Skip to main content
Top
Published in: Diabetologia 6/2006

01-06-2006 | Article

Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets

Authors: J. F. Paulsson, A. Andersson, P. Westermark, G. T. Westermark

Published in: Diabetologia | Issue 6/2006

Login to get access

Abstract

Aims/hypothesis

Islet amyloid is a frequent finding in the islets of Langerhans of individuals with type 2 diabetes. The main amyloid constituent is the beta cell-derived polypeptide hormone islet amyloid polypeptide (IAPP). In general, amyloid refers to an extracellular deposit of a congophilic material, but intracellular amyloid is seen in some beta cells of transgenic mice expressing the gene for human IAPP and in human islets transplanted into nude mice. The aim of this study was to immunohistochemically characterise the intracellular amyloid.

Methods

Antisera against the N- and C-terminal processing sites of proIAPP (which were therefore specific for proIAPP), the C-terminal flanking peptide and mature IAPP were used for immunoelectron microscopy.

Results

Fibrillar aggregates were seen in the halo region of the secretory granules in some beta cells in human IAPP transgenic mice. These aggregates were labelled with proIAPP-specific antisera. Also, proIAPP reactivity was more widespread in the intracellular amyloid-like aggregates in beta cells of transgenic mice than in human islet transplants, in which the intracellular amyloid-like deposits were larger, but the proIAPP labelling was restricted to small spots within the amyloid deposits.

Conclusions/interpretation

We suggest that proIAPP forms the first amyloid fibrils and that this can occur already in the secretory granules of the beta cells. The proIAPP-derived fibrils can act as seed for further amyloid formation, now made up by IAPP. The observed difference between human islet transplants and human IAPP transgenic animals may reflect differences in stages of amyloid development.
Literature
1.
go back to reference Westermark P, Wilander E, Westermark GT, Johnson KH (1987) Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals. Diabetologia 30:887–892PubMed Westermark P, Wilander E, Westermark GT, Johnson KH (1987) Islet amyloid polypeptide-like immunoreactivity in the islet B cells of type 2 (non-insulin-dependent) diabetic and non-diabetic individuals. Diabetologia 30:887–892PubMed
2.
go back to reference Westermark P, Wernstedt C, Wilander E, Sletten K (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140:827–831PubMedCrossRef Westermark P, Wernstedt C, Wilander E, Sletten K (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140:827–831PubMedCrossRef
3.
go back to reference Sanke T, Bell GI, Sample C, Rubenstein AH, Steiner DF (1988) An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem 263:17243–17246PubMed Sanke T, Bell GI, Sample C, Rubenstein AH, Steiner DF (1988) An islet amyloid peptide is derived from an 89-amino acid precursor by proteolytic processing. J Biol Chem 263:17243–17246PubMed
4.
go back to reference Badman MK, Shennan KI, Jermany JL, Docherty K, Clark A (1996) Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett 378:227–231PubMedCrossRef Badman MK, Shennan KI, Jermany JL, Docherty K, Clark A (1996) Processing of pro-islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett 378:227–231PubMedCrossRef
5.
go back to reference Higham CE, Hull RL, Lawrie L et al (2000) Processing of synthetic pro-islet amyloid polypeptide (proIAPP) ‘amylin’ by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem 267:4998–5004PubMedCrossRef Higham CE, Hull RL, Lawrie L et al (2000) Processing of synthetic pro-islet amyloid polypeptide (proIAPP) ‘amylin’ by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem 267:4998–5004PubMedCrossRef
6.
go back to reference Marzban L, Trigo-Gonzalez G, Zhu X et al (2004) Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53:141–148PubMedCrossRef Marzban L, Trigo-Gonzalez G, Zhu X et al (2004) Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53:141–148PubMedCrossRef
7.
go back to reference Docherty K, Hutton JC (1983) Carboxypeptidase activity in the insulin secretory granule. FEBS Lett 162:137–141PubMedCrossRef Docherty K, Hutton JC (1983) Carboxypeptidase activity in the insulin secretory granule. FEBS Lett 162:137–141PubMedCrossRef
8.
go back to reference Marzban L, Soukhatcheva G, Verchere C (2005) Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in beta-cells. Endocrinology 146:1808–1817PubMedCrossRef Marzban L, Soukhatcheva G, Verchere C (2005) Role of carboxypeptidase E in processing of pro-islet amyloid polypeptide in beta-cells. Endocrinology 146:1808–1817PubMedCrossRef
9.
go back to reference Milgram S, Kho S, Martin G, Mains R, Eipper B (1997) Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J Cell Sci 110:695–706PubMed Milgram S, Kho S, Martin G, Mains R, Eipper B (1997) Localization of integral membrane peptidylglycine alpha-amidating monooxygenase in neuroendocrine cells. J Cell Sci 110:695–706PubMed
10.
go back to reference Roberts AN, Leighton B, Todd JA et al (1989) Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc Natl Acad Sci USA 86:9662–9666PubMedCrossRef Roberts AN, Leighton B, Todd JA et al (1989) Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc Natl Acad Sci USA 86:9662–9666PubMedCrossRef
11.
go back to reference Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 32:240–244PubMedCrossRef Lukinius A, Wilander E, Westermark GT, Engstrom U, Westermark P (1989) Co-localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 32:240–244PubMedCrossRef
12.
go back to reference Smeekens SP, Montag AG, Thomas G et al (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci USA 89:8822–8826PubMedCrossRef Smeekens SP, Montag AG, Thomas G et al (1992) Proinsulin processing by the subtilisin-related proprotein convertases furin, PC2, and PC3. Proc Natl Acad Sci USA 89:8822–8826PubMedCrossRef
13.
go back to reference Block MB, Mako M, Steiner DF, Rubenstein AH (1971) Elevated circulating proinsulin levels in insulin-requiring diabetic patients. J Lab Clin Med 78:811–812PubMed Block MB, Mako M, Steiner DF, Rubenstein AH (1971) Elevated circulating proinsulin levels in insulin-requiring diabetic patients. J Lab Clin Med 78:811–812PubMed
14.
go back to reference Kahn SE, Leonetti DL, Prigeon RL, Boyko EJ, Bergstrom RW, Fujimoto WY (1995) Proinsulin as a marker for the development of NIDDM in Japanese–American men. Diabetes 44:173–179PubMedCrossRef Kahn SE, Leonetti DL, Prigeon RL, Boyko EJ, Bergstrom RW, Fujimoto WY (1995) Proinsulin as a marker for the development of NIDDM in Japanese–American men. Diabetes 44:173–179PubMedCrossRef
15.
go back to reference Seaquist ER, Kahn SE, Clark PM, Hales CN, Porte D Jr, Robertson RP (1996) Hyperproinsulinemia is associated with increased beta cell demand after hemipancreatectomy in humans. J Clin Invest 97:455–460PubMedCrossRef Seaquist ER, Kahn SE, Clark PM, Hales CN, Porte D Jr, Robertson RP (1996) Hyperproinsulinemia is associated with increased beta cell demand after hemipancreatectomy in humans. J Clin Invest 97:455–460PubMedCrossRef
16.
go back to reference Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46:1725–1732PubMedCrossRef Kahn SE, Halban PA (1997) Release of incompletely processed proinsulin is the cause of the disproportionate proinsulinemia of NIDDM. Diabetes 46:1725–1732PubMedCrossRef
17.
go back to reference Furukawa H, Carroll RJ, Swift HH, Steiner DF (1999) Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. Diabetes 48:1395–1401PubMedCrossRef Furukawa H, Carroll RJ, Swift HH, Steiner DF (1999) Long-term elevation of free fatty acids leads to delayed processing of proinsulin and prohormone convertases 2 and 3 in the pancreatic beta-cell line MIN6. Diabetes 48:1395–1401PubMedCrossRef
18.
go back to reference Kayed R, Head E, Thompson J et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489PubMedCrossRef Kayed R, Head E, Thompson J et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489PubMedCrossRef
19.
go back to reference Lorenzo A, Razzaboni B, Weir G, Yankner B (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760PubMedCrossRef Lorenzo A, Razzaboni B, Weir G, Yankner B (1994) Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368:756–760PubMedCrossRef
20.
go back to reference Janson J, Ashley R, Harrison D, McIntyre S, Butler P (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498PubMedCrossRef Janson J, Ashley R, Harrison D, McIntyre S, Butler P (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48:491–498PubMedCrossRef
21.
go back to reference Anguiano M, Nowak R, Lansbury PJ (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343PubMedCrossRef Anguiano M, Nowak R, Lansbury PJ (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343PubMedCrossRef
22.
go back to reference Sparr E, Engel M, Sakharov D et al (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120PubMedCrossRef Sparr E, Engel M, Sakharov D et al (2004) Islet amyloid polypeptide-induced membrane leakage involves uptake of lipids by forming amyloid fibers. FEBS Lett 577:117–120PubMedCrossRef
23.
go back to reference Paulsson JF, Westermark GT (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54:2117–2125PubMedCrossRef Paulsson JF, Westermark GT (2005) Aberrant processing of human proislet amyloid polypeptide results in increased amyloid formation. Diabetes 54:2117–2125PubMedCrossRef
24.
go back to reference O’Brien TD, Butler AE, Roche PC, Johnson KH, Butler PC (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43:329–336PubMedCrossRef O’Brien TD, Butler AE, Roche PC, Johnson KH, Butler PC (1994) Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43:329–336PubMedCrossRef
25.
go back to reference Westermark GT, Westermark P, Nordin A, Tornelius E, Andersson A (2003) Formation of amyloid in human pancreatic islets transplanted to the liver and spleen of nude mice. Ups J Med Sci 108:193–203PubMedCrossRef Westermark GT, Westermark P, Nordin A, Tornelius E, Andersson A (2003) Formation of amyloid in human pancreatic islets transplanted to the liver and spleen of nude mice. Ups J Med Sci 108:193–203PubMedCrossRef
26.
go back to reference Westermark G, Gebre-Medhin S, Steiner DF, Westermark P (2000) Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP. Mol Med 6:998–1007PubMed Westermark G, Gebre-Medhin S, Steiner DF, Westermark P (2000) Islet amyloid development in a mouse strain lacking endogenous islet amyloid polypeptide (IAPP) but expressing human IAPP. Mol Med 6:998–1007PubMed
27.
go back to reference Couce M, Kane LA, O’Brien TD et al (1996) Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and beta-cell dysfunction. Diabetes 45:1094–1101PubMedCrossRef Couce M, Kane LA, O’Brien TD et al (1996) Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and beta-cell dysfunction. Diabetes 45:1094–1101PubMedCrossRef
28.
go back to reference Janson J, Soeller W, Roche P et al (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288PubMedCrossRef Janson J, Soeller W, Roche P et al (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:7283–7288PubMedCrossRef
29.
go back to reference Westermark P, Eizirik DL, Pipeleers DG, Hellerstrom C, Andersson A (1995) Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia 38:543–549PubMedCrossRef Westermark P, Eizirik DL, Pipeleers DG, Hellerstrom C, Andersson A (1995) Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia 38:543–549PubMedCrossRef
30.
go back to reference Westermark G, Westermark P, Eizirik DL et al (1999) Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice. Metabolism 48:448–454PubMedCrossRef Westermark G, Westermark P, Eizirik DL et al (1999) Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice. Metabolism 48:448–454PubMedCrossRef
31.
go back to reference Puchtler H, Sweat F (1965) Congo red as a stain for fluorescence microscopy of amyloid. J Histochem Cytochem 13:693–694PubMed Puchtler H, Sweat F (1965) Congo red as a stain for fluorescence microscopy of amyloid. J Histochem Cytochem 13:693–694PubMed
32.
go back to reference Westermark P, Benson M, Buxbaum J et al (2002) Amyloid fibril protein nomenclature—2002. Amyloid 9:197–200PubMed Westermark P, Benson M, Buxbaum J et al (2002) Amyloid fibril protein nomenclature—2002. Amyloid 9:197–200PubMed
33.
go back to reference Westermark P, Li ZC, Westermark GT, Leckstrom A, Steiner DF (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 379:203–206PubMedCrossRef Westermark P, Li ZC, Westermark GT, Leckstrom A, Steiner DF (1996) Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett 379:203–206PubMedCrossRef
34.
go back to reference Ma Z, Westermark GT (2002) Effects of free fatty acid on polymerization of islet amyloid polypeptide (IAPP) in vitro and on amyloid fibril formation in cultivated isolated islets of transgenic mice overexpressing human IAPP. Mol Med 8:863–868PubMed Ma Z, Westermark GT (2002) Effects of free fatty acid on polymerization of islet amyloid polypeptide (IAPP) in vitro and on amyloid fibril formation in cultivated isolated islets of transgenic mice overexpressing human IAPP. Mol Med 8:863–868PubMed
35.
go back to reference MacArthur DL, de Koning EJ, Verbeek JS, Morris JF, Clark A (1999) Amyloid fibril formation is progressive and correlates with beta-cell secretion in transgenic mouse isolated islets. Diabetologia 42:219–227CrossRef MacArthur DL, de Koning EJ, Verbeek JS, Morris JF, Clark A (1999) Amyloid fibril formation is progressive and correlates with beta-cell secretion in transgenic mouse isolated islets. Diabetologia 42:219–227CrossRef
36.
go back to reference Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187PubMedCrossRef Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341:1175–1187PubMedCrossRef
37.
go back to reference Jayasinghe SA, Langen R (2005) Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44:12113–12119PubMedCrossRef Jayasinghe SA, Langen R (2005) Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44:12113–12119PubMedCrossRef
38.
go back to reference Janciauskiene S, Eriksson S, Carlemalm E, Ahren B (1997) B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem Biophys Res Commun 236:580–585PubMedCrossRef Janciauskiene S, Eriksson S, Carlemalm E, Ahren B (1997) B cell granule peptides affect human islet amyloid polypeptide (IAPP) fibril formation in vitro. Biochem Biophys Res Commun 236:580–585PubMedCrossRef
39.
go back to reference Jaikaran E, Nilsson M, Clark A (2004) Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. Biochem J 377:709–716PubMedCrossRef Jaikaran E, Nilsson M, Clark A (2004) Pancreatic beta-cell granule peptides form heteromolecular complexes which inhibit islet amyloid polypeptide fibril formation. Biochem J 377:709–716PubMedCrossRef
40.
go back to reference Verchere CB, D’Alessio DA, Palmiter RD et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:3492–3496PubMedCrossRef Verchere CB, D’Alessio DA, Palmiter RD et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad Sci USA 93:3492–3496PubMedCrossRef
41.
go back to reference Hull RL, Shen ZP, Watts MR et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244PubMedCrossRef Hull RL, Shen ZP, Watts MR et al (2005) Long-term treatment with rosiglitazone and metformin reduces the extent of, but does not prevent, islet amyloid deposition in mice expressing the gene for human islet amyloid polypeptide. Diabetes 54:2235–2244PubMedCrossRef
42.
go back to reference Itoh Y, Kawamata Y, Harada M et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176PubMedCrossRef Itoh Y, Kawamata Y, Harada M et al (2003) Free fatty acids regulate insulin secretion from pancreatic beta cells through GPR40. Nature 422:173–176PubMedCrossRef
Metadata
Title
Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets
Authors
J. F. Paulsson
A. Andersson
P. Westermark
G. T. Westermark
Publication date
01-06-2006
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 6/2006
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0206-7

Other articles of this Issue 6/2006

Diabetologia 6/2006 Go to the issue

Commentary

Digami too?