes. In adults the same situation is often referred to as latent autoimmune diabetes in adults (LADA). We tested whether genetic markers associated with type 1 or type 2 diabetes could help to discriminate between autoimmune and non-autoimmune diabetes in young (15–34 years) and middle-aged (40–59 years) diabetic patients.

Methods

In 1,642 young and 1,619 middle-aged patients we determined: (1) HLA-DQB1 genotypes; (2) PTPN22 and INS variable-number tandem repeat (VNTR) polymorphisms; (3) two single nucleotide polymorphisms (rs7903146 and rs10885406) in the TCF7L2 gene; (4) glutamic acid decarboxylase (GAD) and IA-2-protein tyrosine phosphatase-like protein (IA-2) antibodies; and (5) fasting plasma C-peptide.

Results

Frequency of risk genotypes HLA-DQB1 (60% vs 25%, p= 9.4×10−34; 45% vs 18%, p= 1.4 × 10−16), PTPN22 CT/TT (34% vs 26%, p= 0.0023; 31% vs 23%, p= 0.034), INS VNTR class I/I (69% vs 53%, p= 1.3 × 10−8; 69% vs 51%, p= 8.5 × 10−5) and INS VNTR class IIIA/IIIA (75% vs 63%, p=  4.3 × 10−6; 73% vs 60%, p= 0.008) was increased in young and middle-aged GAD antibodies (GADA)-positive compared with GADA-negative patients. The type 2 diabetes-associated genotypes of TCF7L2 CT/TT of rs7903146 were significantly more common in young GADA-negative than in GADA-positive patients (53% vs 43%; p= 0.0004). No such difference was seen in middle-aged patients, in whom the frequency of the CT/TT genotypes of TCF7L2 was similarly increased in GADA-negative and GADA-positive groups (55% vs 56%).

Conclusions/interpretation

Common variants in the TCF7L2 gene help to differentiate young but not middle-aged GADA-positive and GADA-negative diabetic patients, suggesting that young GADA-negative patients have type 2 diabetes and that middle-aged GADA-positive patients are different from their young GADA-positive counterparts and share genetic features with type 2 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Thorsby E, Ronningen KS (1993) Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36:371–377PubMedCrossRef Thorsby E, Ronningen KS (1993) Particular HLA-DQ molecules play a dominant role in determining susceptibility or resistance to type 1 (insulin-dependent) diabetes mellitus. Diabetologia 36:371–377PubMedCrossRef
2.
go back to reference Sabbah E, Savola K, Kulmala P et al (1999) Disease-associated autoantibodies and HLA-DQB1 genotypes in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM). The Childhood Diabetes in Finland Study Group. Clin Exp Immunol 116:78–83PubMedCrossRef Sabbah E, Savola K, Kulmala P et al (1999) Disease-associated autoantibodies and HLA-DQB1 genotypes in children with newly diagnosed insulin-dependent diabetes mellitus (IDDM). The Childhood Diabetes in Finland Study Group. Clin Exp Immunol 116:78–83PubMedCrossRef
3.
go back to reference Bakhtadze E, Borg H, Stenstrom G et al (2006) HLA-DQB1 genotypes, islet antibodies and beta cell function in the classification of recent-onset diabetes among young adults in the nationwide Diabetes Incidence Study in Sweden. Diabetologia 49:1785–1794PubMedCrossRef Bakhtadze E, Borg H, Stenstrom G et al (2006) HLA-DQB1 genotypes, islet antibodies and beta cell function in the classification of recent-onset diabetes among young adults in the nationwide Diabetes Incidence Study in Sweden. Diabetologia 49:1785–1794PubMedCrossRef
4.
go back to reference Groop L, Miettinen A, Groop PH, Meri S, Koskimies S, Bottazzo GF (1988) Organ-specific autoimmunity and HLA-DR antigens as markers for beta-cell destruction in patients with type II diabetes. Diabetes 37:99–103PubMedCrossRef Groop L, Miettinen A, Groop PH, Meri S, Koskimies S, Bottazzo GF (1988) Organ-specific autoimmunity and HLA-DR antigens as markers for beta-cell destruction in patients with type II diabetes. Diabetes 37:99–103PubMedCrossRef
5.
go back to reference Sanjeevi CB, Gambelunghe G, Falorni A, Shtauvere-Brameus A, Kanungo A (2002) Genetics of latent autoimmune diabetes in adults. Ann N Y Acad Sci 958:107–111PubMedCrossRef Sanjeevi CB, Gambelunghe G, Falorni A, Shtauvere-Brameus A, Kanungo A (2002) Genetics of latent autoimmune diabetes in adults. Ann N Y Acad Sci 958:107–111PubMedCrossRef
6.
go back to reference Vatay A, Rajczy K, Pozsonyi E et al (2002) Differences in the genetic background of latent autoimmune diabetes in adults (LADA) and type 1 diabetes mellitus. Immunol Lett 84:109–115PubMedCrossRef Vatay A, Rajczy K, Pozsonyi E et al (2002) Differences in the genetic background of latent autoimmune diabetes in adults (LADA) and type 1 diabetes mellitus. Immunol Lett 84:109–115PubMedCrossRef
7.
go back to reference Tuomi T, Carlsson A, Li H et al (1999) Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 48:150–157PubMedCrossRef Tuomi T, Carlsson A, Li H et al (1999) Clinical and genetic characteristics of type 2 diabetes with and without GAD antibodies. Diabetes 48:150–157PubMedCrossRef
8.
go back to reference Zimmet P, Turner R, McCarty D, Rowley M, Mackay I (1999) Crucial points at diagnosis. Type 2 diabetes or slow type 1 diabetes. Diabetes Care 22(Suppl 2):B59–B64PubMed Zimmet P, Turner R, McCarty D, Rowley M, Mackay I (1999) Crucial points at diagnosis. Type 2 diabetes or slow type 1 diabetes. Diabetes Care 22(Suppl 2):B59–B64PubMed
9.
go back to reference Maldonado M, Hampe CS, Gaur LK et al (2003) Ketosis-prone diabetes: dissection of a heterogeneous syndrome using an immunogenetic and beta-cell functional classification, prospective analysis, and clinical outcomes. J Clin Endocrinol Metab 88:5090–5098PubMedCrossRef Maldonado M, Hampe CS, Gaur LK et al (2003) Ketosis-prone diabetes: dissection of a heterogeneous syndrome using an immunogenetic and beta-cell functional classification, prospective analysis, and clinical outcomes. J Clin Endocrinol Metab 88:5090–5098PubMedCrossRef
10.
go back to reference Gottsater A, Landin-Olsson M, Lernmark A, Fernlund P, Sundkvist G, Hagopian WA (1995) Glutamate decarboxylase antibody levels predict rate of beta-cell decline in adult-onset diabetes. Diabetes Res Clin Pract 27:133–140PubMedCrossRef Gottsater A, Landin-Olsson M, Lernmark A, Fernlund P, Sundkvist G, Hagopian WA (1995) Glutamate decarboxylase antibody levels predict rate of beta-cell decline in adult-onset diabetes. Diabetes Res Clin Pract 27:133–140PubMedCrossRef
11.
go back to reference Turner R, Stratton I, Horton V et al (1997) UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet 350:1288–1293PubMedCrossRef Turner R, Stratton I, Horton V et al (1997) UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group. Lancet 350:1288–1293PubMedCrossRef
12.
go back to reference Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163PubMedCrossRef Lyssenko V, Lupi R, Marchetti P et al (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest 117:2155–2163PubMedCrossRef
13.
go back to reference Field SF, Howson JM, Smyth DJ, Walker NM, Dunger DB, Todd JA (2007) Analysis of the type 2 diabetes gene, TCF7L2, in 13,795 type 1 diabetes cases and control subjects. Diabetologia 50:212–213PubMedCrossRef Field SF, Howson JM, Smyth DJ, Walker NM, Dunger DB, Todd JA (2007) Analysis of the type 2 diabetes gene, TCF7L2, in 13,795 type 1 diabetes cases and control subjects. Diabetologia 50:212–213PubMedCrossRef
14.
go back to reference Wroblewski M, Gottsater A, Lindgarde F, Fernlund P, Sundkvist G (1998) Gender, autoantibodies, and obesity in newly diagnosed diabetic patients aged 40–75 years. Diabetes Care 21:250–255PubMedCrossRef Wroblewski M, Gottsater A, Lindgarde F, Fernlund P, Sundkvist G (1998) Gender, autoantibodies, and obesity in newly diagnosed diabetic patients aged 40–75 years. Diabetes Care 21:250–255PubMedCrossRef
15.
go back to reference Bruno G, De Salvia A, Arcari R et al (1999) Clinical, immunological, and genetic heterogeneity of diabetes in an Italian population-based cohort of lean newly diagnosed patients aged 30–54 years. Piedmont Study Group for Diabetes Epidemiology. Diabetes Care 22:50–55PubMedCrossRef Bruno G, De Salvia A, Arcari R et al (1999) Clinical, immunological, and genetic heterogeneity of diabetes in an Italian population-based cohort of lean newly diagnosed patients aged 30–54 years. Piedmont Study Group for Diabetes Epidemiology. Diabetes Care 22:50–55PubMedCrossRef
16.
go back to reference Borg H, Arnqvist HJ, Bjork E et al (2003) Evaluation of the new ADA and WHO criteria for classification of diabetes mellitus in young adult people (15–34 yrs) in the Diabetes Incidence Study in Sweden (DISS). Diabetologia 46:173–181PubMedCrossRef Borg H, Arnqvist HJ, Bjork E et al (2003) Evaluation of the new ADA and WHO criteria for classification of diabetes mellitus in young adult people (15–34 yrs) in the Diabetes Incidence Study in Sweden (DISS). Diabetologia 46:173–181PubMedCrossRef
17.
go back to reference Rotteveel J, Belksma EJ, Renders CM, Hirasing RA, Delemarre-Van de Waal HA (2007) Type 2 diabetes in children in the Netherlands: the need for diagnostic protocols. Eur J Endocrinol 157:175–180PubMedCrossRef Rotteveel J, Belksma EJ, Renders CM, Hirasing RA, Delemarre-Van de Waal HA (2007) Type 2 diabetes in children in the Netherlands: the need for diagnostic protocols. Eur J Endocrinol 157:175–180PubMedCrossRef
18.
go back to reference Cervin C, Lyssenko V, Bakhtadze E et al (2008) Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 57:1433–1437PubMedCrossRef Cervin C, Lyssenko V, Bakhtadze E et al (2008) Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes 57:1433–1437PubMedCrossRef
19.
go back to reference Stenstrom G, Berger B, Borg H, Fernlund P, Dorman JS, Sundkvist G (2002) HLA-DQ genotypes in classic type 1 diabetes and in latent autoimmune diabetes of the adult. Am J Epidemiol 156:787–796PubMedCrossRef Stenstrom G, Berger B, Borg H, Fernlund P, Dorman JS, Sundkvist G (2002) HLA-DQ genotypes in classic type 1 diabetes and in latent autoimmune diabetes of the adult. Am J Epidemiol 156:787–796PubMedCrossRef
20.
go back to reference Nilsson PM, Nilsson JA, Berglund G (2004) Family burden of cardiovascular mortality: risk implications for offspring in a national register linkage study based upon the Malmo Preventive Project. J Intern Med 255:229–235PubMedCrossRef Nilsson PM, Nilsson JA, Berglund G (2004) Family burden of cardiovascular mortality: risk implications for offspring in a national register linkage study based upon the Malmo Preventive Project. J Intern Med 255:229–235PubMedCrossRef
21.
go back to reference Olsson ML, Sundkvist G, Lernmark A (1987) Prolonged incubation in the two-colour immunofluorescence test increases the prevalence and titres of islet cell antibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:327–332PubMedCrossRef Olsson ML, Sundkvist G, Lernmark A (1987) Prolonged incubation in the two-colour immunofluorescence test increases the prevalence and titres of islet cell antibodies in type 1 (insulin-dependent) diabetes mellitus. Diabetologia 30:327–332PubMedCrossRef
22.
go back to reference Borg H, Fernlund P, Sundkvist G (1997) Measurement of antibodies against glutamic acid decarboxylase 65 (GADA): two new 125I assays compared with [35S]GAD 65-ligand binding assay. Clin Chem 43:779–785PubMed Borg H, Fernlund P, Sundkvist G (1997) Measurement of antibodies against glutamic acid decarboxylase 65 (GADA): two new 125I assays compared with [35S]GAD 65-ligand binding assay. Clin Chem 43:779–785PubMed
23.
go back to reference Grubin CE, Daniels T, Toivola B et al (1994) A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 37:344–350PubMedCrossRef Grubin CE, Daniels T, Toivola B et al (1994) A novel radioligand binding assay to determine diagnostic accuracy of isoform-specific glutamic acid decarboxylase antibodies in childhood IDDM. Diabetologia 37:344–350PubMedCrossRef
24.
go back to reference Mire-Sluis AR, Das RG, Lernmark A (1999) The development of a World Health Organization international standard for islet cell antibodies: the aims and design of an international collaborative study. Diabetes Metab Res Rev 15:72–77PubMedCrossRef Mire-Sluis AR, Das RG, Lernmark A (1999) The development of a World Health Organization international standard for islet cell antibodies: the aims and design of an international collaborative study. Diabetes Metab Res Rev 15:72–77PubMedCrossRef
25.
go back to reference Verge CF, Stenger D, Bonifacio E et al (1998) Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 47:1857–1866PubMedCrossRef Verge CF, Stenger D, Bonifacio E et al (1998) Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 47:1857–1866PubMedCrossRef
26.
go back to reference Lindholm E, Hallengren B, Agardh CD (2004) Gender differences in GAD antibody-positive diabetes mellitus in relation to age at onset, C-peptide and other endocrine autoimmune diseases. Diabetes Metab Res Rev 20:158–164PubMedCrossRef Lindholm E, Hallengren B, Agardh CD (2004) Gender differences in GAD antibody-positive diabetes mellitus in relation to age at onset, C-peptide and other endocrine autoimmune diseases. Diabetes Metab Res Rev 20:158–164PubMedCrossRef
27.
go back to reference Borg H, Fernlund P, Sundkvist G (1997) Protein tyrosine phosphatase-like protein IA2-antibodies plus glutamic acid decarboxylase 65 antibodies (GADA) indicates autoimmunity as frequently as islet cell antibodies assay in children with recently diagnosed diabetes mellitus. Clin Chem 43:2358–2363PubMed Borg H, Fernlund P, Sundkvist G (1997) Protein tyrosine phosphatase-like protein IA2-antibodies plus glutamic acid decarboxylase 65 antibodies (GADA) indicates autoimmunity as frequently as islet cell antibodies assay in children with recently diagnosed diabetes mellitus. Clin Chem 43:2358–2363PubMed
28.
go back to reference Ilonen J, Reijonen H, Herva E et al (1996) Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 19:795–800PubMedCrossRef Ilonen J, Reijonen H, Herva E et al (1996) Rapid HLA-DQB1 genotyping for four alleles in the assessment of risk for IDDM in the Finnish population. The Childhood Diabetes in Finland (DiMe) Study Group. Diabetes Care 19:795–800PubMedCrossRef
29.
go back to reference Bennett ST, Lucassen AM, Gough SC et al (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9:284–292PubMedCrossRef Bennett ST, Lucassen AM, Gough SC et al (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9:284–292PubMedCrossRef
30.
go back to reference Barratt BJ, Payne F, Lowe CE et al (2004) Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 53:1884–1889PubMedCrossRef Barratt BJ, Payne F, Lowe CE et al (2004) Remapping the insulin gene/IDDM2 locus in type 1 diabetes. Diabetes 53:1884–1889PubMedCrossRef
31.
go back to reference Desai M, Zeggini E, Horton VA et al (2006) The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes 55:1890–1894PubMedCrossRef Desai M, Zeggini E, Horton VA et al (2006) The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes 55:1890–1894PubMedCrossRef
32.
go back to reference Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213PubMedCrossRef Bottini N, Vang T, Cucca F, Mustelin T (2006) Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 18:207–213PubMedCrossRef
33.
go back to reference Onengut-Gumuscu S, Buckner JH, Concannon P (2006) A haplotype-based analysis of the PTPN22 locus in type 1 diabetes. Diabetes 55:2883–2889PubMedCrossRef Onengut-Gumuscu S, Buckner JH, Concannon P (2006) A haplotype-based analysis of the PTPN22 locus in type 1 diabetes. Diabetes 55:2883–2889PubMedCrossRef
34.
go back to reference Helgason A, Palsson S, Thorleifsson G et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225PubMedCrossRef Helgason A, Palsson S, Thorleifsson G et al (2007) Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat Genet 39:218–225PubMedCrossRef
35.
go back to reference Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRef Grant SF, Thorleifsson G, Reynisdottir I et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323PubMedCrossRef
36.
go back to reference Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183PubMedCrossRef Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33:176–183PubMedCrossRef
37.
go back to reference Hitman GA, Tarn AC, Winter RM et al (1985) Type 1 (insulin-dependent) diabetes and a highly variable locus close to the insulin gene on chromosome 11. Diabetologia 28:218–222PubMedCrossRef Hitman GA, Tarn AC, Winter RM et al (1985) Type 1 (insulin-dependent) diabetes and a highly variable locus close to the insulin gene on chromosome 11. Diabetologia 28:218–222PubMedCrossRef
38.
go back to reference Thomson G, Robinson WP, Kuhner MK, Joe S, Klitz W (1989) HLA and insulin gene associations with IDDM. Genet Epidemiol 6:155–160PubMedCrossRef Thomson G, Robinson WP, Kuhner MK, Joe S, Klitz W (1989) HLA and insulin gene associations with IDDM. Genet Epidemiol 6:155–160PubMedCrossRef
39.
go back to reference Lucassen AM, Julier C, Beressi JP et al (1993) Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 4:305–310PubMedCrossRef Lucassen AM, Julier C, Beressi JP et al (1993) Susceptibility to insulin dependent diabetes mellitus maps to a 4.1 kb segment of DNA spanning the insulin gene and associated VNTR. Nat Genet 4:305–310PubMedCrossRef
40.
go back to reference Reinehr T, Schober E, Wiegand S, Thon A, Holl R (2006) Beta-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification? Arch Dis Child 91:473–477PubMedCrossRef Reinehr T, Schober E, Wiegand S, Thon A, Holl R (2006) Beta-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification? Arch Dis Child 91:473–477PubMedCrossRef
41.
go back to reference Haller K, Kisand K, Pisarev H et al (2007) Insulin gene VNTR, CTLA-4+49A/G and HLA-DQB1 alleles distinguish latent autoimmune diabetes in adults from type 1 diabetes and from type 2 diabetes group. Tissue Antigens 69:121–127PubMedCrossRef Haller K, Kisand K, Pisarev H et al (2007) Insulin gene VNTR, CTLA-4+49A/G and HLA-DQB1 alleles distinguish latent autoimmune diabetes in adults from type 1 diabetes and from type 2 diabetes group. Tissue Antigens 69:121–127PubMedCrossRef
42.
go back to reference Hosszufalusi N, Vatay A, Rajczy K et al (2003) Similar genetic features and different islet cell autoantibody pattern of latent autoimmune diabetes in adults (LADA) compared with adult-onset type 1 diabetes with rapid progression. Diabetes Care 26:452–457PubMedCrossRef Hosszufalusi N, Vatay A, Rajczy K et al (2003) Similar genetic features and different islet cell autoantibody pattern of latent autoimmune diabetes in adults (LADA) compared with adult-onset type 1 diabetes with rapid progression. Diabetes Care 26:452–457PubMedCrossRef
43.
go back to reference Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336PubMedCrossRef Saxena R, Voight BF, Lyssenko V et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336PubMedCrossRef
44.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef
45.
go back to reference Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885PubMedCrossRef
46.
go back to reference Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCrossRef Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341PubMedCrossRef
47.
go back to reference Bennett ST, Todd JA (1996) Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 30:343–370PubMedCrossRef Bennett ST, Todd JA (1996) Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu Rev Genet 30:343–370PubMedCrossRef
48.
go back to reference Ong KK, Phillips DI, Fall C et al (1999) The insulin gene VNTR, type 2 diabetes and birth weight. Nat Genet 21:262–263PubMedCrossRef Ong KK, Phillips DI, Fall C et al (1999) The insulin gene VNTR, type 2 diabetes and birth weight. Nat Genet 21:262–263PubMedCrossRef
49.
go back to reference Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464PubMedCrossRef Yi F, Brubaker PL, Jin T (2005) TCF-4 mediates cell type-specific regulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem 280:1457–1464PubMedCrossRef
50.
go back to reference Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRef Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790PubMedCrossRef
Metadata
Title
Common variants in the TCF7L2 gene help to differentiate autoimmune from non-autoimmune diabetes in young (15–34 years) but not in middle-aged (40–59 years) diabetic patients
Authors
E. Bakhtadze
C. Cervin
E. Lindholm
H. Borg
P. Nilsson
H. J. Arnqvist
J. Bolinder
J. W. Eriksson
S. Gudbjörnsdottir
L. Nyström
C.-D. Agardh
M. Landin-Olsson
G. Sundkvist
L. C. Groop
Publication date
01-12-2008
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 12/2008
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-008-1161-2

Other articles of this Issue 12/2008

Diabetologia 12/2008 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.