Skip to main content
Top
Published in: Diabetologia 12/2004

01-12-2004 | Article

Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome

Authors: J. Mitchell, Z. Punthakee, B. Lo, C. Bernard, K. Chong, C. Newman, L. Cartier, V. Desilets, E. Cutz, I. L. Hansen, P. Riley, C. Polychronakos

Published in: Diabetologia | Issue 12/2004

Login to get access

Abstract

Aims/hypothesis

Neonatal diabetes is a rare disease with several identified molecular aetiologies. Despite associations with other malformations, neonatal diabetes with intestinal and biliary anomalies has not been described. The current study aims to describe a new syndrome, and to examine a possible link with one of three genes known to cause neonatal diabetes.

Methods

Five clinical cases are described. Immunohistochemical staining for pancreatic islet hormones was performed on three of the infants. DNA from one infant was analysed for abnormalities of the PLAGL-1 (ZAC), glucokinase and PDX-1 (IPF-1) genes.

Results

Five infants (two sibling pairs from two families, and an isolated case) presented with neonatal diabetes, hypoplastic or annular pancreas, jejunal atresia, duodenal atresia and gall bladder aplasia or hypoaplasia. One sibling pair was born to consanguineous parents. One patient with a milder form is surviving free of insulin. Four children died in the first year of life despite aggressive medical management. Pancreatic immunohistochemistry revealed few scattered chromogranin-A-positive cell clusters but complete absence of insulin, glucagon and somatostatin. Exocrine histology was variable. In one case from the consanguineous family, molecular analysis showed no duplication or uniparental isodisomy of PLAGL-1 at 6q24, no contiguous gene deletion involving the glucokinase gene, and no mutation in the coding sequences or splice sites of PDX-1.

Conclusions/interpretation

This combination of multiple congenital abnormalities has not been previously described and probably represents a new autosomal recessive syndrome involving a genetic abnormality that interferes with normal islet development and whose aetiology is as yet unknown.
Literature
1.
go back to reference Von Muhlendahl KE, Herkenhoff H (1995) Long-term course of neonatal diabetes. New Engl J Med 333:704–708CrossRefPubMed Von Muhlendahl KE, Herkenhoff H (1995) Long-term course of neonatal diabetes. New Engl J Med 333:704–708CrossRefPubMed
2.
go back to reference Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP (2000) Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49:1359–1366PubMed Temple IK, Gardner RJ, Mackay DJ, Barber JC, Robinson DO, Shield JP (2000) Transient neonatal diabetes: widening the understanding of the etiopathogenesis of diabetes. Diabetes 49:1359–1366PubMed
3.
go back to reference Abramowicz MJ, Andrien M, Dupont E et al. (1994) Isodisomy of chromosome 6 in a newborn with methylmalonic acidemia and agenesis of pancreatic beta cells causing diabetes mellitus. J Clin Invest 94:418–421PubMed Abramowicz MJ, Andrien M, Dupont E et al. (1994) Isodisomy of chromosome 6 in a newborn with methylmalonic acidemia and agenesis of pancreatic beta cells causing diabetes mellitus. J Clin Invest 94:418–421PubMed
4.
go back to reference Metz C, Cave H, Bertrand AM et al. (2002) Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J Pediatr 141:483–489CrossRefPubMed Metz C, Cave H, Bertrand AM et al. (2002) Neonatal diabetes mellitus: chromosomal analysis in transient and permanent cases. J Pediatr 141:483–489CrossRefPubMed
5.
go back to reference Whiteford ML, Narendra A, White MP et al. (1997) Paternal uniparental disomy for chromosome 6 causes transient neonatal diabetes. J Med Genet 34:167–168PubMed Whiteford ML, Narendra A, White MP et al. (1997) Paternal uniparental disomy for chromosome 6 causes transient neonatal diabetes. J Med Genet 34:167–168PubMed
6.
go back to reference Njolstad PR, Cockburn BN, Bell GI, Sovik O (1998) A missense mutation, Val62Ala, in the glucokinase gene in a Norwegian family with maturity-onset diabetes of the young. Acta Paediatr 87:853–856CrossRefPubMed Njolstad PR, Cockburn BN, Bell GI, Sovik O (1998) A missense mutation, Val62Ala, in the glucokinase gene in a Norwegian family with maturity-onset diabetes of the young. Acta Paediatr 87:853–856CrossRefPubMed
7.
go back to reference Njolstad PR, Sovik O, Cuesta-Munoz A et al. (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. New Engl J Med 344:1588–1592CrossRefPubMed Njolstad PR, Sovik O, Cuesta-Munoz A et al. (2001) Neonatal diabetes mellitus due to complete glucokinase deficiency. New Engl J Med 344:1588–1592CrossRefPubMed
8.
go back to reference Vaxillaire M, Samson C, Cave H, Metz C, Froguel P, Polak M (2002) Glucokinase gene mutations are not a common cause of permanent neonatal diabetes in France. Diabetologia 45:454–455CrossRefPubMed Vaxillaire M, Samson C, Cave H, Metz C, Froguel P, Polak M (2002) Glucokinase gene mutations are not a common cause of permanent neonatal diabetes in France. Diabetologia 45:454–455CrossRefPubMed
9.
go back to reference Gloyn AL, Ellard S, Shield JP et al. (2002) Complete glucokinase deficiency is not a common cause of permanent neonatal diabetes. Diabetologia 45:290CrossRefPubMed Gloyn AL, Ellard S, Shield JP et al. (2002) Complete glucokinase deficiency is not a common cause of permanent neonatal diabetes. Diabetologia 45:290CrossRefPubMed
10.
go back to reference Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110PubMed Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15:106–110PubMed
11.
go back to reference Hoveyda N, Shield JP, Garrett C et al. (1999) Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 36:700–704PubMed Hoveyda N, Shield JP, Garrett C et al. (1999) Neonatal diabetes mellitus and cerebellar hypoplasia/agenesis: report of a new recessive syndrome. J Med Genet 36:700–704PubMed
12.
go back to reference Dacou-Voutetakis C, Anagnostakis D, Xanthou M (1975) Macroglossia, transient neonatal diabetes mellitus and intrauterine growth failure: a new distinct entity? Pediatrics 55:127–131PubMed Dacou-Voutetakis C, Anagnostakis D, Xanthou M (1975) Macroglossia, transient neonatal diabetes mellitus and intrauterine growth failure: a new distinct entity? Pediatrics 55:127–131PubMed
13.
go back to reference Salerno M, Gasparini N, Sandomenico ML, Franzese A, Tenore A (1994) Two interesting cases of transient neonatal diabetes mellitus. J Pediatr Endocrinol 7:47–52PubMed Salerno M, Gasparini N, Sandomenico ML, Franzese A, Tenore A (1994) Two interesting cases of transient neonatal diabetes mellitus. J Pediatr Endocrinol 7:47–52PubMed
14.
go back to reference Gloyn AL, Pearson ER, Antcliff JF et al. (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. New Engl J Med 350:1838–1849CrossRefPubMed Gloyn AL, Pearson ER, Antcliff JF et al. (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. New Engl J Med 350:1838–1849CrossRefPubMed
15.
go back to reference Martinez-Frias ML, Frias JL, Galan E, Domingo R, Paisan L, Blanco M (1992) Tracheoesophageal fistula, gastrointestinal abnormalities, hypospadias, and prenatal growth deficiency. Am J Med Genet 44:352–355PubMed Martinez-Frias ML, Frias JL, Galan E, Domingo R, Paisan L, Blanco M (1992) Tracheoesophageal fistula, gastrointestinal abnormalities, hypospadias, and prenatal growth deficiency. Am J Med Genet 44:352–355PubMed
16.
go back to reference Anneren G, Meurling S, Lilja H, Wallander J, von Dobeln U (1998) Lethal autosomal recessive syndrome with intrauterine growth retardation, intra- and extrahepatic biliary atresia, and esophageal and duodenal atresia. Am J Med Genet 78:306–307CrossRefPubMed Anneren G, Meurling S, Lilja H, Wallander J, von Dobeln U (1998) Lethal autosomal recessive syndrome with intrauterine growth retardation, intra- and extrahepatic biliary atresia, and esophageal and duodenal atresia. Am J Med Genet 78:306–307CrossRefPubMed
17.
go back to reference Gentile M, Fiorente P (1999) Esophageal, duodenal, rectoanal and biliary atresia, intestinal malrotation, malformed/hypoplastic pancreas, and hypospadias: further evidence of a new distinct syndrome. Am J Med Genet 87:82–83PubMed Gentile M, Fiorente P (1999) Esophageal, duodenal, rectoanal and biliary atresia, intestinal malrotation, malformed/hypoplastic pancreas, and hypospadias: further evidence of a new distinct syndrome. Am J Med Genet 87:82–83PubMed
18.
go back to reference Temple IK, Gardner RJ, Robinson DO et al. (1996) Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22-q23. Hum Mol Genet 5:1117–1121CrossRefPubMed Temple IK, Gardner RJ, Robinson DO et al. (1996) Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22-q23. Hum Mol Genet 5:1117–1121CrossRefPubMed
19.
go back to reference Kamiya M, Judson H, Okazaki Y et al. (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460CrossRefPubMed Kamiya M, Judson H, Okazaki Y et al. (2000) The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet 9:453–460CrossRefPubMed
20.
go back to reference Spengler D, Villalba M, Hoffmann A et al. (1997) Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 16:2814–2825CrossRefPubMed Spengler D, Villalba M, Hoffmann A et al. (1997) Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 16:2814–2825CrossRefPubMed
21.
go back to reference Ciani E, Hoffmann A, Schmidt P, Journot L, Spengler D (1999) Induction of the PAC1-R (PACAP-type I receptor) gene by p53 and Zac. Brain Res Mol Brain Res 69:290–294CrossRefPubMed Ciani E, Hoffmann A, Schmidt P, Journot L, Spengler D (1999) Induction of the PAC1-R (PACAP-type I receptor) gene by p53 and Zac. Brain Res Mol Brain Res 69:290–294CrossRefPubMed
22.
go back to reference Yada T, Sakurada M, Nakata M, Shioda S, Yaekura K, Kikuchi M (1998) Autocrine action of PACAP in islets augments glucose-induced insulin secretion. Ann NY Acad Sci 865:451–457PubMed Yada T, Sakurada M, Nakata M, Shioda S, Yaekura K, Kikuchi M (1998) Autocrine action of PACAP in islets augments glucose-induced insulin secretion. Ann NY Acad Sci 865:451–457PubMed
23.
go back to reference Matschinsky F, Liang Y, Kesavan P et al. (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 92:2092–2098PubMed Matschinsky F, Liang Y, Kesavan P et al. (1993) Glucokinase as pancreatic beta cell glucose sensor and diabetes gene. J Clin Invest 92:2092–2098PubMed
24.
go back to reference Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15:444–454CrossRefPubMed Grapin-Botton A, Majithia AR, Melton DA (2001) Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev 15:444–454CrossRefPubMed
25.
go back to reference Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111–127CrossRefPubMed Kim SK, Hebrok M (2001) Intercellular signals regulating pancreas development and function. Genes Dev 15:111–127CrossRefPubMed
26.
go back to reference Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385:257–260CrossRefPubMed Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385:257–260CrossRefPubMed
27.
go back to reference Jensen J, Pedersen EE, Galante P et al. (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36–44CrossRefPubMed Jensen J, Pedersen EE, Galante P et al. (2000) Control of endodermal endocrine development by Hes-1. Nat Genet 24:36–44CrossRefPubMed
Metadata
Title
Neonatal diabetes, with hypoplastic pancreas, intestinal atresia and gall bladder hypoplasia: search for the aetiology of a new autosomal recessive syndrome
Authors
J. Mitchell
Z. Punthakee
B. Lo
C. Bernard
K. Chong
C. Newman
L. Cartier
V. Desilets
E. Cutz
I. L. Hansen
P. Riley
C. Polychronakos
Publication date
01-12-2004
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 12/2004
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-004-1576-3

Other articles of this Issue 12/2004

Diabetologia 12/2004 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.