Skip to main content
Top
Published in: Diabetologia 10/2006

01-10-2006 | Article

BCL-6: a possible missing link for anti-inflammatory PPAR-δ signalling in pancreatic beta cells

Authors: I. Kharroubi, C.-H. Lee, P. Hekerman, M. I. Darville, R. M. Evans, D. L. Eizirik, M. Cnop

Published in: Diabetologia | Issue 10/2006

Login to get access

Abstract

Aims/hypothesis

Inflammatory mediators contribute to pancreatic beta cell death in type 1 diabetes. Beta cells respond to cytokine exposure by activating gene networks that alter cellular metabolism, induce chemokine release (thereby increasing insulitis), and cause apoptosis. We have previously shown by microarray analysis that exposure of INS-1E cells to IL-1β + IFN-γ induces the transcription factor peroxisome proliferator-activated receptor (Ppar)-δ and several of its target genes. PPAR-δ controls cellular lipid metabolism and is a major regulator of inflammatory responses. We therefore examined the role of PPAR-δ in cytokine-treated beta cells.

Materials and methods

Primary beta cells that had been purified by fluorescence-activated cell sorting and INS-1E cells were cultured in the presence of the cytokines TNF-α, IL-1β, or IL-1β + IFN-γ, or the synthetic PPAR-δ agonist GW501516. Gene expression was analysed by real-time PCR. PPAR-δ, monocyte chemoattractant protein (MCP-1, now known as CCL2) promoter and NF-κB activity were determined by luciferase reporter assays.

Results

Exposure of primary beta cells or INS-1E cells to cytokines induced Ppar-δ mRNA expression and PPAR-δ-dependent CD36, lipoprotein lipase, acyl CoA synthetase and adipophilin mRNAs. Cytokines and the PPAR-δ agonist GW501516 also activated a PPAR-δ response element reporter in beta cells. Unlike immune cells, neither INS-1E nor beta cells expressed the transcriptional repressor B-cell lymphoma-6 (BCL-6). As a consequence, PPAR-δ activation by GW501516 did not decrease cytokine-induced Mcp-1 promoter activation or mRNA expression, as reported for macrophages. Transient transfection with a BCL-6 expression vector markedly reduced Mcp-1 promoter and NF-κB activities in beta cells.

Conclusions/interpretation

Cytokines activate the PPAR-δ gene network in beta cells. This network does not, however, regulate the pro-inflammatory response to cytokines because beta cells lack constitutive BCL-6 expression. This may render beta cells particularly susceptible to propagating inflammation in type 1 diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia 44:2115–2133PubMedCrossRef Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated β-cell apoptosis. Diabetologia 44:2115–2133PubMedCrossRef
2.
go back to reference Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107PubMedCrossRef Cnop M, Welsh N, Jonas JC, Jörns A, Lenzen S, Eizirik DL (2005) Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107PubMedCrossRef
3.
go back to reference Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells. J Biol Chem 276:48879–48886PubMedCrossRef Cardozo AK, Heimberg H, Heremans Y et al (2001) A comprehensive analysis of cytokine-induced and nuclear factor-κB-dependent genes in primary rat pancreatic β-cells. J Biol Chem 276:48879–48886PubMedCrossRef
4.
go back to reference Eldor R, Yeffet A, Baum K et al (2006) Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 103:5072–5077PubMedCrossRef Eldor R, Yeffet A, Baum K et al (2006) Conditional and specific NF-κB blockade protects pancreatic beta cells from diabetogenic agents. Proc Natl Acad Sci USA 103:5072–5077PubMedCrossRef
5.
go back to reference Heimberg H, Heremans Y, Jobin C et al (2001) Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents β-cell apoptosis. Diabetes 50:2219–2224PubMedCrossRef Heimberg H, Heremans Y, Jobin C et al (2001) Inhibition of cytokine-induced NF-κB activation by adenovirus-mediated expression of a NF-κB super-repressor prevents β-cell apoptosis. Diabetes 50:2219–2224PubMedCrossRef
6.
go back to reference Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL (2003) IL-1β and IFN-γ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 46:255–266PubMed Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL (2003) IL-1β and IFN-γ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 46:255–266PubMed
7.
go back to reference Kutlu B, Cardozo AK, Darville MI et al (2003) Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 52:2701–2719PubMedCrossRef Kutlu B, Cardozo AK, Darville MI et al (2003) Discovery of gene networks regulating cytokine-induced dysfunction and apoptosis in insulin-producing INS-1 cells. Diabetes 52:2701–2719PubMedCrossRef
8.
go back to reference Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79–82PubMedCrossRef Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK (1998) The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation. Nature 391:79–82PubMedCrossRef
9.
go back to reference Peters JM, Lee SS, Li W et al (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol Cell Biol 20:5119–5128PubMedCrossRef Peters JM, Lee SS, Li W et al (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol Cell Biol 20:5119–5128PubMedCrossRef
10.
go back to reference Vosper H, Patel L, Graham TL et al (2001) The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J Biol Chem 276:44258–44265PubMedCrossRef Vosper H, Patel L, Graham TL et al (2001) The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J Biol Chem 276:44258–44265PubMedCrossRef
11.
go back to reference Oliver WR Jr, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311PubMedCrossRef Oliver WR Jr, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311PubMedCrossRef
12.
go back to reference Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMedCrossRef Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMedCrossRef
13.
go back to reference Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE (2003) The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493PubMedCrossRef Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GE (2003) The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493PubMedCrossRef
14.
go back to reference Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929PubMedCrossRef Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929PubMedCrossRef
15.
go back to reference Lee CH, Olson P, Hevener A et al (2006) PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 103:3444–3449PubMedCrossRef Lee CH, Olson P, Hevener A et al (2006) PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 103:3444–3449PubMedCrossRef
16.
go back to reference Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302:453–457PubMedCrossRef Lee CH, Chawla A, Urbiztondo N, Liao D, Boisvert WA, Evans RM (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302:453–457PubMedCrossRef
17.
go back to reference Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366PubMedCrossRef Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 137:354–366PubMedCrossRef
18.
go back to reference Rasschaert J, Ladriere L, Urbain M et al (2005) Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA + interferon-γ-induced apoptosis in primary pancreatic β-cells. J Biol Chem 280:33984–33991PubMedCrossRef Rasschaert J, Ladriere L, Urbain M et al (2005) Toll-like receptor 3 and STAT-1 contribute to double-stranded RNA + interferon-γ-induced apoptosis in primary pancreatic β-cells. J Biol Chem 280:33984–33991PubMedCrossRef
19.
go back to reference Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMedCrossRef Asfari M, Janjic D, Meda P, Li G, Halban PA, Wollheim CB (1992) Establishment of 2-mercaptoethanol-dependent differentiated insulin-secreting cell lines. Endocrinology 130:167–178PubMedCrossRef
20.
go back to reference Chen MC, Proost P, Gysemans C, Mathieu C, Eizirik DL (2001) Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1β-exposed human and rat islet cells. Diabetologia 44:325–332PubMedCrossRef Chen MC, Proost P, Gysemans C, Mathieu C, Eizirik DL (2001) Monocyte chemoattractant protein-1 is expressed in pancreatic islets from prediabetic NOD mice and in interleukin-1β-exposed human and rat islet cells. Diabetologia 44:325–332PubMedCrossRef
21.
go back to reference Kharroubi I, Rasschaert J, Eizirik DL, Cnop M (2003) Expression of adiponectin receptors in pancreatic β cells. Biochem Biophys Res Commun 312:1118–1122PubMedCrossRef Kharroubi I, Rasschaert J, Eizirik DL, Cnop M (2003) Expression of adiponectin receptors in pancreatic β cells. Biochem Biophys Res Commun 312:1118–1122PubMedCrossRef
22.
go back to reference Overbergh L, Valckx D, Waer M, Mathieu C (1999) Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11:305–312PubMedCrossRef Overbergh L, Valckx D, Waer M, Mathieu C (1999) Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11:305–312PubMedCrossRef
23.
go back to reference Chen MC, Schuit F, Eizirik DL (1999) Identification of IL-1β-induced messenger RNAs in rat pancreatic beta cells by differential display of messenger RNA. Diabetologia 42:1199–1203PubMedCrossRef Chen MC, Schuit F, Eizirik DL (1999) Identification of IL-1β-induced messenger RNAs in rat pancreatic beta cells by differential display of messenger RNA. Diabetologia 42:1199–1203PubMedCrossRef
24.
go back to reference Chawla A, Lee CH, Barak Y et al (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273PubMedCrossRef Chawla A, Lee CH, Barak Y et al (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273PubMedCrossRef
25.
go back to reference Kutlu B, Darville MI, Cardozo AK, Eizirik DL (2003) Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells. Diabetes 52:348–355PubMedCrossRef Kutlu B, Darville MI, Cardozo AK, Eizirik DL (2003) Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic β-cells. Diabetes 52:348–355PubMedCrossRef
26.
go back to reference Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108PubMedCrossRef Darville MI, Eizirik DL (1998) Regulation by cytokines of the inducible nitric oxide synthase promoter in insulin-producing cells. Diabetologia 41:1101–1108PubMedCrossRef
27.
go back to reference Eizirik DL (1991) Interleukin-1β induces an early decrease in insulin release, (pro)insulin biosynthesis and insulin mRNA in mouse pancreatic islets by a mechanism dependent on gene transcription and protein synthesis. Autoimmunity 10:107–113PubMed Eizirik DL (1991) Interleukin-1β induces an early decrease in insulin release, (pro)insulin biosynthesis and insulin mRNA in mouse pancreatic islets by a mechanism dependent on gene transcription and protein synthesis. Autoimmunity 10:107–113PubMed
28.
go back to reference Hoorens A, Van de Casteele M, Kloppel G, Pipeleers D (1996) Glucose promotes survival of rat pancreatic β cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 98:1568–1574PubMedCrossRef Hoorens A, Van de Casteele M, Kloppel G, Pipeleers D (1996) Glucose promotes survival of rat pancreatic β cells by activating synthesis of proteins which suppress a constitutive apoptotic program. J Clin Invest 98:1568–1574PubMedCrossRef
29.
go back to reference Gremlich S, Nolan C, Roduit R et al (2005) Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor α transcriptional up-regulation of fatty acid oxidation. Endocrinology 146:375–382PubMedCrossRef Gremlich S, Nolan C, Roduit R et al (2005) Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor α transcriptional up-regulation of fatty acid oxidation. Endocrinology 146:375–382PubMedCrossRef
30.
go back to reference Ito E, Ozawa S, Takahashi K et al (2004) PPAR-γ overexpression selectively suppresses insulin secretory capacity in isolated pancreatic islets through induction of UCP-2 protein. Biochem Biophys Res Commun 324:810–814PubMedCrossRef Ito E, Ozawa S, Takahashi K et al (2004) PPAR-γ overexpression selectively suppresses insulin secretory capacity in isolated pancreatic islets through induction of UCP-2 protein. Biochem Biophys Res Commun 324:810–814PubMedCrossRef
31.
go back to reference Parton LE, Diraison F, Neill SE et al (2004) Impact of PPARγ overexpression and activation on pancreatic islet gene expression profile analyzed with oligonucleotide microarrays. Am J Physiol Endocrinol Metab 287:E390–E404PubMedCrossRef Parton LE, Diraison F, Neill SE et al (2004) Impact of PPARγ overexpression and activation on pancreatic islet gene expression profile analyzed with oligonucleotide microarrays. Am J Physiol Endocrinol Metab 287:E390–E404PubMedCrossRef
32.
go back to reference Dent AL, Vasanwala FH, Toney LM (2002) Regulation of gene expression by the proto-oncogene BCL-6. Crit Rev Oncol Hematol 41:1–9PubMed Dent AL, Vasanwala FH, Toney LM (2002) Regulation of gene expression by the proto-oncogene BCL-6. Crit Rev Oncol Hematol 41:1–9PubMed
33.
go back to reference Li Z, Wang X, Yu RY et al (2005) BCL-6 negatively regulates expression of the NF-κB1 p105/p50 subunit. J Immunol 174:205–214PubMed Li Z, Wang X, Yu RY et al (2005) BCL-6 negatively regulates expression of the NF-κB1 p105/p50 subunit. J Immunol 174:205–214PubMed
34.
go back to reference Planavila A, Laguna JC, Vazquez-Carrera M (2005) Nuclear factor-κB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem 280:17464–17471PubMedCrossRef Planavila A, Laguna JC, Vazquez-Carrera M (2005) Nuclear factor-κB activation leads to down-regulation of fatty acid oxidation during cardiac hypertrophy. J Biol Chem 280:17464–17471PubMedCrossRef
35.
go back to reference Berry EB, Keelan JA, Helliwell RJ, Gilmour RS, Mitchell MD (2005) Nanomolar and micromolar effects of 15-deoxy-δ12,14-prostaglandin J2 on amnion-derived WISH epithelial cells: differential roles of peroxisome proliferator-activated receptors γ and δ and nuclear factor κB. Mol Pharmacol 68:169–178PubMed Berry EB, Keelan JA, Helliwell RJ, Gilmour RS, Mitchell MD (2005) Nanomolar and micromolar effects of 15-deoxy-δ12,14-prostaglandin J2 on amnion-derived WISH epithelial cells: differential roles of peroxisome proliferator-activated receptors γ and δ and nuclear factor κB. Mol Pharmacol 68:169–178PubMed
36.
go back to reference Tous M, Ferre N, Rull A et al (2006) Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice. Biochem Biophys Res Commun 340:1078–1084PubMedCrossRef Tous M, Ferre N, Rull A et al (2006) Dietary cholesterol and differential monocyte chemoattractant protein-1 gene expression in aorta and liver of apo E-deficient mice. Biochem Biophys Res Commun 340:1078–1084PubMedCrossRef
Metadata
Title
BCL-6: a possible missing link for anti-inflammatory PPAR-δ signalling in pancreatic beta cells
Authors
I. Kharroubi
C.-H. Lee
P. Hekerman
M. I. Darville
R. M. Evans
D. L. Eizirik
M. Cnop
Publication date
01-10-2006
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 10/2006
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0366-5

Other articles of this Issue 10/2006

Diabetologia 10/2006 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.