Skip to main content
Top
Published in: Strahlentherapie und Onkologie 6/2018

01-06-2018 | Review Article

Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies

Authors: Michael Rückert, Lisa Deloch, Rainer Fietkau, Benjamin Frey, Markus Hecht, Prof. Udo S. Gaipl

Published in: Strahlentherapie und Onkologie | Issue 6/2018

Login to get access

Abstract

Background

Radiotherapy (RT) has been known for decades as a local treatment modality for malign and benign disease. In order to efficiently exploit the therapeutic potential of RT, an understanding of the immune modulatory properties of ionizing radiation is mandatory. These should be used for improvement of radioimmunotherapies for cancer in particular.

Methods

We here summarize the latest research and review articles about immune modulatory properties of RT, with focus on radiation dose and on combination of RT with selected immunotherapies. Based on the knowledge of the manifold immune mechanisms that are triggered by RT, thought-provoking impulse for multimodal radioimmunotherapies is provided.

Results

It has become obvious that ionizing radiation induces various forms of cell death and associated processes via DNA damage initiation and triggering of cellular stress responses. Immunogenic cell death (ICD) is of special interest since it activates the immune system via release of danger signals and via direct activation of immune cells. While RT with higher single doses in particular induces ICD, RT with a lower dose is mainly responsible for immune cell recruitment and for attenuation of an existing inflammation. The counteracting immunosuppression emanating from tumor cells can be overcome by combining RT with selected immunotherapies such as immune checkpoint inhibition, TGF-β inhibitors, and boosting of immunity with vaccination.

Conclusion

In order to exploit the full power of RT and thereby develop efficient radioimmunotherapies, the dose per fraction used in RT protocols, the fractionation, the quality, and the quantity of certain immunotherapies need to be qualitatively and chronologically well-matched to the individual immune status of the patient.
Literature
1.
go back to reference Wu Q, Allouch A, Martins I et al (2017) Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front Immunol 8:613CrossRefPubMedPubMedCentral Wu Q, Allouch A, Martins I et al (2017) Modulating both tumor cell death and innate immunity is essential for improving radiation therapy effectiveness. Front Immunol 8:613CrossRefPubMedPubMedCentral
3.
go back to reference Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837CrossRefPubMed
4.
6.
go back to reference Frey B, Schildkopf P, Rodel F et al (2009) AnnexinA5 renders dead tumor cells immunogenic—implications for multimodal cancer therapies. J Immunotoxicol 6:209–216CrossRefPubMed Frey B, Schildkopf P, Rodel F et al (2009) AnnexinA5 renders dead tumor cells immunogenic—implications for multimodal cancer therapies. J Immunotoxicol 6:209–216CrossRefPubMed
7.
go back to reference Werthmoller N, Frey B, Wunderlich R et al (2015) Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T‑cell-dependent manner. Cell Death Dis 6:e1761CrossRefPubMedPubMedCentral Werthmoller N, Frey B, Wunderlich R et al (2015) Modulation of radiochemoimmunotherapy-induced B16 melanoma cell death by the pan-caspase inhibitor zVAD-fmk induces anti-tumor immunity in a HMGB1-, nucleotide- and T‑cell-dependent manner. Cell Death Dis 6:e1761CrossRefPubMedPubMedCentral
8.
go back to reference Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223CrossRefPubMed Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223CrossRefPubMed
9.
go back to reference Muth C, Rubner Y, Semrau S et al (2016) Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin. Strahlenther Onkol 192:146–155CrossRefPubMed Muth C, Rubner Y, Semrau S et al (2016) Primary glioblastoma multiforme tumors and recurrence: comparative analysis of the danger signals HMGB1, HSP70, and calreticulin. Strahlenther Onkol 192:146–155CrossRefPubMed
10.
go back to reference Lu C, Xie C (2016) Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep 35:3559–3565CrossRefPubMed Lu C, Xie C (2016) Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway. Oncol Rep 35:3559–3565CrossRefPubMed
11.
go back to reference Chiu HW, Lin SW, Lin LC et al (2015) Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365:229–239CrossRefPubMed Chiu HW, Lin SW, Lin LC et al (2015) Synergistic antitumor effects of radiation and proteasome inhibitor treatment in pancreatic cancer through the induction of autophagy and the downregulation of TRAF6. Cancer Lett 365:229–239CrossRefPubMed
15.
go back to reference Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed Gaipl US, Multhoff G, Scheithauer H et al (2014) Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy 6:597–610CrossRefPubMed
16.
go back to reference Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171PubMedPubMedCentral Shevtsov M, Multhoff G (2016) Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 7:171PubMedPubMedCentral
17.
go back to reference Stangl S, Tontcheva N, Sievert W et al (2017) Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. https://doi.org/10.1002/ijc.31213 PubMedCentralCrossRefPubMed Stangl S, Tontcheva N, Sievert W et al (2017) Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: a multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). Int J Cancer. https://​doi.​org/​10.​1002/​ijc.​31213 PubMedCentralCrossRefPubMed
18.
go back to reference Specht HM, Ahrens N, Blankenstein C et al (2015) Heat Shock Protein 70 (Hsp70) peptide activated Natural Killer (NK) cells for the treatment of patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx)—from preclinical studies to a clinical phase II trial. Front Immunol 6:162CrossRefPubMedPubMedCentral Specht HM, Ahrens N, Blankenstein C et al (2015) Heat Shock Protein 70 (Hsp70) peptide activated Natural Killer (NK) cells for the treatment of patients with Non-Small Cell Lung Cancer (NSCLC) after Radiochemotherapy (RCTx)—from preclinical studies to a clinical phase II trial. Front Immunol 6:162CrossRefPubMedPubMedCentral
19.
20.
go back to reference Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271CrossRefPubMedPubMedCentral Reits EA, Hodge JW, Herberts CA et al (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203:1259–1271CrossRefPubMedPubMedCentral
21.
go back to reference Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed Frey B, Rubner Y, Kulzer L et al (2014) Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother 63:29–36CrossRefPubMed
22.
go back to reference Galluzzi L, Buque A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111CrossRefPubMed Galluzzi L, Buque A, Kepp O et al (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111CrossRefPubMed
24.
go back to reference Bouquet F, Pal A, Pilones KA et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765CrossRefPubMedPubMedCentral Bouquet F, Pal A, Pilones KA et al (2011) TGFbeta1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 17:6754–6765CrossRefPubMedPubMedCentral
25.
go back to reference Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695CrossRefPubMedPubMedCentral Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124:687–695CrossRefPubMedPubMedCentral
26.
go back to reference Jobling MF, Mott JD, Finnegan MT et al (2006) Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166:839–848CrossRefPubMed Jobling MF, Mott JD, Finnegan MT et al (2006) Isoform-specific activation of latent transforming growth factor beta (LTGF-beta) by reactive oxygen species. Radiat Res 166:839–848CrossRefPubMed
27.
go back to reference Vanpouille-Box C, Diamond JM, Pilones KA et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75:2232–2242CrossRefPubMedPubMedCentral Vanpouille-Box C, Diamond JM, Pilones KA et al (2015) TGFbeta is a master regulator of radiation therapy-induced antitumor immunity. Cancer Res 75:2232–2242CrossRefPubMedPubMedCentral
28.
29.
31.
go back to reference Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T‑cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T‑cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMed
32.
33.
go back to reference Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468CrossRefPubMed Dovedi SJ, Adlard AL, Lipowska-Bhalla G et al (2014) Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res 74:5458–5468CrossRefPubMed
34.
go back to reference Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed Twyman-Saint Victor C, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377CrossRefPubMed
35.
go back to reference Derer A, Deloch L, Rubner Y et al (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505CrossRefPubMedPubMedCentral Derer A, Deloch L, Rubner Y et al (2015) Radio-immunotherapy-induced immunogenic cancer cells as basis for induction of systemic anti-tumor immune responses—pre-clinical evidence and ongoing clinical applications. Front Immunol 6:505CrossRefPubMedPubMedCentral
36.
go back to reference Golden EB, Chhabra A, Chachoua A et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16:795–803CrossRefPubMed Golden EB, Chhabra A, Chachoua A et al (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16:795–803CrossRefPubMed
37.
38.
39.
go back to reference Frey B, Hehlgans S, Rodel F et al (2015) Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett 368:230–237CrossRefPubMed Frey B, Hehlgans S, Rodel F et al (2015) Modulation of inflammation by low and high doses of ionizing radiation: implications for benign and malign diseases. Cancer Lett 368:230–237CrossRefPubMed
40.
go back to reference Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750CrossRefPubMed Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750CrossRefPubMed
41.
go back to reference Wunderlich R, Ernst A, Rodel F et al (2015) Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 179:50–61CrossRefPubMed Wunderlich R, Ernst A, Rodel F et al (2015) Low and moderate doses of ionizing radiation up to 2 Gy modulate transmigration and chemotaxis of activated macrophages, provoke an anti-inflammatory cytokine milieu, but do not impact upon viability and phagocytic function. Clin Exp Immunol 179:50–61CrossRefPubMed
42.
go back to reference Large M, Hehlgans S, Reichert S et al (2015) Study of the anti-inflammatory effects of low-dose radiation: the contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 191:742–749CrossRefPubMed Large M, Hehlgans S, Reichert S et al (2015) Study of the anti-inflammatory effects of low-dose radiation: the contribution of biphasic regulation of the antioxidative system in endothelial cells. Strahlenther Onkol 191:742–749CrossRefPubMed
43.
go back to reference Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47CrossRefPubMed Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47CrossRefPubMed
44.
go back to reference Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88:727–734CrossRefPubMed Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88:727–734CrossRefPubMed
45.
go back to reference Ott OJ, Jeremias C, Gaipl US et al (2015) Radiotherapy for benign achillodynia. Long-term results of the Erlangen Dose Optimization Trial. Strahlenther Onkol 191:979–984CrossRefPubMed Ott OJ, Jeremias C, Gaipl US et al (2015) Radiotherapy for benign achillodynia. Long-term results of the Erlangen Dose Optimization Trial. Strahlenther Onkol 191:979–984CrossRefPubMed
46.
go back to reference Ott OJ, Jeremias C, Gaipl US et al (2014) Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675CrossRefPubMed Ott OJ, Jeremias C, Gaipl US et al (2014) Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675CrossRefPubMed
47.
go back to reference Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398CrossRefPubMed Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398CrossRefPubMed
48.
go back to reference Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results. Strahlenther Onkol 190:293–297CrossRefPubMed Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results. Strahlenther Onkol 190:293–297CrossRefPubMed
49.
go back to reference Ruhle PF, Wunderlich R, Deloch L et al (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50:133–140CrossRefPubMed Ruhle PF, Wunderlich R, Deloch L et al (2017) Modulation of the peripheral immune system after low-dose radon spa therapy: detailed longitudinal immune monitoring of patients within the RAD-ON01 study. Autoimmunity 50:133–140CrossRefPubMed
50.
go back to reference Cucu A, Shreder K, Kraft D et al (2017) Decrease of markers related to bone erosion in serum of patients with musculoskeletal disorders after serial low-dose radon spa therapy. Front Immunol 8:882CrossRefPubMedPubMedCentral Cucu A, Shreder K, Kraft D et al (2017) Decrease of markers related to bone erosion in serum of patients with musculoskeletal disorders after serial low-dose radon spa therapy. Front Immunol 8:882CrossRefPubMedPubMedCentral
51.
go back to reference Asur R, Butterworth KT, Penagaricano JA et al (2015) High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett 356:52–57CrossRefPubMed Asur R, Butterworth KT, Penagaricano JA et al (2015) High dose bystander effects in spatially fractionated radiation therapy. Cancer Lett 356:52–57CrossRefPubMed
52.
53.
go back to reference Ghita M, Coffey CB, Butterworth KT et al (2016) Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Phys Med Biol 61:515–526CrossRefPubMed Ghita M, Coffey CB, Butterworth KT et al (2016) Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields. Phys Med Biol 61:515–526CrossRefPubMed
54.
go back to reference Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496CrossRefPubMedPubMedCentral Burnette BC, Liang H, Lee Y et al (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71:2488–2496CrossRefPubMedPubMedCentral
55.
go back to reference Demaria O, De Gassart A, Coso S et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 112:15408–15413CrossRefPubMedPubMedCentral Demaria O, De Gassart A, Coso S et al (2015) STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc Natl Acad Sci USA 112:15408–15413CrossRefPubMedPubMedCentral
56.
go back to reference Derer A, Frey B, Fietkau R et al (2016) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 65:779–786CrossRefPubMed Derer A, Frey B, Fietkau R et al (2016) Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother 65:779–786CrossRefPubMed
57.
go back to reference Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602CrossRefPubMed Klug F, Prakash H, Huber PE et al (2013) Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell 24:589–602CrossRefPubMed
58.
go back to reference Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr Med Chem 19:1751–1764CrossRefPubMed Frey B, Rubner Y, Wunderlich R et al (2012) Induction of abscopal anti-tumor immunity and immunogenic tumor cell death by ionizing irradiation—implications for cancer therapies. Curr Med Chem 19:1751–1764CrossRefPubMed
59.
go back to reference Vanpouille-Box C, Pilones KA, Wennerberg E et al (2015) In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33:7415–7422CrossRefPubMedPubMedCentral Vanpouille-Box C, Pilones KA, Wennerberg E et al (2015) In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment. Vaccine 33:7415–7422CrossRefPubMedPubMedCentral
61.
go back to reference Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226CrossRefPubMed Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547:222–226CrossRefPubMed
62.
go back to reference Yarchoan M, Johnson BA 3rd, Lutz ER et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:569CrossRefPubMed Yarchoan M, Johnson BA 3rd, Lutz ER et al (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17:569CrossRefPubMed
64.
go back to reference Liu R, Luo F, Liu X et al (2016) Biological response modifier in cancer immunotherapy. Adv Exp Med Biol 909:69–138CrossRefPubMed Liu R, Luo F, Liu X et al (2016) Biological response modifier in cancer immunotherapy. Adv Exp Med Biol 909:69–138CrossRefPubMed
65.
go back to reference Eckert F, Jelas I, Oehme M et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 6:e1323161CrossRefPubMedPubMedCentral Eckert F, Jelas I, Oehme M et al (2017) Tumor-targeted IL-12 combined with local irradiation leads to systemic tumor control via abscopal effects in vivo. Oncoimmunology 6:e1323161CrossRefPubMedPubMedCentral
66.
go back to reference Yang QY, Yang JD, Wang YS (2017) Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett 190:201–205CrossRefPubMed Yang QY, Yang JD, Wang YS (2017) Current strategies to improve the safety of chimeric antigen receptor (CAR) modified T cells. Immunol Lett 190:201–205CrossRefPubMed
67.
68.
go back to reference van der Burg SH, Arens R, Ossendorp F et al (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16:219–233CrossRefPubMed van der Burg SH, Arens R, Ossendorp F et al (2016) Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 16:219–233CrossRefPubMed
69.
go back to reference Loi M, Desideri I, Greto D et al (2017) Radiotherapy in the age of cancer immunology: current concepts and future developments. Crit Rev Oncol Hematol 112:1–10CrossRefPubMed Loi M, Desideri I, Greto D et al (2017) Radiotherapy in the age of cancer immunology: current concepts and future developments. Crit Rev Oncol Hematol 112:1–10CrossRefPubMed
70.
71.
go back to reference Muenst S, Soysal SD, Tzankov A et al (2015) The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets 19:201–211CrossRefPubMed Muenst S, Soysal SD, Tzankov A et al (2015) The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets 19:201–211CrossRefPubMed
72.
74.
go back to reference Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentral Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723CrossRefPubMedPubMedCentral
75.
go back to reference Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287CrossRefPubMedPubMedCentral Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287CrossRefPubMedPubMedCentral
77.
go back to reference Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRefPubMed Abuodeh Y, Venkat P, Kim S (2016) Systematic review of case reports on the abscopal effect. Curr Probl Cancer 40:25–37CrossRefPubMed
78.
go back to reference Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870CrossRefPubMed Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870CrossRefPubMed
79.
go back to reference Zheng W, Skowron KB, Namm JP et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral Zheng W, Skowron KB, Namm JP et al (2016) Combination of radiotherapy and vaccination overcomes checkpoint blockade resistance. Oncotarget 7:43039–43051PubMedPubMedCentral
80.
go back to reference Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRefPubMedPubMedCentral Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15:5379–5388CrossRefPubMedPubMedCentral
81.
go back to reference Frey B, Rückert M, Weber J et al (2017) Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 8:231CrossRefPubMedPubMedCentral Frey B, Rückert M, Weber J et al (2017) Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 8:231CrossRefPubMedPubMedCentral
82.
go back to reference Hettich M, Lahoti J, Prasad S, Niedermann G (2016) Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation. Cancer Res 76:4673–4683CrossRefPubMed Hettich M, Lahoti J, Prasad S, Niedermann G (2016) Checkpoint Antibodies but not T Cell-Recruiting Diabodies Effectively Synergize with TIL-Inducing γ-Irradiation. Cancer Res 76:4673–4683CrossRefPubMed
83.
go back to reference Belka C, Ottinger H, Kreuzfelder E et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204CrossRefPubMed Belka C, Ottinger H, Kreuzfelder E et al (1999) Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother Oncol 50:199–204CrossRefPubMed
84.
go back to reference Heylmann D, Rodel F, Kindler T et al (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846:121–129PubMed Heylmann D, Rodel F, Kindler T et al (2014) Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochim Biophys Acta 1846:121–129PubMed
85.
go back to reference Sage EK, Schmid TE, Geinitz H et al (2017) Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther Onkol 193:648–655CrossRefPubMed Sage EK, Schmid TE, Geinitz H et al (2017) Effects of definitive and salvage radiotherapy on the distribution of lymphocyte subpopulations in prostate cancer patients. Strahlenther Onkol 193:648–655CrossRefPubMed
86.
go back to reference van Meir H, Nout RA, Welters MJ et al (2017) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6:e1267095CrossRefPubMed van Meir H, Nout RA, Welters MJ et al (2017) Impact of (chemo)radiotherapy on immune cell composition and function in cervical cancer patients. Oncoimmunology 6:e1267095CrossRefPubMed
87.
go back to reference Frey B, Ruckert M, Deloch L et al (2017) Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 280:231–248CrossRefPubMed Frey B, Ruckert M, Deloch L et al (2017) Immunomodulation by ionizing radiation-impact for design of radio-immunotherapies and for treatment of inflammatory diseases. Immunol Rev 280:231–248CrossRefPubMed
88.
go back to reference Ruhle PF, Goerig N, Wunderlich R et al (2017) Modulations in the peripheral immune system of glioblastoma patient is connected to therapy and tumor progression-A case report from the IMMO-GLIO-01 trial. Front Neurol 8:296CrossRefPubMedPubMedCentral Ruhle PF, Goerig N, Wunderlich R et al (2017) Modulations in the peripheral immune system of glioblastoma patient is connected to therapy and tumor progression-A case report from the IMMO-GLIO-01 trial. Front Neurol 8:296CrossRefPubMedPubMedCentral
90.
go back to reference Karakhanova S, Ryschich E, Mosl B et al (2015) Prognostic and predictive value of immunological parameters for chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br J Cancer 112:1027–1036CrossRefPubMedPubMedCentral Karakhanova S, Ryschich E, Mosl B et al (2015) Prognostic and predictive value of immunological parameters for chemoradioimmunotherapy in patients with pancreatic adenocarcinoma. Br J Cancer 112:1027–1036CrossRefPubMedPubMedCentral
Metadata
Title
Immune modulatory effects of radiotherapy as basis for well-reasoned radioimmunotherapies
Authors
Michael Rückert
Lisa Deloch
Rainer Fietkau
Benjamin Frey
Markus Hecht
Prof. Udo S. Gaipl
Publication date
01-06-2018
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 6/2018
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-018-1287-1

Other articles of this Issue 6/2018

Strahlentherapie und Onkologie 6/2018 Go to the issue