Skip to main content
Top
Published in: Diabetologia 10/2006

01-10-2006 | Article

Hyperinsulinism in mice with heterozygous loss of KATP channels

Authors: M. S. Remedi, J. V. Rocheleau, A. Tong, B. L. Patton, M. L. McDaniel, D. W. Piston, J. C. Koster, C. G. Nichols

Published in: Diabetologia | Issue 10/2006

Login to get access

Abstract

Aims/hypothesis

ATP-sensitive K+ (KATP) channels couple glucose metabolism to insulin secretion in pancreatic beta cells. In humans, loss-of-function mutations of beta cell KATP subunits (SUR1, encoded by the gene ABCC8, or Kir6.2, encoded by the gene KCNJ11) cause congenital hyperinsulinaemia. Mice with dominant-negative reduction of beta cell KATP (Kir6.2[AAA]) exhibit hyperinsulinism, whereas mice with zero KATP (Kir6.2−/−) show transient hyperinsulinaemia as neonates, but are glucose-intolerant as adults. Thus, we propose that partial loss of beta cell KATP in vivo causes insulin hypersecretion, but complete absence may cause insulin secretory failure.

Materials and methods

Heterozygous Kir6.2+/− and SUR1+/− animals were generated by backcrossing from knockout animals. Glucose tolerance in intact animals was determined following i.p. loading. Glucose-stimulated insulin secretion (GSIS), islet KATP conductance and glucose dependence of intracellular Ca2+ were assessed in isolated islets.

Results

In both of the mechanistically distinct models of reduced KATP (Kir6.2+/− and SUR1+/−), KATP density is reduced by ∼60%. While both Kir6.2−/− and SUR1−/− mice are glucose-intolerant and have reduced glucose-stimulated insulin secretion, heterozygous Kir6.2+/− and SUR1+/− mice show enhanced glucose tolerance and increased GSIS, paralleled by a left-shift in glucose dependence of intracellular Ca2+ oscillations.

Conclusions/interpretation

The results confirm that incomplete loss of beta cell KATP in vivo underlies a hyperinsulinaemic phenotype, whereas complete loss of KATP underlies eventual secretory failure.
Literature
1.
go back to reference Glaser B, Chiu KC, Anker R et al (1994) Familial hyperinsulinism maps to chromosome 11p14-15.1, 30 cM centromeric to the insulin gene. Nat Genet 7:185–188PubMedCrossRef Glaser B, Chiu KC, Anker R et al (1994) Familial hyperinsulinism maps to chromosome 11p14-15.1, 30 cM centromeric to the insulin gene. Nat Genet 7:185–188PubMedCrossRef
2.
go back to reference Thomas PM, Cote GJ, Hallman DM, Mathew PM (1995) Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 56:416–421PubMed Thomas PM, Cote GJ, Hallman DM, Mathew PM (1995) Homozygosity mapping, to chromosome 11p, of the gene for familial persistent hyperinsulinemic hypoglycemia of infancy. Am J Hum Genet 56:416–421PubMed
3.
go back to reference Nestorowicz A, Wilson BA, Schoor KP et al (1996) Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 5:1813–1822PubMedCrossRef Nestorowicz A, Wilson BA, Schoor KP et al (1996) Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 5:1813–1822PubMedCrossRef
4.
go back to reference Thomas P, Ye Y, Lightner E (1996) Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5:1809–1812PubMedCrossRef Thomas P, Ye Y, Lightner E (1996) Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5:1809–1812PubMedCrossRef
5.
go back to reference Nichols CG, Shyng SL, Nestorowicz A et al (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787PubMedCrossRef Nichols CG, Shyng SL, Nestorowicz A et al (1996) Adenosine diphosphate as an intracellular regulator of insulin secretion. Science 272:1785–1787PubMedCrossRef
6.
go back to reference Nestorowicz A, Inagaki N, Gonoi T et al (1997) A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46:1743–1748PubMedCrossRef Nestorowicz A, Inagaki N, Gonoi T et al (1997) A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46:1743–1748PubMedCrossRef
7.
go back to reference Huopio H, Shyng SL, Otonkoski T, Nichols CG (2002) K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 283:E207–E216PubMed Huopio H, Shyng SL, Otonkoski T, Nichols CG (2002) K(ATP) channels and insulin secretion disorders. Am J Physiol Endocrinol Metab 283:E207–E216PubMed
8.
go back to reference Aynsley-Green A (1981) Nesidioblastosis of the pancreas in infancy. Dev Med Child Neurol 23:372–379PubMed Aynsley-Green A (1981) Nesidioblastosis of the pancreas in infancy. Dev Med Child Neurol 23:372–379PubMed
9.
go back to reference Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664PubMedCrossRef Shyng S, Nichols CG (1997) Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110:655–664PubMedCrossRef
10.
go back to reference Clement JPT, Kunjilwar K, Gonzalez G et al (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838PubMedCrossRef Clement JPT, Kunjilwar K, Gonzalez G et al (1997) Association and stoichiometry of K(ATP) channel subunits. Neuron 18:827–838PubMedCrossRef
11.
go back to reference Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236PubMedCrossRef Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236PubMedCrossRef
12.
go back to reference Shiota C, Larsson O, Shelton KD et al (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277:37176–37183PubMedCrossRef Shiota C, Larsson O, Shelton KD et al (2002) Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J Biol Chem 277:37176–37183PubMedCrossRef
13.
go back to reference Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277PubMedCrossRef Seghers V, Nakazaki M, DeMayo F, Aguilar-Bryan L, Bryan J (2000) Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J Biol Chem 275:9270–9277PubMedCrossRef
14.
go back to reference Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406PubMedCrossRef Miki T, Nagashima K, Tashiro F et al (1998) Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc Natl Acad Sci USA 95:10402–10406PubMedCrossRef
15.
go back to reference Koster JC, Remedi MS, Flagg TP et al (2002) Hyperinsulinism induced by targeted suppression of beta cell KATP channels. Proc Natl Acad Sci USA 99:16992–16997PubMedCrossRef Koster JC, Remedi MS, Flagg TP et al (2002) Hyperinsulinism induced by targeted suppression of beta cell KATP channels. Proc Natl Acad Sci USA 99:16992–16997PubMedCrossRef
16.
go back to reference Miki T, Tashiro F, Iwanaga T et al (1997) Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl Acad Sci USA 94:11969–11973PubMedCrossRef Miki T, Tashiro F, Iwanaga T et al (1997) Abnormalities of pancreatic islets by targeted expression of a dominant-negative KATP channel. Proc Natl Acad Sci USA 94:11969–11973PubMedCrossRef
17.
go back to reference Eliasson L, Ma X, Renstrom E et al (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197PubMedCrossRef Eliasson L, Ma X, Renstrom E et al (2003) SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol 121:181–197PubMedCrossRef
18.
go back to reference Remedi MS, Koster JC, Markova K et al (2004) Diet-induced glucose intolerance in mice with decreased beta-cell ATP-sensitive K+ channels. Diabetes 53:3159–3167PubMedCrossRef Remedi MS, Koster JC, Markova K et al (2004) Diet-induced glucose intolerance in mice with decreased beta-cell ATP-sensitive K+ channels. Diabetes 53:3159–3167PubMedCrossRef
19.
go back to reference McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40PubMedCrossRef McDonald JC, Duffy DC, Anderson JR et al (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40PubMedCrossRef
20.
go back to reference Schwappach B, Zerangue N, Jan YN, Jan LY (2000) Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26:155–167PubMedCrossRef Schwappach B, Zerangue N, Jan YN, Jan LY (2000) Molecular basis for K(ATP) assembly: transmembrane interactions mediate association of a K+ channel with an ABC transporter. Neuron 26:155–167PubMedCrossRef
21.
go back to reference Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW (2004) Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci USA 101:12899–12903PubMedCrossRef Rocheleau JV, Walker GM, Head WS, McGuinness OP, Piston DW (2004) Microfluidic glucose stimulation reveals limited coordination of intracellular Ca2+ activity oscillations in pancreatic islets. Proc Natl Acad Sci USA 101:12899–12903PubMedCrossRef
22.
go back to reference Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849PubMedCrossRef Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350:1838–1849PubMedCrossRef
23.
go back to reference Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM (2004) Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci USA 101:17539–17544PubMedCrossRef Proks P, Antcliff JF, Lippiat J, Gloyn AL, Hattersley AT, Ashcroft FM (2004) Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proc Natl Acad Sci USA 101:17539–17544PubMedCrossRef
24.
go back to reference Vaxillaire M, Populaire C, Busiah K et al (2004) Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719–2722PubMedCrossRef Vaxillaire M, Populaire C, Busiah K et al (2004) Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719–2722PubMedCrossRef
25.
go back to reference Sagen JV, Raeder H, Hathout E et al (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718PubMedCrossRef Sagen JV, Raeder H, Hathout E et al (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718PubMedCrossRef
26.
go back to reference Nestorowicz A, Glaser B, Wilson BA et al (1998) Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet 7:1119–1128. (published erratum appears in Hum Mol Genet 1998 7:1527)PubMedCrossRef Nestorowicz A, Glaser B, Wilson BA et al (1998) Genetic heterogeneity in familial hyperinsulinism. Hum Mol Genet 7:1119–1128. (published erratum appears in Hum Mol Genet 1998 7:1527)PubMedCrossRef
27.
go back to reference Kane C, Shepherd RM, Squires PE et al (1996) Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 2:1344–1347PubMedCrossRef Kane C, Shepherd RM, Squires PE et al (1996) Loss of functional KATP channels in pancreatic beta-cells causes persistent hyperinsulinemic hypoglycemia of infancy. Nat Med 2:1344–1347PubMedCrossRef
28.
go back to reference Dunne MJ, Kane C, Shepherd RM et al (1997) Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N Engl J Med 336:703–706PubMedCrossRef Dunne MJ, Kane C, Shepherd RM et al (1997) Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N Engl J Med 336:703–706PubMedCrossRef
29.
go back to reference Otonkoski T, Ammala C, Huopio H et al (1999) A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes 48:408–415PubMedCrossRef Otonkoski T, Ammala C, Huopio H et al (1999) A point mutation inactivating the sulfonylurea receptor causes the severe form of persistent hyperinsulinemic hypoglycemia of infancy in Finland. Diabetes 48:408–415PubMedCrossRef
30.
go back to reference Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci USA 98:2882–2887PubMedCrossRef Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci USA 98:2882–2887PubMedCrossRef
31.
go back to reference Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG (2000) Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell 100:645–654PubMedCrossRef Koster JC, Marshall BA, Ensor N, Corbett JA, Nichols CG (2000) Targeted overactivity of beta cell K(ATP) channels induces profound neonatal diabetes. Cell 100:645–654PubMedCrossRef
32.
go back to reference Miki T, Minami K, Zhang L et al (2002) ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 283:E1178–E1184PubMed Miki T, Minami K, Zhang L et al (2002) ATP-sensitive potassium channels participate in glucose uptake in skeletal muscle and adipose tissue. Am J Physiol Endocrinol Metab 283:E1178–E1184PubMed
33.
go back to reference Suzuki M, Li RA, Miki T et al (2001) Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ Res 88:570–577PubMed Suzuki M, Li RA, Miki T et al (2001) Functional roles of cardiac and vascular ATP-sensitive potassium channels clarified by Kir6.2-knockout mice. Circ Res 88:570–577PubMed
34.
go back to reference Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318PubMedCrossRef Seino S, Iwanaga T, Nagashima K, Miki T (2000) Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49:311–318PubMedCrossRef
35.
go back to reference Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef Pocai A, Lam TK, Gutierrez-Juarez R et al (2005) Hypothalamic K(ATP) channels control hepatic glucose production. Nature 434:1026–1031PubMedCrossRef
36.
go back to reference Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC (2004) Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic beta-cells. J Biol Chem 279:32316–32324PubMedCrossRef Nenquin M, Szollosi A, Aguilar-Bryan L, Bryan J, Henquin JC (2004) Both triggering and amplifying pathways contribute to fuel-induced insulin secretion in the absence of sulfonylurea receptor-1 in pancreatic beta-cells. J Biol Chem 279:32316–32324PubMedCrossRef
37.
go back to reference Doliba NM, Qin W, Vatamaniuk MZ et al (2004) Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab 286:E834–E843PubMedCrossRef Doliba NM, Qin W, Vatamaniuk MZ et al (2004) Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Am J Physiol Endocrinol Metab 286:E834–E843PubMedCrossRef
38.
go back to reference Li C, Buettger C, Kwagh J et al (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401PubMedCrossRef Li C, Buettger C, Kwagh J et al (2004) A signaling role of glutamine in insulin secretion. J Biol Chem 279:13393–13401PubMedCrossRef
39.
go back to reference Chutkow WA, Samuel V, Hansen PA et al (2001) Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 98:11760–11764PubMedCrossRef Chutkow WA, Samuel V, Hansen PA et al (2001) Disruption of Sur2-containing KATP channels enhances insulin-stimulated glucose uptake in skeletal muscle. Proc Natl Acad Sci USA 98:11760–11764PubMedCrossRef
40.
go back to reference Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246PubMedCrossRef Shafrir E, Ziv E, Mosthaf L (1999) Nutritionally induced insulin resistance and receptor defect leading to beta-cell failure in animal models. Ann N Y Acad Sci 892:223–246PubMedCrossRef
41.
go back to reference Rocheleau JV, Remedi MS, Granada B et al (2006) Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol 4:e26PubMedCrossRef Rocheleau JV, Remedi MS, Granada B et al (2006) Critical role of gap junction coupled KATP channel activity for regulated insulin secretion. PLoS Biol 4:e26PubMedCrossRef
42.
go back to reference Dufer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2004) Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(−/−) beta cells. Diabetologia 47:488–498PubMedCrossRef Dufer M, Haspel D, Krippeit-Drews P, Aguilar-Bryan L, Bryan J, Drews G (2004) Oscillations of membrane potential and cytosolic Ca(2+) concentration in SUR1(−/−) beta cells. Diabetologia 47:488–498PubMedCrossRef
43.
go back to reference Koster JC, Remedi MS, Dao C, Nichols CG (2005) ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy. Diabetes 54:2645–2654PubMedCrossRef Koster JC, Remedi MS, Dao C, Nichols CG (2005) ATP and sulfonylurea sensitivity of mutant ATP-sensitive K+ channels in neonatal diabetes: implications for pharmacogenomic therapy. Diabetes 54:2645–2654PubMedCrossRef
44.
go back to reference Shyng SL, Ferrigni T, Shepard JB et al (1998) Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47:1145–1151PubMedCrossRef Shyng SL, Ferrigni T, Shepard JB et al (1998) Functional analyses of novel mutations in the sulfonylurea receptor 1 associated with persistent hyperinsulinemic hypoglycemia of infancy. Diabetes 47:1145–1151PubMedCrossRef
45.
go back to reference de Lonlay P, Fournet JC, Touati G et al (2002) Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr 161:37–48PubMed de Lonlay P, Fournet JC, Touati G et al (2002) Heterogeneity of persistent hyperinsulinaemic hypoglycaemia. A series of 175 cases. Eur J Pediatr 161:37–48PubMed
46.
go back to reference Henwood MJ, Kelly A, MacMullen C et al (2005) Genotype–phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. J Clin Endocrinol Metab 90:789–794PubMedCrossRef Henwood MJ, Kelly A, MacMullen C et al (2005) Genotype–phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. J Clin Endocrinol Metab 90:789–794PubMedCrossRef
47.
go back to reference Huopio H, Vauhkonen I, Komulainen J, Niskanen L, Otonkoski T, Laakso M (2002) Carriers of an inactivating beta-cell ATP-sensitive K(+) channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion. Diabetes Care 25:101–106PubMedCrossRef Huopio H, Vauhkonen I, Komulainen J, Niskanen L, Otonkoski T, Laakso M (2002) Carriers of an inactivating beta-cell ATP-sensitive K(+) channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion. Diabetes Care 25:101–106PubMedCrossRef
48.
go back to reference Grimberg A, Ferry RJ Jr, Kelly A et al (2001) Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50:322–328PubMedCrossRef Grimberg A, Ferry RJ Jr, Kelly A et al (2001) Dysregulation of insulin secretion in children with congenital hyperinsulinism due to sulfonylurea receptor mutations. Diabetes 50:322–328PubMedCrossRef
49.
go back to reference Huopio H, Reimann F, Ashfield R et al (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106:897–906PubMedCrossRef Huopio H, Reimann F, Ashfield R et al (2000) Dominantly inherited hyperinsulinism caused by a mutation in the sulfonylurea receptor type 1. J Clin Invest 106:897–906PubMedCrossRef
Metadata
Title
Hyperinsulinism in mice with heterozygous loss of KATP channels
Authors
M. S. Remedi
J. V. Rocheleau
A. Tong
B. L. Patton
M. L. McDaniel
D. W. Piston
J. C. Koster
C. G. Nichols
Publication date
01-10-2006
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 10/2006
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0367-4

Other articles of this Issue 10/2006

Diabetologia 10/2006 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.