Skip to main content
Top
Published in: Strahlentherapie und Onkologie 6/2021

Open Access 01-06-2021 | Radiotherapy | Original Article

New clinical data on human spinal cord re-irradiation tolerance

Authors: Hiroshi Doi, MD, PhD, Keisuke Tamari, MD, PhD, Ryoong-Jin Oh, MD, Carsten Nieder, MD

Published in: Strahlentherapie und Onkologie | Issue 6/2021

Login to get access

Abstract

Purpose

To provide additional clinical data about the re-irradiation tolerance of the spinal cord.

Methods

This was a retrospective bi-institutional study of patients re-irradiated to the cervical or thoracic spinal cord with minimum follow-up of 6 months. The maximum dose (Dmax) and dose to 0.1cc (D0.1cc) were determined (magnetic resonance imaging [MRI]-defined cord) and expressed as equivalent dose in 2‑Gy fractions (EQD2) with an α/β value of 2 Gy.

Results

All 32 patients remained free from radiation myelopathy after a median follow-up of 12 months. Re-irradiation was performed after 6–97 months (median 15). In 22 cases (69%) the re-irradiation spinal cord EQD2 Dmax was higher than that of the first treatment course. Forty-eight of 64 treatment courses employed fraction sizes of 2.5 to 4 Gy to the target volume. The median cumulative spinal cord EQD2 Dmax was 80.7 Gy, minimum 61.12 Gy, maximum 114.79 Gy. The median cumulative spinal cord D0.1cc EQD2 was 76.1 Gy, minimum 61.12 Gy, maximum 95.62 Gy. Besides cumulative dose, other risk factors for myelopathy were present (single-course Dmax EQD2 ≥51 Gy in 9 patients, single-course D0.1cc EQD2 ≥51 Gy in 5 patients).

Conclusion

Even patients treated to higher cumulative doses than previously recommended, or at a considerable risk of myelopathy according to a published risk score, remained free from this complication, although one must acknowledge the potential for manifestation of damage in patients currently alive, i.e., still at risk. Individualized decisions to re-irradiate after appropriate informed consent are an acceptable strategy, including scenarios where low re-irradiation doses to the spinal cord would compromise target coverage and tumor control probability to an unacceptable degree.
Literature
1.
go back to reference Medin PM, Foster RD, van der Kogel AJ et al (2012) Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model. Int J Radiat Oncol Biol Phys 83:1031–1037CrossRef Medin PM, Foster RD, van der Kogel AJ et al (2012) Spinal cord tolerance to reirradiation with single-fraction radiosurgery: a swine model. Int J Radiat Oncol Biol Phys 83:1031–1037CrossRef
2.
go back to reference Ang KK, Jiang GL, Feng Y et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020CrossRef Ang KK, Jiang GL, Feng Y et al (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020CrossRef
3.
go back to reference Folkert MR, Bilsky MH, Cohen GN et al (2013) Intraoperative and percutaneous iridium-192 high-dose-rate brachytherapy for previously irradiated lesions of the spine. Brachytherapy 12:449–456CrossRef Folkert MR, Bilsky MH, Cohen GN et al (2013) Intraoperative and percutaneous iridium-192 high-dose-rate brachytherapy for previously irradiated lesions of the spine. Brachytherapy 12:449–456CrossRef
4.
go back to reference Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27:428–435CrossRef Myrehaug S, Sahgal A, Hayashi M et al (2017) Reirradiation spine stereotactic body radiation therapy for spinal metastases: systematic review. J Neurosurg Spine 27:428–435CrossRef
5.
go back to reference Zschaeck S, Wust P, Graf R et al (2017) Spinal cord constraints in the era of high-precision radiotherapy: retrospective analysis of 62 spinal/paraspinal lesions with possible infringements of spinal cord constraints within a minimal volume. Strahlenther Onkol 193:561–569CrossRef Zschaeck S, Wust P, Graf R et al (2017) Spinal cord constraints in the era of high-precision radiotherapy: retrospective analysis of 62 spinal/paraspinal lesions with possible infringements of spinal cord constraints within a minimal volume. Strahlenther Onkol 193:561–569CrossRef
6.
go back to reference Mantel F, Glatz S, Toussaint A et al (2014) Long-term safety and efficacy of fractionated stereotactic body radiation therapy for spinal metastases. Strahlenther Onkol 190:1141–1148CrossRef Mantel F, Glatz S, Toussaint A et al (2014) Long-term safety and efficacy of fractionated stereotactic body radiation therapy for spinal metastases. Strahlenther Onkol 190:1141–1148CrossRef
7.
go back to reference Seidensaal K, Harrabi SB, Uhl M et al (2020) Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol 93:20190516CrossRef Seidensaal K, Harrabi SB, Uhl M et al (2020) Re-irradiation with protons or heavy ions with focus on head and neck, skull base and brain malignancies. Br J Radiol 93:20190516CrossRef
8.
go back to reference Simone CB 2nd, Plastaras JP, Jabbour SK et al (2020) Proton reirradiation: expert recommendations for reducing toxicities and offering new chances of cure in patients with challenging recurrence malignancies. Semin Radiat Oncol 30:253–261CrossRef Simone CB 2nd, Plastaras JP, Jabbour SK et al (2020) Proton reirradiation: expert recommendations for reducing toxicities and offering new chances of cure in patients with challenging recurrence malignancies. Semin Radiat Oncol 30:253–261CrossRef
9.
go back to reference Nieder C, Langendijk JA, Guckenberger M et al (2017) Preserving the legacy of reirradiation: a narrative review of historical publications. Adv Radiat Oncol 2:176–182CrossRef Nieder C, Langendijk JA, Guckenberger M et al (2017) Preserving the legacy of reirradiation: a narrative review of historical publications. Adv Radiat Oncol 2:176–182CrossRef
10.
go back to reference Nieder C, Gaspar LE, Ruysscher D et al (2018) Repeat reirradiation of the spinal cord: multi-national expert treatment recommendations. Strahlenther Onkol 194:365–374CrossRef Nieder C, Gaspar LE, Ruysscher D et al (2018) Repeat reirradiation of the spinal cord: multi-national expert treatment recommendations. Strahlenther Onkol 194:365–374CrossRef
11.
go back to reference Grosu AL, Andratschke N, Nieder C et al (2002) Retreatment of the spinal cord with palliative radiotherapy. Int J Radiat Oncol Biol Phys 52:1288–1292CrossRef Grosu AL, Andratschke N, Nieder C et al (2002) Retreatment of the spinal cord with palliative radiotherapy. Int J Radiat Oncol Biol Phys 52:1288–1292CrossRef
12.
go back to reference Nieder C, Grosu AL, Andratschke NH, Molls M (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61:851–855CrossRef Nieder C, Grosu AL, Andratschke NH, Molls M (2005) Proposal of human spinal cord reirradiation dose based on collection of data from 40 patients. Int J Radiat Oncol Biol Phys 61:851–855CrossRef
13.
go back to reference Nieder C, Grosu AL, Andratschke NH, Molls M (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66:1446–1449CrossRef Nieder C, Grosu AL, Andratschke NH, Molls M (2006) Update of human spinal cord reirradiation tolerance based on additional data from 38 patients. Int J Radiat Oncol Biol Phys 66:1446–1449CrossRef
14.
go back to reference Doi H, Tamari K, Masai N et al (2021) Intensity-modulated radiation therapy administered to a previously irradiated spine is effective and well-tolerated. Clin Transl Oncol 23:229–239CrossRef Doi H, Tamari K, Masai N et al (2021) Intensity-modulated radiation therapy administered to a previously irradiated spine is effective and well-tolerated. Clin Transl Oncol 23:229–239CrossRef
15.
go back to reference Fowler JF, Bentzen SM, Bond SJ et al (2000) Clinical radiation doses for spinal cord: the 1998 international questionnaire. Radiother Oncol 55:295–300CrossRef Fowler JF, Bentzen SM, Bond SJ et al (2000) Clinical radiation doses for spinal cord: the 1998 international questionnaire. Radiother Oncol 55:295–300CrossRef
16.
go back to reference Jones B, Hopewell JW (2019) Spinal cord re-treatments using photon and proton based radiotherapy: LQ-derived tolerance doses. Phys Med 64:304–310CrossRef Jones B, Hopewell JW (2019) Spinal cord re-treatments using photon and proton based radiotherapy: LQ-derived tolerance doses. Phys Med 64:304–310CrossRef
17.
go back to reference Wong CS, Van Dyk J, Milosevic M et al (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30:575–581CrossRef Wong CS, Van Dyk J, Milosevic M et al (1994) Radiation myelopathy following single courses of radiotherapy and retreatment. Int J Radiat Oncol Biol Phys 30:575–581CrossRef
19.
go back to reference Sahgal A, Ma L, Weinberg V et al (2012) Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 82:107–116CrossRef Sahgal A, Ma L, Weinberg V et al (2012) Reirradiation human spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 82:107–116CrossRef
20.
go back to reference Caravatta L, Fiorica F, Rosa C et al (2020) Role of upper abdominal reirradiation for gastrointestinal malignancies: a systematic review of cumulative dose, toxicity, and outcomes on behalf of the Re-Irradiation Working Group of the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Strahlenther Onkol 196:1–14CrossRef Caravatta L, Fiorica F, Rosa C et al (2020) Role of upper abdominal reirradiation for gastrointestinal malignancies: a systematic review of cumulative dose, toxicity, and outcomes on behalf of the Re-Irradiation Working Group of the Italian Association of Radiotherapy and Clinical Oncology (AIRO). Strahlenther Onkol 196:1–14CrossRef
21.
go back to reference Suppli MH, Munck Af Rosenschöld P, Pappot H et al (2019) Diabetes increases the risk of serious adverse events after re-irradiation of the spine. Radiother Oncol 136:130–135CrossRef Suppli MH, Munck Af Rosenschöld P, Pappot H et al (2019) Diabetes increases the risk of serious adverse events after re-irradiation of the spine. Radiother Oncol 136:130–135CrossRef
22.
go back to reference Wong CS, Fehlings MG, Sahgal A (2015) Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 53:574–580CrossRef Wong CS, Fehlings MG, Sahgal A (2015) Pathobiology of radiation myelopathy and strategies to mitigate injury. Spinal Cord 53:574–580CrossRef
23.
go back to reference Saager M, Hahn EW, Peschke P et al (2020) Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. J Radiat Res 61:791–798CrossRef Saager M, Hahn EW, Peschke P et al (2020) Ramipril reduces incidence and prolongates latency time of radiation-induced rat myelopathy after photon and carbon ion irradiation. J Radiat Res 61:791–798CrossRef
24.
go back to reference Schaub SK, Tseng YD, Chang EL et al (2019) Strategies to mitigate toxicities from stereotactic body radiation therapy for spine metastases. Neurosurgery 85:729–740CrossRef Schaub SK, Tseng YD, Chang EL et al (2019) Strategies to mitigate toxicities from stereotactic body radiation therapy for spine metastases. Neurosurgery 85:729–740CrossRef
Metadata
Title
New clinical data on human spinal cord re-irradiation tolerance
Authors
Hiroshi Doi, MD, PhD
Keisuke Tamari, MD, PhD
Ryoong-Jin Oh, MD
Carsten Nieder, MD
Publication date
01-06-2021
Publisher
Springer Berlin Heidelberg
Keyword
Radiotherapy
Published in
Strahlentherapie und Onkologie / Issue 6/2021
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-021-01772-7

Other articles of this Issue 6/2021

Strahlentherapie und Onkologie 6/2021 Go to the issue