Skip to main content
Top
Published in: European Journal of Trauma and Emergency Surgery 3/2022

Open Access 03-02-2021 | Central Nervous System Trauma | Review Article

Extracellular vesicles as mediators and markers of acute organ injury: current concepts

Authors: Birte Weber, Niklas Franz, Ingo Marzi, Dirk Henrich, Liudmila Leppik

Published in: European Journal of Trauma and Emergency Surgery | Issue 3/2022

Login to get access

Abstract

Due to the continued high incidence and mortality rate worldwide, there is a need to develop new strategies for the quick, precise, and valuable recognition of presenting injury pattern in traumatized and poly-traumatized patients. Extracellular vesicles (EVs) have been shown to facilitate intercellular communication processes between cells in close proximity as well as distant cells in healthy and disease organisms. miRNAs and proteins transferred by EVs play biological roles in maintaining normal organ structure and function under physiological conditions. In pathological conditions, EVs change the miRNAs and protein cargo composition, mediating or suppressing the injury consequences. Therefore, incorporating EVs with their unique protein and miRNAs signature into the list of promising new biomarkers is a logical next step. In this review, we discuss the general characteristics and technical aspects of EVs isolation and characterization. We discuss results of recent in vitro, in vivo, and patients study describing the role of EVs in different inflammatory diseases and traumatic organ injuries. miRNAs and protein signature of EVs found in patients with acute organ injury are also debated.
Literature
1.
go back to reference Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet (Lond, Engl). 2020;396(10258):1204–22.CrossRef Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kangevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet (Lond, Engl). 2020;396(10258):1204–22.CrossRef
2.
go back to reference Xu W, Song Y. Biomarkers for patients with trauma associated acute respiratory distress syndrome. Mil Med Res. 2017;4:25.PubMedPubMedCentral Xu W, Song Y. Biomarkers for patients with trauma associated acute respiratory distress syndrome. Mil Med Res. 2017;4:25.PubMedPubMedCentral
4.
go back to reference Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.PubMedCrossRef Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem. 1946;166(1):189–97.PubMedCrossRef
5.
go back to reference Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750.PubMedPubMedCentralCrossRef
6.
go back to reference Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med. 2018;60:1–14.PubMedCrossRef Lässer C, Jang SC, Lötvall J. Subpopulations of extracellular vesicles and their therapeutic potential. Mol Aspects Med. 2018;60:1–14.PubMedCrossRef
7.
go back to reference Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, et al. Extracellular vesicles in liver pathobiology. Small particles with big impact. Hepatology. 2016;64(6):2219–33.PubMedCrossRef Hirsova P, Ibrahim SH, Verma VK, Morton LA, Shah VH, et al. Extracellular vesicles in liver pathobiology. Small particles with big impact. Hepatology. 2016;64(6):2219–33.PubMedCrossRef
9.
go back to reference Kuravi SJ, Yates CM, Foster M, Harrison P, Hazeldine J, et al. Changes in the pattern of plasma extracellular vesicles after severe trauma. PLoS ONE. 2017;12(8):e0183640.PubMedPubMedCentralCrossRef Kuravi SJ, Yates CM, Foster M, Harrison P, Hazeldine J, et al. Changes in the pattern of plasma extracellular vesicles after severe trauma. PLoS ONE. 2017;12(8):e0183640.PubMedPubMedCentralCrossRef
10.
go back to reference Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066.PubMedCrossRef
11.
go back to reference Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.CrossRef Crescitelli R, Lässer C, Szabó TG, Kittel A, Eldh M, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:20677.CrossRef
13.
go back to reference Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478). Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478).
15.
go back to reference Gonda DD, Akers JC, Kim R, Kalkanis SN, Hochberg FH, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2013;72(4):501–10.PubMedCrossRef Gonda DD, Akers JC, Kim R, Kalkanis SN, Hochberg FH, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2013;72(4):501–10.PubMedCrossRef
16.
go back to reference Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011.PubMedCrossRef Jeppesen DK, Hvam ML, Primdahl-Bengtson B, Boysen AT, Whitehead B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011.PubMedCrossRef
17.
go back to reference Yu L-L, Zhu J, Liu J-X, Jiang F, Ni W-K, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int. 2018;2018:3634563.PubMedPubMedCentralCrossRef Yu L-L, Zhu J, Liu J-X, Jiang F, Ni W-K, et al. A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int. 2018;2018:3634563.PubMedPubMedCentralCrossRef
18.
go back to reference Livshits MA, Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319.PubMedCrossRef Livshits MA, Livshts MA, Khomyakova E, Evtushenko EG, Lazarev VN, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5:17319.PubMedCrossRef
19.
go back to reference Zhang M, Jin K, Gao L, Zhang Z, Li F, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021.CrossRef Zhang M, Jin K, Gao L, Zhang Z, Li F, et al. Methods and technologies for exosome isolation and characterization. Small Methods. 2018;2(9):1800021.CrossRef
21.
go back to reference Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.CrossRef Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013;2:20360.CrossRef
22.
go back to reference Lobb RJ, Becker M, Wen SW, Wong CSF, Wiegmans AP, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.PubMedCrossRef Lobb RJ, Becker M, Wen SW, Wong CSF, Wiegmans AP, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031.PubMedCrossRef
23.
go back to reference Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4(1):84–96.PubMedCrossRef Merchant ML, Powell DW, Wilkey DW, Cummins TD, Deegens JK, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. Proteomics Clin Appl. 2010;4(1):84–96.PubMedCrossRef
24.
go back to reference Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292(5):F1657–61.PubMedCrossRef Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. 2007;292(5):F1657–61.PubMedCrossRef
25.
go back to reference Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8):1730–9.PubMedPubMedCentralCrossRef Reiner AT, Witwer KW, van Balkom BWM, de Beer J, Brodie C, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8):1730–9.PubMedPubMedCentralCrossRef
26.
go back to reference Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.PubMedCrossRef Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82(9):1024–32.PubMedCrossRef
27.
go back to reference Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.PubMedCentralCrossRef Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8(7):727.PubMedCentralCrossRef
28.
go back to reference Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE. 2014;9(8):e103310.PubMedPubMedCentralCrossRef Hong CS, Muller L, Boyiadzis M, Whiteside TL. Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PLoS ONE. 2014;9(8):e103310.PubMedPubMedCentralCrossRef
29.
go back to reference Zeringer E, Barta T, Li M. Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harbor Protoc. 2015;4:319–23. Zeringer E, Barta T, Li M. Vlassov AV (2015) Strategies for isolation of exosomes. Cold Spring Harbor Protoc. 2015;4:319–23.
30.
31.
go back to reference van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3:24858.CrossRef van Deun J, Mestdagh P, Sormunen R, Cocquyt V, Vermaelen K, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3:24858.CrossRef
32.
go back to reference Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomed Nanotechnol Biol Med. 2011;7(6):780–8.CrossRef Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJP, et al. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomed Nanotechnol Biol Med. 2011;7(6):780–8.CrossRef
33.
go back to reference Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.PubMedPubMedCentralCrossRef Filipe V, Hawe A, Jiskoot W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res. 2010;27(5):796–810.PubMedPubMedCentralCrossRef
34.
go back to reference Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res. 2014;16(9):1–8.CrossRef Palmieri V, Lucchetti D, Gatto I, Maiorana A, Marcantoni M, et al. Dynamic light scattering for the characterization and counting of extracellular vesicles: a powerful noninvasive tool. J Nanopart Res. 2014;16(9):1–8.CrossRef
35.
go back to reference Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40(24):4087–91.PubMedCrossRef Frisken BJ. Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt. 2001;40(24):4087–91.PubMedCrossRef
36.
go back to reference Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):807.CrossRef Gurunathan S, Kang M-H, Jeyaraj M, Qasim M, Kim J-H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells. 2019;8(4):807.CrossRef
37.
go back to reference Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450–60.PubMedPubMedCentralCrossRef Ko J, Carpenter E, Issadore D. Detection and isolation of circulating exosomes and microvesicles for cancer monitoring and diagnostics using micro-/nano-based devices. Analyst. 2016;141(2):450–60.PubMedPubMedCentralCrossRef
38.
go back to reference Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, et al. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153.PubMedCentralCrossRef Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, et al. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci. 2017;18(6):1153.PubMedCentralCrossRef
39.
go back to reference Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, et al. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt Int. 2016;113(10):159–66. Fleischmann C, Thomas-Rueddel DO, Hartmann M, Hartog CS, Welte T, et al. Hospital incidence and mortality rates of sepsis. Deutsches Arzteblatt Int. 2016;113(10):159–66.
40.
go back to reference Moreira J. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2062–3.CrossRef Moreira J. Severe sepsis and septic shock. N Engl J Med. 2013;369(21):2062–3.CrossRef
41.
go back to reference Huber-Lang M. Sepsis nach polytrauma. Trauma Berufskrankh. 2018;20(S1):73–6.CrossRef Huber-Lang M. Sepsis nach polytrauma. Trauma Berufskrankh. 2018;20(S1):73–6.CrossRef
42.
go back to reference Eriksson M, Nelson D, Nordgren A, Larsson A. Increased platelet microvesicle formation is associated with mortality in a porcine model of endotoxemia. Acta Anaesthesiol Scand. 1998;42(5):551–7.PubMedCrossRef Eriksson M, Nelson D, Nordgren A, Larsson A. Increased platelet microvesicle formation is associated with mortality in a porcine model of endotoxemia. Acta Anaesthesiol Scand. 1998;42(5):551–7.PubMedCrossRef
43.
go back to reference Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity. A novel vascular redox pathway. Crit Care Med. 2004;32(3):818–25.PubMedCrossRef Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, et al. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity. A novel vascular redox pathway. Crit Care Med. 2004;32(3):818–25.PubMedCrossRef
44.
go back to reference Matsumoto H, Yamakawa K, Ogura H, Koh T, Matsumoto N, et al. Clinical significance of tissue factor and CD13 double-positive microparticles in sirs patients with trauma and severe sepsis. Shock. 2017;47(4):409–15.PubMedCrossRef Matsumoto H, Yamakawa K, Ogura H, Koh T, Matsumoto N, et al. Clinical significance of tissue factor and CD13 double-positive microparticles in sirs patients with trauma and severe sepsis. Shock. 2017;47(4):409–15.PubMedCrossRef
45.
go back to reference Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med. 2014;6(1):27–42.PubMedCrossRef Dalli J, Norling LV, Montero-Melendez T, Federici Canova D, Lashin H, et al. Microparticle alpha-2-macroglobulin enhances pro-resolving responses and promotes survival in sepsis. EMBO Mol Med. 2014;6(1):27–42.PubMedCrossRef
46.
go back to reference Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, et al. ExoCarta. A web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.PubMedCrossRef Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, et al. ExoCarta. A web-based compendium of exosomal cargo. J Mol Biol. 2016;428(4):688–92.PubMedCrossRef
47.
go back to reference Lee H, Abston E, Zhang D, Rai A, Jin Y. Extracellular vesicle. An emerging mediator of intercellular crosstalk in lung inflammation and injury. Front Immunol. 2018;9:924.PubMedPubMedCentralCrossRef Lee H, Abston E, Zhang D, Rai A, Jin Y. Extracellular vesicle. An emerging mediator of intercellular crosstalk in lung inflammation and injury. Front Immunol. 2018;9:924.PubMedPubMedCentralCrossRef
48.
go back to reference Curry N, Raja A, Beavis J, Stanworth S, Harrison P. Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J Extracell Vesicles. 2014;3:25625.PubMedCrossRef Curry N, Raja A, Beavis J, Stanworth S, Harrison P. Levels of procoagulant microvesicles are elevated after traumatic injury and platelet microvesicles are negatively correlated with mortality. J Extracell Vesicles. 2014;3:25625.PubMedCrossRef
49.
go back to reference Unnewehr H, Rittirsch D, Sarma JV, Zetoune F, Flierl MA, et al. Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J Immunol (Baltimore, MD:1950). 2013;190(8):4215–25.CrossRef Unnewehr H, Rittirsch D, Sarma JV, Zetoune F, Flierl MA, et al. Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J Immunol (Baltimore, MD:1950). 2013;190(8):4215–25.CrossRef
50.
go back to reference Xu J, Feng Y, Jeyaram A, Jay SM, Zou L, et al. Circulating plasma extracellular vesicles from septic mice induce inflammation via MicroRNA- and TLR7-dependent mechanisms. J Immunol (Baltimore, Md:1950). 2018;201(11):3392–400.CrossRef Xu J, Feng Y, Jeyaram A, Jay SM, Zou L, et al. Circulating plasma extracellular vesicles from septic mice induce inflammation via MicroRNA- and TLR7-dependent mechanisms. J Immunol (Baltimore, Md:1950). 2018;201(11):3392–400.CrossRef
51.
go back to reference Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.PubMedCrossRef Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, et al. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 2015;6:7321.PubMedCrossRef
52.
go back to reference Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed Nanotechnol Biol Med. 2014;10(7):1517–27.CrossRef Momen-Heravi F, Bala S, Bukong T, Szabo G. Exosome-mediated delivery of functionally active miRNA-155 inhibitor to macrophages. Nanomed Nanotechnol Biol Med. 2014;10(7):1517–27.CrossRef
53.
go back to reference Liu J, Shi K, Chen M, Xu L, Hong J, et al. Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient. Int J Infect Dis. 2015;40:135–41.PubMedCrossRef Liu J, Shi K, Chen M, Xu L, Hong J, et al. Elevated miR-155 expression induces immunosuppression via CD39(+) regulatory T-cells in sepsis patient. Int J Infect Dis. 2015;40:135–41.PubMedCrossRef
54.
go back to reference Wang X, Gu H, Qin D, Yang L, Huang W, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep. 2015;5:13721.PubMedPubMedCentralCrossRef Wang X, Gu H, Qin D, Yang L, Huang W, et al. Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep. 2015;5:13721.PubMedPubMedCentralCrossRef
55.
go back to reference Song Y, Dou H, Li X, Zhao X, Li Y, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells (Dayton, Ohio). 2017;35(5):1208–21.CrossRef Song Y, Dou H, Li X, Zhao X, Li Y, et al. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells (Dayton, Ohio). 2017;35(5):1208–21.CrossRef
56.
go back to reference Ti D, Hao H, Tong C, Liu J, Dong L, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308.PubMedPubMedCentralCrossRef Ti D, Hao H, Tong C, Liu J, Dong L, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med. 2015;13:308.PubMedPubMedCentralCrossRef
57.
go back to reference Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–83.PubMedCrossRef Majdan M, Plancikova D, Brazinova A, Rusnak M, Nieboer D, et al. Epidemiology of traumatic brain injuries in Europe: a cross-sectional analysis. Lancet Public Health. 2016;1(2):e76–83.PubMedCrossRef
58.
go back to reference Adekoya N, Thurman DJ, White DD, Webb KW. Surveillance for traumatic brain injury deaths—United States, 1989–1998. Morb Mortal Wkly Rep Surveill Summ (Washington, DC:2002). 2002;51(10):1–14. Adekoya N, Thurman DJ, White DD, Webb KW. Surveillance for traumatic brain injury deaths—United States, 1989–1998. Morb Mortal Wkly Rep Surveill Summ (Washington, DC:2002). 2002;51(10):1–14.
59.
go back to reference Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef Maas AIR, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41.PubMedCrossRef
60.
go back to reference Brooks JC, Strauss DJ, Shavelle RM, Paculdo DR, Hammond FM, et al. Long-term disability and survival in traumatic brain injury: results from the National Institute on Disability and Rehabilitation Research Model Systems. Arch Phys Med Rehabil. 2013;94(11):2203–9.PubMedCrossRef Brooks JC, Strauss DJ, Shavelle RM, Paculdo DR, Hammond FM, et al. Long-term disability and survival in traumatic brain injury: results from the National Institute on Disability and Rehabilitation Research Model Systems. Arch Phys Med Rehabil. 2013;94(11):2203–9.PubMedCrossRef
61.
go back to reference Panaro MA, Benameur T, Porro C. Extracellular vesicles miRNA cargo for microglia polarization in traumatic brain injury. Biomolecules. 2020;10(6):901.PubMedCentralCrossRef Panaro MA, Benameur T, Porro C. Extracellular vesicles miRNA cargo for microglia polarization in traumatic brain injury. Biomolecules. 2020;10(6):901.PubMedCentralCrossRef
62.
go back to reference Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.PubMedCrossRef Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.PubMedCrossRef
63.
go back to reference Dickens AM, Tovar-Y-Romo LB, Yoo S-W, Trout AL, Bae M et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signaling. 2017;10(473). Dickens AM, Tovar-Y-Romo LB, Yoo S-W, Trout AL, Bae M et al. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Sci Signaling. 2017;10(473).
64.
go back to reference Hooper C, Sainz-Fuertes R, Lynham S, Hye A, Killick R, et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci. 2012;13:144.PubMedPubMedCentralCrossRef Hooper C, Sainz-Fuertes R, Lynham S, Hye A, Killick R, et al. Wnt3a induces exosome secretion from primary cultured rat microglia. BMC Neurosci. 2012;13:144.PubMedPubMedCentralCrossRef
65.
go back to reference Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.PubMedPubMedCentralCrossRef Frühbeis C, Fröhlich D, Kuo WP, Amphornrat J, Thilemann S, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.PubMedPubMedCentralCrossRef
66.
go back to reference Chen CC, Liu L, Ma F, Wong CW, Guo XE, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–29.PubMedCrossRef Chen CC, Liu L, Ma F, Wong CW, Guo XE, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–29.PubMedCrossRef
67.
go back to reference Xu B, Zhang Y, Du X-F, Li J, Zi H-X, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97.PubMedPubMedCentralCrossRef Xu B, Zhang Y, Du X-F, Li J, Zi H-X, et al. Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res. 2017;27(7):882–97.PubMedPubMedCentralCrossRef
68.
go back to reference Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal MicroRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci. 2020;21(7):2312.PubMedCentralCrossRef Gayen M, Bhomia M, Balakathiresan N, Knollmann-Ritschel B. Exosomal MicroRNAs released by activated astrocytes as potential neuroinflammatory biomarkers. Int J Mol Sci. 2020;21(7):2312.PubMedCentralCrossRef
69.
go back to reference Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip. 2018;18(23):3617–30.PubMedPubMedCentralCrossRef Ko J, Hemphill M, Yang Z, Sewell E, Na YJ, et al. Diagnosis of traumatic brain injury using miRNA signatures in nanomagnetically isolated brain-derived extracellular vesicles. Lab Chip. 2018;18(23):3617–30.PubMedPubMedCentralCrossRef
70.
go back to reference Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009;1284:191–201.PubMedCrossRef Lei P, Li Y, Chen X, Yang S, Zhang J. Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res. 2009;1284:191–201.PubMedCrossRef
71.
go back to reference Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, et al. Traumatic brain injury increases levels of miR-21 in extracellular vesicles. Implications for neuroinflammation. FEBS Open Bio. 2016;6(8):835–46.PubMedPubMedCentralCrossRef Harrison EB, Hochfelder CG, Lamberty BG, Meays BM, Morsey BM, et al. Traumatic brain injury increases levels of miR-21 in extracellular vesicles. Implications for neuroinflammation. FEBS Open Bio. 2016;6(8):835–46.PubMedPubMedCentralCrossRef
72.
go back to reference Wang P, Ma H, Zhang Y, Zeng R, Yu J, et al. Plasma Exosome-derived MicroRNAs as novel biomarkers of traumatic brain injury in rats. Int J Med Sci. 2020;17(4):437–48.PubMedPubMedCentralCrossRef Wang P, Ma H, Zhang Y, Zeng R, Yu J, et al. Plasma Exosome-derived MicroRNAs as novel biomarkers of traumatic brain injury in rats. Int J Med Sci. 2020;17(4):437–48.PubMedPubMedCentralCrossRef
73.
go back to reference Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018;32(10):1277–84.PubMedPubMedCentral Gill J, Mustapic M, Diaz-Arrastia R, Lange R, Gulyani S, et al. Higher exosomal tau, amyloid-beta 42 and IL-10 are associated with mild TBIs and chronic symptoms in military personnel. Brain Inj. 2018;32(10):1277–84.PubMedPubMedCentral
74.
go back to reference Kenney K, Qu B-X, Lai C, Devoto C, Motamedi V, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Inj. 2018;32(10):1276–84.PubMedCrossRef Kenney K, Qu B-X, Lai C, Devoto C, Motamedi V, et al. Higher exosomal phosphorylated tau and total tau among veterans with combat-related repetitive chronic mild traumatic brain injury. Brain Inj. 2018;32(10):1276–84.PubMedCrossRef
75.
go back to reference Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019;33(4):5082–8.PubMedPubMedCentralCrossRef Goetzl EJ, Elahi FM, Mustapic M, Kapogiannis D, Pryhoda M, et al. Altered levels of plasma neuron-derived exosomes and their cargo proteins characterize acute and chronic mild traumatic brain injury. FASEB J. 2019;33(4):5082–8.PubMedPubMedCentralCrossRef
76.
go back to reference Stern RA, Tripodis Y, Baugh CM, Fritts NG, Martin BM, et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J Alzheimer’s Dis JAD. 2016;51(4):1099–109.CrossRef Stern RA, Tripodis Y, Baugh CM, Fritts NG, Martin BM, et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. J Alzheimer’s Dis JAD. 2016;51(4):1099–109.CrossRef
77.
go back to reference Nekludov M, Bellander B-M, Gryth D, Wallen H, Mobarrez F. Brain-derived microparticles in patients with severe isolated TBI. Brain Inj. 2017;31(13–14):1856–62.PubMedCrossRef Nekludov M, Bellander B-M, Gryth D, Wallen H, Mobarrez F. Brain-derived microparticles in patients with severe isolated TBI. Brain Inj. 2017;31(13–14):1856–62.PubMedCrossRef
78.
go back to reference Peskind ER, Kraemer B, Zhang J. Biofluid biomarkers of mild traumatic brain injury: whither plasma tau. JAMA Neurol. 2015;72(10):1103–5.PubMedCrossRef Peskind ER, Kraemer B, Zhang J. Biofluid biomarkers of mild traumatic brain injury: whither plasma tau. JAMA Neurol. 2015;72(10):1103–5.PubMedCrossRef
79.
go back to reference Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, et al. Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front Neurosci. 2019;13:14.PubMedPubMedCentralCrossRef Ni H, Yang S, Siaw-Debrah F, Hu J, Wu K, et al. Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury. Front Neurosci. 2019;13:14.PubMedPubMedCentralCrossRef
80.
go back to reference Xu H, Jia Z, Ma K, Zhang J, Dai C, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monit. 2020;26:e920855.PubMedPubMedCentral Xu H, Jia Z, Ma K, Zhang J, Dai C, et al. Protective effect of BMSCs-derived exosomes mediated by BDNF on TBI via miR-216a-5p. Med Sci Monit. 2020;26:e920855.PubMedPubMedCentral
81.
go back to reference Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.PubMedPubMedCentralCrossRef Zhang Y, Chopp M, Meng Y, Katakowski M, Xin H, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg. 2015;122(4):856–67.PubMedPubMedCentralCrossRef
82.
go back to reference Liu W, Rong Y, Wang J, Zhou Z, Ge X, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17(1):47.CrossRef Liu W, Rong Y, Wang J, Zhou Z, Ge X, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflamm. 2020;17(1):47.CrossRef
83.
go back to reference Sybrandy KC, Cramer MJM, Burgersdijk C. Diagnosing cardiac contusion: old wisdom and new insights. Heart (British Cardiac Society). 2003;89(5):485–9.CrossRef Sybrandy KC, Cramer MJM, Burgersdijk C. Diagnosing cardiac contusion: old wisdom and new insights. Heart (British Cardiac Society). 2003;89(5):485–9.CrossRef
84.
85.
go back to reference Kalbitz M, Schwarz S, Weber B, Bosch B, Pressmar J, et al. Cardiac depression in pigs after multiple trauma—characterization of posttraumatic structural and functional alterations. Sci Rep. 2017;7(1):17861.PubMedPubMedCentralCrossRef Kalbitz M, Schwarz S, Weber B, Bosch B, Pressmar J, et al. Cardiac depression in pigs after multiple trauma—characterization of posttraumatic structural and functional alterations. Sci Rep. 2017;7(1):17861.PubMedPubMedCentralCrossRef
86.
go back to reference Kalbitz M, Pressmar J, Stecher J, Weber B, Weiss M, et al. The role of troponin in blunt cardiac injury after multiple trauma in humans. World J Surg. 2017;41(1):162–9.PubMedCrossRef Kalbitz M, Pressmar J, Stecher J, Weber B, Weiss M, et al. The role of troponin in blunt cardiac injury after multiple trauma in humans. World J Surg. 2017;41(1):162–9.PubMedCrossRef
87.
go back to reference Huber S, Biberthaler P, Delhey P, Trentzsch H, Winter H, et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014;22:52.PubMedPubMedCentralCrossRef Huber S, Biberthaler P, Delhey P, Trentzsch H, Winter H, et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014;22:52.PubMedPubMedCentralCrossRef
88.
go back to reference Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci. 2016;17(1):63.PubMedCentralCrossRef Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci. 2016;17(1):63.PubMedCentralCrossRef
89.
go back to reference Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4):e34653.PubMedPubMedCentralCrossRef Waldenström A, Gennebäck N, Hellman U, Ronquist G. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS ONE. 2012;7(4):e34653.PubMedPubMedCentralCrossRef
90.
go back to reference Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circul Physiol. 2013;304(7):H954–65.CrossRef Malik ZA, Kott KS, Poe AJ, Kuo T, Chen L, et al. Cardiac myocyte exosomes: stability, HSP60, and proteomics. Am J Physiol Heart Circul Physiol. 2013;304(7):H954–65.CrossRef
91.
go back to reference Yu X, Deng L, Wang D, Li N, Chen X, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol. 2012;53(6):848–57.PubMedCrossRef Yu X, Deng L, Wang D, Li N, Chen X, et al. Mechanism of TNF-α autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1α, presented by exosomes. J Mol Cell Cardiol. 2012;53(6):848–57.PubMedCrossRef
92.
go back to reference Gennebäck N, Hellman U, Malm L, Larsson G, Ronquist G, et al. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracel Vesicles. 2013;2:20167.CrossRef Gennebäck N, Hellman U, Malm L, Larsson G, Ronquist G, et al. Growth factor stimulation of cardiomyocytes induces changes in the transcriptional contents of secreted exosomes. J Extracel Vesicles. 2013;2:20167.CrossRef
93.
go back to reference Liu Y, Liu Z, Xie Y, Zhao C, Xu J. Serum extracellular vesicles retard H9C2 cell senescence by suppressing miR-34a expression. J Cardiovasc Transl Res. 2019;12(1):45–50.PubMedCrossRef Liu Y, Liu Z, Xie Y, Zhao C, Xu J. Serum extracellular vesicles retard H9C2 cell senescence by suppressing miR-34a expression. J Cardiovasc Transl Res. 2019;12(1):45–50.PubMedCrossRef
94.
go back to reference Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circul Physiol. 2019;317(2):H460–71.CrossRef Tavakoli Dargani Z, Singla DK. Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circul Physiol. 2019;317(2):H460–71.CrossRef
95.
go back to reference Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem. 2012;45(10–11):727–32.PubMedPubMedCentralCrossRef Li C, Pei F, Zhu X, Duan DD, Zeng C. Circulating microRNAs as novel and sensitive biomarkers of acute myocardial Infarction. Clin Biochem. 2012;45(10–11):727–32.PubMedPubMedCentralCrossRef
96.
go back to reference Xu C, Lu Y, Pan Z, Chu W, Luo X, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(Pt 17):3045–52.PubMedCrossRef Xu C, Lu Y, Pan Z, Chu W, Luo X, et al. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. 2007;120(Pt 17):3045–52.PubMedCrossRef
97.
98.
go back to reference Castoldi G, Di Gioia CRT, Bombardi C, Catalucci D, Corradi B, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6.PubMedCrossRef Castoldi G, Di Gioia CRT, Bombardi C, Catalucci D, Corradi B, et al. MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. J Cell Physiol. 2012;227(2):850–6.PubMedCrossRef
99.
go back to reference Li X, Wang J, Jia Z, Cui Q, Zhang C, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS ONE. 2013;8(9):e74504.PubMedPubMedCentralCrossRef Li X, Wang J, Jia Z, Cui Q, Zhang C, et al. MiR-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via Sox6 and cyclin D1. PLoS ONE. 2013;8(9):e74504.PubMedPubMedCentralCrossRef
100.
go back to reference Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, et al. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep. 2014;3(6):1029–42.CrossRef Izarra A, Moscoso I, Levent E, Cañón S, Cerrada I, et al. miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction. Stem Cell Rep. 2014;3(6):1029–42.CrossRef
101.
go back to reference Li S, Xiao F-Y, Shan P-R, Su L, Chen D-L, et al. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. J Hum Genet. 2015;60(11):709–16.PubMedCrossRef Li S, Xiao F-Y, Shan P-R, Su L, Chen D-L, et al. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. J Hum Genet. 2015;60(11):709–16.PubMedCrossRef
102.
go back to reference Nie H, Pan Y, Zhou Y. Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochem Biophys Res Commun. 2018;503(4):3174–9.PubMedCrossRef Nie H, Pan Y, Zhou Y. Exosomal microRNA-194 causes cardiac injury and mitochondrial dysfunction in obese mice. Biochem Biophys Res Commun. 2018;503(4):3174–9.PubMedCrossRef
103.
go back to reference Yarana C, Carroll D, Chen J, Chaiswing L, Zhao Y, et al. Extracellular vesicles released by cardiomyocytes in a doxorubicin-induced cardiac injury mouse model contain protein biomarkers of early cardiac injury. Clin Cancer Res. 2018;24(7):1644–53.PubMedCrossRef Yarana C, Carroll D, Chen J, Chaiswing L, Zhao Y, et al. Extracellular vesicles released by cardiomyocytes in a doxorubicin-induced cardiac injury mouse model contain protein biomarkers of early cardiac injury. Clin Cancer Res. 2018;24(7):1644–53.PubMedCrossRef
104.
go back to reference Cheow ESH, Cheng WC, Lee CN, de Kleijn D, Sorokin V, et al. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016;15(8):2628–40.PubMedPubMedCentralCrossRef Cheow ESH, Cheng WC, Lee CN, de Kleijn D, Sorokin V, et al. Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury. Mol Cell Proteomics. 2016;15(8):2628–40.PubMedPubMedCentralCrossRef
105.
go back to reference Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.PubMedCentralCrossRef Börger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017;18(7):1450.PubMedCentralCrossRef
106.
go back to reference Bian S, Zhang L, Duan L, Wang X, Min Y, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany). 2014;92(4):387–97.CrossRef Bian S, Zhang L, Duan L, Wang X, Min Y, et al. Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany). 2014;92(4):387–97.CrossRef
107.
go back to reference Ma J, Zhao Y, Sun L, Sun X, Zhao X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9.PubMedCrossRef Ma J, Zhao Y, Sun L, Sun X, Zhao X, et al. Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med. 2017;6(1):51–9.PubMedCrossRef
108.
go back to reference Zhao Y, Sun X, Cao W, Ma J, Sun L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643.PubMedPubMedCentralCrossRef Zhao Y, Sun X, Cao W, Ma J, Sun L, et al. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015;2015:761643.PubMedPubMedCentralCrossRef
109.
go back to reference Shao L, Zhang Y, Lan B, Wang J, Zhang Z, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.PubMedPubMedCentralCrossRef Shao L, Zhang Y, Lan B, Wang J, Zhang Z, et al. MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int. 2017;2017:4150705.PubMedPubMedCentralCrossRef
110.
go back to reference Yu B, Kim HW, Gong M, Wang J, Millard RW, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.PubMedCrossRef Yu B, Kim HW, Gong M, Wang J, Millard RW, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–60.PubMedCrossRef
111.
go back to reference Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2):e88685.PubMedPubMedCentralCrossRef Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE. 2014;9(2):e88685.PubMedPubMedCentralCrossRef
112.
go back to reference Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006–2014). J Crit Care. 2018;47:192–7.PubMedCrossRef Eworuke E, Major JM, Gilbert McClain LI. National incidence rates for Acute Respiratory Distress Syndrome (ARDS) and ARDS cause-specific factors in the United States (2006–2014). J Crit Care. 2018;47:192–7.PubMedCrossRef
113.
go back to reference Bellani G, Laffey JG, Pham T, Fan E, Brochard L, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef Bellani G, Laffey JG, Pham T, Fan E, Brochard L, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315(8):788–800.PubMedCrossRef
114.
go back to reference Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P, et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol. 2012;47(5):628–36.PubMedPubMedCentralCrossRef Sun X, Singleton PA, Letsiou E, Zhao J, Belvitch P, et al. Sphingosine-1-phosphate receptor-3 is a novel biomarker in acute lung injury. Am J Respir Cell Mol Biol. 2012;47(5):628–36.PubMedPubMedCentralCrossRef
115.
go back to reference Letsiou E, Sammani S, Zhang W, Zhou T, Quijada H, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol. 2015;52(2):193–204.PubMedPubMedCentralCrossRef Letsiou E, Sammani S, Zhang W, Zhou T, Quijada H, et al. Pathologic mechanical stress and endotoxin exposure increases lung endothelial microparticle shedding. Am J Respir Cell Mol Biol. 2015;52(2):193–204.PubMedPubMedCentralCrossRef
116.
go back to reference Shaver CM, Woods J, Clune JK, Grove BS, Wickersham NE, et al. Circulating microparticle levels are reduced in patients with ARDS. Crit Care (Lond, Engl). 2017;21(1):120.CrossRef Shaver CM, Woods J, Clune JK, Grove BS, Wickersham NE, et al. Circulating microparticle levels are reduced in patients with ARDS. Crit Care (Lond, Engl). 2017;21(1):120.CrossRef
117.
go back to reference Belizaire RM, Prakash PS, Richter JR, Robinson BR, Edwards MJ, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg. 2012;214(4):648–55 (discussion 656-7).PubMedPubMedCentralCrossRef Belizaire RM, Prakash PS, Richter JR, Robinson BR, Edwards MJ, et al. Microparticles from stored red blood cells activate neutrophils and cause lung injury after hemorrhage and resuscitation. J Am Coll Surg. 2012;214(4):648–55 (discussion 656-7).PubMedPubMedCentralCrossRef
118.
go back to reference Neri T, Armani C, Pegoli A, Cordazzo C, Carmazzi Y, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. Eur Respir J. 2011;37(6):1494–502.PubMedCrossRef Neri T, Armani C, Pegoli A, Cordazzo C, Carmazzi Y, et al. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. Eur Respir J. 2011;37(6):1494–502.PubMedCrossRef
119.
go back to reference Shi Y, Luo P, Wang W, Horst K, Bläsius F, et al. M1 but not M0 extracellular vesicles induce polarization of RAW264.7 macrophages via the TLR4-NFκB pathway in vitro. Inflammation. 2020;43:1611–9.PubMedCrossRef Shi Y, Luo P, Wang W, Horst K, Bläsius F, et al. M1 but not M0 extracellular vesicles induce polarization of RAW264.7 macrophages via the TLR4-NFκB pathway in vitro. Inflammation. 2020;43:1611–9.PubMedCrossRef
120.
go back to reference Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung epithelial cell-derived microvesicles regulate macrophage migration via MicroRNA-17/221-induced integrin β(1) recycling. J Immunol (Baltimore, Md:1950). 2017;199(4):1453–64.CrossRef Lee H, Zhang D, Wu J, Otterbein LE, Jin Y. Lung epithelial cell-derived microvesicles regulate macrophage migration via MicroRNA-17/221-induced integrin β(1) recycling. J Immunol (Baltimore, Md:1950). 2017;199(4):1453–64.CrossRef
121.
go back to reference Wang L, Liu J, Xie W, Li G, Yao L, et al. miR-425 reduction causes aberrant proliferation and collagen synthesis through modulating TGF-β/Smad signaling in acute respiratory distress syndrome. Int J Clin Exp Pathol. 2019;12(7):2604–12.PubMedPubMedCentral Wang L, Liu J, Xie W, Li G, Yao L, et al. miR-425 reduction causes aberrant proliferation and collagen synthesis through modulating TGF-β/Smad signaling in acute respiratory distress syndrome. Int J Clin Exp Pathol. 2019;12(7):2604–12.PubMedPubMedCentral
122.
go back to reference Wu X, Wu C, Gu W, Ji H, Zhu L. Serum exosomal MicroRNAs predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed Res Int. 2019;2019:3612020.PubMedPubMedCentralCrossRef Wu X, Wu C, Gu W, Ji H, Zhu L. Serum exosomal MicroRNAs predict acute respiratory distress syndrome events in patients with severe community-acquired pneumonia. Biomed Res Int. 2019;2019:3612020.PubMedPubMedCentralCrossRef
123.
go back to reference Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep. 2016;6:35250.PubMedPubMedCentralCrossRef Lee H, Zhang D, Zhu Z, Dela Cruz CS, Jin Y. Epithelial cell-derived microvesicles activate macrophages and promote inflammation via microvesicle-containing microRNAs. Sci Rep. 2016;6:35250.PubMedPubMedCentralCrossRef
124.
go back to reference Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–86.PubMedPubMedCentralCrossRef Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017;196(10):1275–86.PubMedPubMedCentralCrossRef
125.
go back to reference Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.PubMedCrossRef Rewa O, Bagshaw SM. Acute kidney injury-epidemiology, outcomes and economics. Nat Rev Nephrol. 2014;10(4):193–207.PubMedCrossRef
126.
go back to reference Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014;9(1):12–20.PubMedCrossRef Zeng X, McMahon GM, Brunelli SM, Bates DW, Waikar SS. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin J Am Soc Nephrol. 2014;9(1):12–20.PubMedCrossRef
127.
go back to reference Thongboonkerd V. Roles for exosome in various kidney diseases and disorders. Front Pharmacol. 2019;10:1655.PubMedCrossRef Thongboonkerd V. Roles for exosome in various kidney diseases and disorders. Front Pharmacol. 2019;10:1655.PubMedCrossRef
128.
go back to reference Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297(4):F1006–16.PubMedCrossRef Sonoda H, Yokota-Ikeda N, Oshikawa S, Kanno Y, Yoshinaga K, et al. Decreased abundance of urinary exosomal aquaporin-1 in renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2009;297(4):F1006–16.PubMedCrossRef
129.
go back to reference Asvapromtada S, Sonoda H, Kinouchi M, Oshikawa S, Takahashi S, et al. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. Am J Physiol Renal Physiol. 2018;314(4):F584–601.PubMedCrossRef Asvapromtada S, Sonoda H, Kinouchi M, Oshikawa S, Takahashi S, et al. Characterization of urinary exosomal release of aquaporin-1 and -2 after renal ischemia-reperfusion in rats. Am J Physiol Renal Physiol. 2018;314(4):F584–601.PubMedCrossRef
130.
go back to reference Nielsen S, Frøkiaer J, Marples D, Kwon T-H, Agre P, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.PubMedCrossRef Nielsen S, Frøkiaer J, Marples D, Kwon T-H, Agre P, et al. Aquaporins in the kidney: from molecules to medicine. Physiol Rev. 2002;82(1):205–44.PubMedCrossRef
131.
go back to reference Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, et al. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep. 2019;9(1):4692.PubMedPubMedCentralCrossRef Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, et al. miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep. 2019;9(1):4692.PubMedPubMedCentralCrossRef
132.
go back to reference Tőkés-Füzesi M, Woth G, Ernyey B, Vermes I, Mühl D, et al. Microparticles and acute renal dysfunction in septic patients. J Crit Care. 2013;28(2):141–7.PubMedCrossRef Tőkés-Füzesi M, Woth G, Ernyey B, Vermes I, Mühl D, et al. Microparticles and acute renal dysfunction in septic patients. J Crit Care. 2013;28(2):141–7.PubMedCrossRef
133.
go back to reference Delabranche X, Boisramé-Helms J, Asfar P, Berger A, Mootien Y, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013;39(10):1695–703.PubMedCrossRef Delabranche X, Boisramé-Helms J, Asfar P, Berger A, Mootien Y, et al. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med. 2013;39(10):1695–703.PubMedCrossRef
134.
go back to reference Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540–6.PubMedCrossRef Soriano AO, Jy W, Chirinos JA, Valdivia MA, Velasquez HS, et al. Levels of endothelial and platelet microparticles and their interactions with leukocytes negatively correlate with organ dysfunction and predict mortality in severe sepsis. Crit Care Med. 2005;33(11):2540–6.PubMedCrossRef
135.
go back to reference Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost. 2001;85(5):810–20.PubMedCrossRef Joop K, Berckmans RJ, Nieuwland R, Berkhout J, Romijn FP, et al. Microparticles from patients with multiple organ dysfunction syndrome and sepsis support coagulation through multiple mechanisms. Thromb Haemost. 2001;85(5):810–20.PubMedCrossRef
136.
go back to reference Du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis. 2003;42(3):497–506.PubMedCrossRef Du Cheyron D, Daubin C, Poggioli J, Ramakers M, Houillier P, et al. Urinary measurement of Na+/H+ exchanger isoform 3 (NHE3) protein as new marker of tubule injury in critically ill patients with ARF. Am J Kidney Dis. 2003;42(3):497–506.PubMedCrossRef
137.
go back to reference Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, et al. Exosomal Fetuin-A identified by proteomics. A novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006;70(10):1847–57.PubMedPubMedCentralCrossRef Zhou H, Pisitkun T, Aponte A, Yuen PST, Hoffert JD, et al. Exosomal Fetuin-A identified by proteomics. A novel urinary biomarker for detecting acute kidney injury. Kidney Int. 2006;70(10):1847–57.PubMedPubMedCentralCrossRef
138.
go back to reference Chen H-H, Lai P-F, Lan Y-F, Cheng C-F, Zhong W-B, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229(9):1202–11.PubMedCrossRef Chen H-H, Lai P-F, Lan Y-F, Cheng C-F, Zhong W-B, et al. Exosomal ATF3 RNA attenuates pro-inflammatory gene MCP-1 transcription in renal ischemia-reperfusion. J Cell Physiol. 2014;229(9):1202–11.PubMedCrossRef
139.
go back to reference Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol. 2017;18(1):10.PubMedPubMedCentralCrossRef Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, et al. Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol. 2017;18(1):10.PubMedPubMedCentralCrossRef
140.
go back to reference Lv L-L, Cao Y-H, Ni H-F, Xu M, Liu D, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220–7.PubMedCrossRef Lv L-L, Cao Y-H, Ni H-F, Xu M, Liu D, et al. MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol. 2013;305(8):F1220–7.PubMedCrossRef
141.
go back to reference Cavallari C, Dellepiane S, Fonsato V, Medica D, Marengo M, et al. Online hemodiafiltration inhibits inflammation-related endothelial dysfunction and vascular calcification of uremic patients modulating miR-223 expression in plasma extracellular vesicles. J Immunol (Baltimore, Md:1950). 2019;202(8):2372–83.CrossRef Cavallari C, Dellepiane S, Fonsato V, Medica D, Marengo M, et al. Online hemodiafiltration inhibits inflammation-related endothelial dysfunction and vascular calcification of uremic patients modulating miR-223 expression in plasma extracellular vesicles. J Immunol (Baltimore, Md:1950). 2019;202(8):2372–83.CrossRef
142.
go back to reference Xie JX, Fan X, Drummond CA, Majumder R, Xie Y, et al. MicroRNA profiling in kidney disease Plasma versus plasma-derived exosomes. Gene. 2017;627:1–8.PubMedPubMedCentralCrossRef Xie JX, Fan X, Drummond CA, Majumder R, Xie Y, et al. MicroRNA profiling in kidney disease Plasma versus plasma-derived exosomes. Gene. 2017;627:1–8.PubMedPubMedCentralCrossRef
143.
go back to reference Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE. 2013;8(11):e73798.PubMedPubMedCentralCrossRef Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE. 2013;8(11):e73798.PubMedPubMedCentralCrossRef
144.
go back to reference Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther. 2017;8(1):24.PubMedPubMedCentralCrossRef Ranghino A, Bruno S, Bussolati B, Moggio A, Dimuccio V, et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res Ther. 2017;8(1):24.PubMedPubMedCentralCrossRef
145.
go back to reference Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67.PubMedPubMedCentralCrossRef Bruno S, Grange C, Deregibus MC, Calogero RA, Saviozzi S, et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol. 2009;20(5):1053–67.PubMedPubMedCentralCrossRef
146.
go back to reference Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, et al. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS ONE. 2012;7(9):e44092.PubMedPubMedCentralCrossRef Reis LA, Borges FT, Simões MJ, Borges AA, Sinigaglia-Coimbra R, et al. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats. PLoS ONE. 2012;7(9):e44092.PubMedPubMedCentralCrossRef
147.
go back to reference Zhou Y, Xu H, Xu W, Wang B, Wu H, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.PubMedPubMedCentralCrossRef Zhou Y, Xu H, Xu W, Wang B, Wu H, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.PubMedPubMedCentralCrossRef
148.
go back to reference Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE. 2012;7(3):e33115.PubMedPubMedCentralCrossRef Bruno S, Grange C, Collino F, Deregibus MC, Cantaluppi V, et al. Microvesicles derived from mesenchymal stem cells enhance survival in a lethal model of acute kidney injury. PLoS ONE. 2012;7(3):e33115.PubMedPubMedCentralCrossRef
149.
go back to reference Collino F, Bruno S, Incarnato D, Dettori D, Neri F, et al. AKI Recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol. 2015;26(10):2349–60.PubMedPubMedCentralCrossRef Collino F, Bruno S, Incarnato D, Dettori D, Neri F, et al. AKI Recovery induced by mesenchymal stromal cell-derived extracellular vesicles carrying MicroRNAs. J Am Soc Nephrol. 2015;26(10):2349–60.PubMedPubMedCentralCrossRef
150.
go back to reference Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology (Baltimore, MD). 2008;47(4):1363–70.CrossRef Kim WR, Flamm SL, Di Bisceglie AM, Bodenheimer HC. Serum activity of alanine aminotransferase (ALT) as an indicator of health and disease. Hepatology (Baltimore, MD). 2008;47(4):1363–70.CrossRef
151.
go back to reference Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, et al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS ONE. 2013;8(7):e68693.PubMedPubMedCentralCrossRef Royo F, Schlangen K, Palomo L, Gonzalez E, Conde-Vancells J, et al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS ONE. 2013;8(7):e68693.PubMedPubMedCentralCrossRef
152.
go back to reference Rodríguez-Suárez E, Gonzalez E, Hughes C, Conde-Vancells J, Rudella A, et al. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J Proteomics. 2014;103:227–40.PubMedPubMedCentralCrossRef Rodríguez-Suárez E, Gonzalez E, Hughes C, Conde-Vancells J, Rudella A, et al. Quantitative proteomic analysis of hepatocyte-secreted extracellular vesicles reveals candidate markers for liver toxicity. J Proteomics. 2014;103:227–40.PubMedPubMedCentralCrossRef
153.
go back to reference Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef Masyuk AI, Masyuk TV, LaRusso NF. Exosomes in the pathogenesis, diagnostics and therapeutics of liver diseases. J Hepatol. 2013;59(3):621–5.PubMedCrossRef
154.
go back to reference Chen Y, Zeng Z, Shen X, Wu Z, Dong Y, et al. MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of toll-like receptor 4 signaling pathways. Int J Mol Sci. 2016;17(7):1076.PubMedCentralCrossRef Chen Y, Zeng Z, Shen X, Wu Z, Dong Y, et al. MicroRNA-146a-5p negatively regulates pro-inflammatory cytokine secretion and cell activation in lipopolysaccharide stimulated human hepatic stellate cells through inhibition of toll-like receptor 4 signaling pathways. Int J Mol Sci. 2016;17(7):1076.PubMedCentralCrossRef
155.
go back to reference Witek RP, Yang L, Liu R, Jung Y, Omenetti A, et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 2009;136(1):320-330.e2.PubMedCrossRef Witek RP, Yang L, Liu R, Jung Y, Omenetti A, et al. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology. 2009;136(1):320-330.e2.PubMedCrossRef
156.
go back to reference Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells (Dayton, Ohio). 2012;30(9):1985–98.CrossRef Fonsato V, Collino F, Herrera MB, Cavallari C, Deregibus MC, et al. Human liver stem cell-derived microvesicles inhibit hepatoma growth in SCID mice by delivering antitumor microRNAs. Stem Cells (Dayton, Ohio). 2012;30(9):1985–98.CrossRef
157.
go back to reference Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008;7(12):5157–66.PubMedPubMedCentralCrossRef Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, et al. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res. 2008;7(12):5157–66.PubMedPubMedCentralCrossRef
158.
go back to reference Moratti E, Vezzalini M, Tomasello L, Giavarina D, Sorio C. Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma. PLoS ONE. 2015;10(3):e0119110.PubMedPubMedCentralCrossRef Moratti E, Vezzalini M, Tomasello L, Giavarina D, Sorio C. Identification of protein tyrosine phosphatase receptor gamma extracellular domain (sPTPRG) as a natural soluble protein in plasma. PLoS ONE. 2015;10(3):e0119110.PubMedPubMedCentralCrossRef
159.
go back to reference Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology (Baltimore, MD). 2012;56(5):1946–57.CrossRef Bala S, Petrasek J, Mundkur S, Catalano D, Levin I, et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology (Baltimore, MD). 2012;56(5):1946–57.CrossRef
160.
go back to reference Eguchi A, Lazaro RG, Wang J, Kim J, Povero D, et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology (Baltimore, MD). 2017;65(2):475–90.CrossRef Eguchi A, Lazaro RG, Wang J, Kim J, Povero D, et al. Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology (Baltimore, MD). 2017;65(2):475–90.CrossRef
161.
go back to reference Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology (Baltimore, MD). 2018;68(1):333–48.CrossRef Kostallari E, Hirsova P, Prasnicka A, Verma VK, Yaqoob U, et al. Hepatic stellate cell-derived platelet-derived growth factor receptor-alpha-enriched extracellular vesicles promote liver fibrosis in mice through SHP2. Hepatology (Baltimore, MD). 2018;68(1):333–48.CrossRef
162.
go back to reference Holman NS, Mosedale M, Wolf KK, LeCluyse EL, Watkins PB. Subtoxic alterations in hepatocyte-derived exosomes an early step in drug-induced liver injury? Toxicol Sci. 2016;151(2):365–75.PubMedPubMedCentralCrossRef Holman NS, Mosedale M, Wolf KK, LeCluyse EL, Watkins PB. Subtoxic alterations in hepatocyte-derived exosomes an early step in drug-induced liver injury? Toxicol Sci. 2016;151(2):365–75.PubMedPubMedCentralCrossRef
163.
go back to reference Eguchi A, Franz N, Kobayashi Y, Iwasa M, Wagner N, et al. Circulating extracellular vesicles and their miR “Barcode” differentiate alcohol drinkers with liver injury and those without liver injury in severe trauma patients. Front Med. 2019;6:30.CrossRef Eguchi A, Franz N, Kobayashi Y, Iwasa M, Wagner N, et al. Circulating extracellular vesicles and their miR “Barcode” differentiate alcohol drinkers with liver injury and those without liver injury in severe trauma patients. Front Med. 2019;6:30.CrossRef
164.
go back to reference Nojima H, Freeman CM, Schuster RM, Japtok L, Kleuser B, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.PubMedCrossRef Nojima H, Freeman CM, Schuster RM, Japtok L, Kleuser B, et al. Hepatocyte exosomes mediate liver repair and regeneration via sphingosine-1-phosphate. J Hepatol. 2016;64(1):60–8.PubMedCrossRef
165.
go back to reference Chen L, Charrier A, Zhou Y, Chen R, Yu B, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology (Baltimore, MD). 2014;59(3):1118–29.CrossRef Chen L, Charrier A, Zhou Y, Chen R, Yu B, et al. Epigenetic regulation of connective tissue growth factor by MicroRNA-214 delivery in exosomes from mouse or human hepatic stellate cells. Hepatology (Baltimore, MD). 2014;59(3):1118–29.CrossRef
166.
go back to reference Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology (Baltimore, MD). 2018;67(5):1986–2000.CrossRef Saha B, Momen-Heravi F, Furi I, Kodys K, Catalano D, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology (Baltimore, MD). 2018;67(5):1986–2000.CrossRef
167.
go back to reference Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.PubMedCrossRef Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48.PubMedCrossRef
168.
go back to reference Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med. 2017;6(4):1262–72.PubMedPubMedCentralCrossRef Haga H, Yan IK, Takahashi K, Matsuda A, Patel T. Extracellular vesicles from bone marrow-derived mesenchymal stem cells improve survival from lethal hepatic failure in mice. Stem Cells Transl Med. 2017;6(4):1262–72.PubMedPubMedCentralCrossRef
169.
go back to reference Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76.PubMedPubMedCentralCrossRef Tan CY, Lai RC, Wong W, Dan YY, Lim S-K, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76.PubMedPubMedCentralCrossRef
170.
go back to reference Liu Y, Lou G, Li A, Zhang T, Qi J, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine. 2018;36:140–50.PubMedPubMedCentralCrossRef Liu Y, Lou G, Li A, Zhang T, Qi J, et al. AMSC-derived exosomes alleviate lipopolysaccharide/d-galactosamine-induced acute liver failure by miR-17-mediated reduction of TXNIP/NLRP3 inflammasome activation in macrophages. EBioMedicine. 2018;36:140–50.PubMedPubMedCentralCrossRef
171.
go back to reference Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Dev Ther. 2019;13:2887–97.CrossRef Zhao S, Liu Y, Pu Z. Bone marrow mesenchymal stem cell-derived exosomes attenuate D-GaIN/LPS-induced hepatocyte apoptosis by activating autophagy in vitro. Drug Des Dev Ther. 2019;13:2887–97.CrossRef
172.
go back to reference Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135.PubMedPubMedCentralCrossRef Hyun J, Wang S, Kim J, Kim GJ, Jung Y. MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells. Sci Rep. 2015;5:14135.PubMedPubMedCentralCrossRef
173.
go back to reference Fröhlich M, Lefering R, Probst C, Paffrath T, Schneider MM, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–7 (discussion 927-8).PubMedCrossRef Fröhlich M, Lefering R, Probst C, Paffrath T, Schneider MM, et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the TraumaRegister DGU. J Trauma Acute Care Surg. 2014;76(4):921–7 (discussion 927-8).PubMedCrossRef
174.
go back to reference Hildebrand F, Giannoudis PV, van Griensven M, Zelle B, Ulmer B, et al. Management of polytraumatized patients with associated blunt chest trauma: a comparison of two European countries. Injury. 2005;36(2):293–302.PubMedCrossRef Hildebrand F, Giannoudis PV, van Griensven M, Zelle B, Ulmer B, et al. Management of polytraumatized patients with associated blunt chest trauma: a comparison of two European countries. Injury. 2005;36(2):293–302.PubMedCrossRef
175.
go back to reference Qiao Z, Greven J, Horst K, Pfeifer R, Kobbe P, et al. Fracture healing and the underexposed role of extracellular vesicle-based cross talk. Shock (Augusta, Ga). 2018;49(5):486–96.CrossRef Qiao Z, Greven J, Horst K, Pfeifer R, Kobbe P, et al. Fracture healing and the underexposed role of extracellular vesicle-based cross talk. Shock (Augusta, Ga). 2018;49(5):486–96.CrossRef
176.
go back to reference Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, et al. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma. 2001;50(5):801–9.PubMedCrossRef Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, et al. Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma. 2001;50(5):801–9.PubMedCrossRef
177.
go back to reference Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma. 2003;54(1):114–9 (discussion 119-20).PubMedCrossRef Fujimi S, Ogura H, Tanaka H, Koh T, Hosotsubo H, et al. Increased production of leukocyte microparticles with enhanced expression of adhesion molecules from activated polymorphonuclear leukocytes in severely injured patients. J Trauma. 2003;54(1):114–9 (discussion 119-20).PubMedCrossRef
178.
go back to reference Matijevic N, Wang Y-WW, Wade CE, Holcomb JB, Cotton BA, et al. Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy. Thromb Res. 2014;134(3):652–8.PubMedPubMedCentralCrossRef Matijevic N, Wang Y-WW, Wade CE, Holcomb JB, Cotton BA, et al. Cellular microparticle and thrombogram phenotypes in the Prospective Observational Multicenter Major Trauma Transfusion (PROMMTT) study: correlation with coagulopathy. Thromb Res. 2014;134(3):652–8.PubMedPubMedCentralCrossRef
179.
go back to reference Potter DR, Miyazawa BY, Gibb SL, Deng X, Togaratti PP, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. J Trauma Acute Care Surg. 2018;84(2):245–56.PubMedPubMedCentralCrossRef Potter DR, Miyazawa BY, Gibb SL, Deng X, Togaratti PP, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate pulmonary vascular permeability and lung injury induced by hemorrhagic shock and trauma. J Trauma Acute Care Surg. 2018;84(2):245–56.PubMedPubMedCentralCrossRef
180.
go back to reference Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanova G, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg. 2019;86(6):931–42.PubMedPubMedCentralCrossRef Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanova G, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg. 2019;86(6):931–42.PubMedPubMedCentralCrossRef
181.
go back to reference Lopez E, Srivastava AK, Burchfield J, Wang Y-W, Cardenas JC, et al. Platelet-derived- extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676.PubMedPubMedCentralCrossRef Lopez E, Srivastava AK, Burchfield J, Wang Y-W, Cardenas JC, et al. Platelet-derived- extracellular vesicles promote hemostasis and prevent the development of hemorrhagic shock. Sci Rep. 2019;9(1):17676.PubMedPubMedCentralCrossRef
182.
go back to reference Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–73.PubMedPubMedCentralCrossRef Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 2019;30(4):656–73.PubMedPubMedCentralCrossRef
183.
go back to reference Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8.PubMedPubMedCentralCrossRef Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA. 2011;108(12):5003–8.PubMedPubMedCentralCrossRef
184.
go back to reference Balusu S, van Wonterghem E, de Rycke R, Raemdonck K, Stremersch S, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8(10):1162–83.PubMedPubMedCentralCrossRef Balusu S, van Wonterghem E, de Rycke R, Raemdonck K, Stremersch S, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8(10):1162–83.PubMedPubMedCentralCrossRef
185.
go back to reference Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflamm. 2017;14(1):47.CrossRef Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflamm. 2017;14(1):47.CrossRef
186.
go back to reference Huang S, Ge X, Yu J, Han Z, Yin Z, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512–28.PubMedCrossRef Huang S, Ge X, Yu J, Han Z, Yin Z, et al. Increased miR-124-3p in microglial exosomes following traumatic brain injury inhibits neuronal inflammation and contributes to neurite outgrowth via their transfer into neurons. FASEB J. 2018;32(1):512–28.PubMedCrossRef
187.
go back to reference Long X, Yao X, Jiang Q, Yang Y, He X, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflamm. 2020;17(1):89.CrossRef Long X, Yao X, Jiang Q, Yang Y, He X, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury. J Neuroinflamm. 2020;17(1):89.CrossRef
188.
go back to reference Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–46.PubMedPubMedCentralCrossRef Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, et al. Cardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig. 2014;124(5):2136–46.PubMedPubMedCentralCrossRef
189.
go back to reference Wang C, Zhang C, Liu L, A X, Chen B, , et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25(1):192–204.PubMedPubMedCentralCrossRef Wang C, Zhang C, Liu L, A X, Chen B, , et al. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther. 2017;25(1):192–204.PubMedPubMedCentralCrossRef
190.
go back to reference Zhu Z, Zhang D, Lee H, Menon AA, Wu J, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol. 2017;101(6):1349–59.PubMedPubMedCentralCrossRef Zhu Z, Zhang D, Lee H, Menon AA, Wu J, et al. Macrophage-derived apoptotic bodies promote the proliferation of the recipient cells via shuttling microRNA-221/222. J Leukoc Biol. 2017;101(6):1349–59.PubMedPubMedCentralCrossRef
191.
go back to reference Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol. 2019;2:325.PubMedPubMedCentralCrossRef Rontogianni S, Synadaki E, Li B, Liefaard MC, Lips EH, et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun Biol. 2019;2:325.PubMedPubMedCentralCrossRef
192.
go back to reference Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, et al. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J. 2020;34(2):3359–66.PubMedCrossRef Goetzl EJ, Yaffe K, Peltz CB, Ledreux A, Gorgens K, et al. Traumatic brain injury increases plasma astrocyte-derived exosome levels of neurotoxic complement proteins. FASEB J. 2020;34(2):3359–66.PubMedCrossRef
Metadata
Title
Extracellular vesicles as mediators and markers of acute organ injury: current concepts
Authors
Birte Weber
Niklas Franz
Ingo Marzi
Dirk Henrich
Liudmila Leppik
Publication date
03-02-2021
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Trauma and Emergency Surgery / Issue 3/2022
Print ISSN: 1863-9933
Electronic ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-021-01607-1

Other articles of this Issue 3/2022

European Journal of Trauma and Emergency Surgery 3/2022 Go to the issue