Skip to main content
Top
Published in: Diabetologia 12/2007

01-12-2007 | Research Letter

Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans

Authors: O. Tschritter, H. Preissl, Y. Yokoyama, F. Machicao, H.-U. Häring, A. Fritsche

Published in: Diabetologia | Issue 12/2007

Login to get access

Excerpt

To the Editor: In a genome-wide association study, the FTO locus has recently been identified as a gene associated with increased risks of obesity and type 2 diabetes mellitus in humans [13]. Dina et al. [4] reported that variation in this gene is strongly associated with childhood and severe adult obesity. In this paper, three single nucleotide polymorphisms are proposed to be functional and were reported to be in high linkage disequilibrium with the variants rs8050136 and rs9939609 reported by Scott et al. [1] and Frayling et al. [2], respectively. The overall weight effect of the risk genotype has been estimated to be approximately 3 kg and was detectable in children from age 7 years upwards [2]. These studies suggest that variants in the FTO gene cause an early onset deterioration of body weight regulation. Based on this, we investigated the relationship between the FTO variant rs8050136 and BMI using data obtained from the Tübingen Family (TÜF) Study [5]. BMI was higher in carriers of the risk allele than in wild-type individuals (AA [n = 463] 27.2 ± 0.3 kg/m2, AC [n = 732] 29.0 ± 0.3 kg/m2, CC [n = 267] 29.5 ± 0.5 kg/m2, means±SEM, p < 0.001) as a result of increased body weight (AA 79.8 ± 0.9 kg, AC 84.7 ± 1.0 kg, CC 84.8 ± 1.5 kg, p < 0.001). This finding replicates the previously reported weight difference in our population [14]. However, the mechanism by which FTO polymorphisms affect body weight in humans is still unclear. In mice, FTO is expressed in multiple tissues, including the brain. It is located on a region on chromosome 8 that is deleted by the Fused toes mutation [6]. The fused toes mutation causes a complex phenotype that features partial syndactyly of forelimbs and defects in brain morphogenesis [7]. However, in these animals, no conclusive evidence for a role of Fto or other deleted genes in energy homeostasis has been discovered. In their study Dina et al. [4] investigated the expression of FTO in human tissues, and in agreement with findings from animal studies, the FTO gene was found to be expressed in the brain. We recently described cerebrocortical insulin resistance in obese humans [8]. In lean humans, spontaneous cortical activity (beta and theta activity) is increased by insulin, while in obese individuals this effect was absent. In the brain, insulin acts as an adiposity and satiety signal and is critical for normal body weight regulation [9]. We therefore hypothesised that a reduced insulin response in the brain in carriers of a risk allele in FTO may be involved in the obesity effect and enrolled 47 subjects from the total database to study the effect of this polymorphism on the cerebrocortical insulin response. The genotype groups within this subgroup were matched for BMI, sex and age to exclude other obesity-related traits. The study protocol was approved by the Ethics Committee of the University of Tübingen and all participants gave written informed consent. We found that the obesity risk variant was associated with a reduced insulin effect on beta activity (Fig. 1a), which implicates a lower cerebrocortical response to insulin. Furthermore, in a multivariate model, the effect of the FTO polymorphism was independent of the Gly972Arg polymorphism in IRS1, which we have previously reported to reduce the cerebrocortical insulin effect (FTO p = 0.014, IRS1 p = 0.041, adjusted for BMI and age). The effect of being overweight/obese on the insulin effect on beta activity was similar to that of the FTO risk variant (Fig. 1b). This implies that even though participants were matched with respect to BMI, the overall genotype effect on cerebrocortical insulin sensitivity was similar to the effect of increased weight. At least in animals, insulin resistance in the brain has been shown to cause obesity [9]. It is therefore conceivable that the decreased cerebrocortical insulin effect in humans describes a mechanism by which variation in FTO contributes to the pathogenesis of obesity.
Literature
1.
go back to reference Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef Scott LJ, Mohlke KL, Bonnycastle LL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345PubMedCrossRef
2.
go back to reference Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894PubMedCrossRef Frayling TM, Timpson NJ, Weedon MN et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316:889–894PubMedCrossRef
3.
go back to reference Scuteri A, Sanna S, Chen WM et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115PubMedCrossRef Scuteri A, Sanna S, Chen WM et al (2007) Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet 3:e115PubMedCrossRef
4.
go back to reference Dina C, Meyre D, Gallina S et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726PubMedCrossRef Dina C, Meyre D, Gallina S et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39:724–726PubMedCrossRef
5.
go back to reference Stumvoll M, Fritsche A, Volk A et al (2001) The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose tolerant humans. Diabetes 50:882–885PubMedCrossRef Stumvoll M, Fritsche A, Volk A et al (2001) The Gly972Arg polymorphism in the insulin receptor substrate-1 gene contributes to the variation in insulin secretion in normal glucose tolerant humans. Diabetes 50:882–885PubMedCrossRef
6.
go back to reference Peters T, Ausmeier K, Ruther U (1999) Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 10:983–986PubMedCrossRef Peters T, Ausmeier K, Ruther U (1999) Cloning of Fatso (Fto), a novel gene deleted by the Fused toes (Ft) mouse mutation. Mamm Genome 10:983–986PubMedCrossRef
7.
go back to reference Anselme I, Laclef C, Lanaud M, Ruther U, Schneider-Maunoury S (2007) Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes. Dev Biol 304:208–220PubMedCrossRef Anselme I, Laclef C, Lanaud M, Ruther U, Schneider-Maunoury S (2007) Defects in brain patterning and head morphogenesis in the mouse mutant Fused toes. Dev Biol 304:208–220PubMedCrossRef
8.
go back to reference Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci USA 103:12103–12108PubMedCrossRef Tschritter O, Preissl H, Hennige AM et al (2006) The cerebrocortical response to hyperinsulinemia is reduced in overweight humans: a magnetoencephalographic study. Proc Natl Acad Sci USA 103:12103–12108PubMedCrossRef
9.
go back to reference Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRef Bruning JC, Gautam D, Burks DJ et al (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289:2122–2125PubMedCrossRef
Metadata
Title
Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans
Authors
O. Tschritter
H. Preissl
Y. Yokoyama
F. Machicao
H.-U. Häring
A. Fritsche
Publication date
01-12-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 12/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-007-0839-1

Other articles of this Issue 12/2007

Diabetologia 12/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.