Skip to main content
Top
Published in: European Radiology 7/2017

01-07-2017 | Nuclear Medicine

Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans

Authors: Philipp Lohmann, Gabriele Stoffels, Garry Ceccon, Marion Rapp, Michael Sabel, Christian P. Filss, Marcel A. Kamp, Carina Stegmayr, Bernd Neumaier, Nadim J. Shah, Karl-Josef Langen, Norbert Galldiks

Published in: European Radiology | Issue 7/2017

Login to get access

Abstract

Objectives

We investigated the potential of textural feature analysis of O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET to differentiate radiation injury from brain metastasis recurrence.

Methods

Forty-seven patients with contrast-enhancing brain lesions (n = 54) on MRI after radiotherapy of brain metastases underwent dynamic 18F-FET PET. Tumour-to-brain ratios (TBRs) of 18F-FET uptake and 62 textural parameters were determined on summed images 20-40 min post-injection. Tracer uptake kinetics, i.e., time-to-peak (TTP) and patterns of time-activity curves (TAC) were evaluated on dynamic PET data from 0-50 min post-injection. Diagnostic accuracy of investigated parameters and combinations thereof to discriminate between brain metastasis recurrence and radiation injury was compared.

Results

Diagnostic accuracy increased from 81 % for TBRmean alone to 85 % when combined with the textural parameter Coarseness or Short-zone emphasis. The accuracy of TBRmax alone was 83 % and increased to 85 % after combination with the textural parameters Coarseness, Short-zone emphasis, or Correlation. Analysis of TACs resulted in an accuracy of 70 % for kinetic pattern alone and increased to 83 % when combined with TBRmax.

Conclusions

Textural feature analysis in combination with TBRs may have the potential to increase diagnostic accuracy for discrimination between brain metastasis recurrence and radiation injury, without the need for dynamic 18F-FET PET scans.

Key points

Textural feature analysis provides quantitative information about tumour heterogeneity
Textural features help improve discrimination between brain metastasis recurrence and radiation injury
Textural features might be helpful to further understand tumour heterogeneity
Analysis does not require a more time consuming dynamic PET acquisition
Literature
1.
go back to reference Platta CS, Khuntia D, Mehta MP, Suh JH (2010) Current Treatment Strategies for Brain Metastasis and Complications From Therapeutic Techniques. Am J Clin Oncol 33:398–407CrossRefPubMed Platta CS, Khuntia D, Mehta MP, Suh JH (2010) Current Treatment Strategies for Brain Metastasis and Complications From Therapeutic Techniques. Am J Clin Oncol 33:398–407CrossRefPubMed
2.
go back to reference Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672CrossRefPubMed Andrews DW, Scott CB, Sperduto PW et al (2004) Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet 363:1665–1672CrossRefPubMed
3.
go back to reference Kondziolka D, Patel A, Lunsford LD et al (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434CrossRefPubMed Kondziolka D, Patel A, Lunsford LD et al (1999) Stereotactic radiosurgery plus whole brain radiotherapy versus radiotherapy alone for patients with multiple brain metastases. Int J Radiat Oncol Biol Phys 45:427–434CrossRefPubMed
4.
go back to reference Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141CrossRefPubMed Kocher M, Soffietti R, Abacioglu U et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: Results of the EORTC 22952-26001 study. J Clin Oncol 29:134–141CrossRefPubMed
5.
go back to reference Lippitz B, Lindquist C, Paddick I et al (2014) Stereotactic radiosurgery in the treatment of brain metastases: The current evidence. Cancer Treat Rev 40:48–59CrossRefPubMed Lippitz B, Lindquist C, Paddick I et al (2014) Stereotactic radiosurgery in the treatment of brain metastases: The current evidence. Cancer Treat Rev 40:48–59CrossRefPubMed
7.
go back to reference Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: A review. Front Oncol 2:1–18CrossRef Greene-Schloesser D, Robbins ME, Peiffer AM et al (2012) Radiation-induced brain injury: A review. Front Oncol 2:1–18CrossRef
8.
go back to reference Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48CrossRefPubMedPubMedCentral Minniti G, Clarke E, Lanzetta G et al (2011) Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol 6:48CrossRefPubMedPubMedCentral
9.
go back to reference Wang Y-XJ, King AD, Zhou H et al (2010) Evolution of radiation-induced brain injury: MR imaging-based study. Radiology 254:210–218CrossRefPubMed Wang Y-XJ, King AD, Zhou H et al (2010) Evolution of radiation-induced brain injury: MR imaging-based study. Radiology 254:210–218CrossRefPubMed
10.
go back to reference Patel TR, McHugh BJ, Bi WL et al (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am J Neuroradiol 32:1885–1892CrossRefPubMed Patel TR, McHugh BJ, Bi WL et al (2011) A comprehensive review of MR imaging changes following radiosurgery to 500 brain metastases. Am J Neuroradiol 32:1885–1892CrossRefPubMed
11.
go back to reference Kunz M, Thon N, Eigenbrod S et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13:307–316CrossRefPubMedPubMedCentral Kunz M, Thon N, Eigenbrod S et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro Oncol 13:307–316CrossRefPubMedPubMedCentral
12.
go back to reference Boström J, Hadizadeh DR, Block W et al (2013) Magnetic resonance spectroscopic study of radiogenic changes after radiosurgery of cerebral arteriovenous malformations with implications for the differential diagnosis of radionecrosis. Radiat Oncol 8:54CrossRefPubMedPubMedCentral Boström J, Hadizadeh DR, Block W et al (2013) Magnetic resonance spectroscopic study of radiogenic changes after radiosurgery of cerebral arteriovenous malformations with implications for the differential diagnosis of radionecrosis. Radiat Oncol 8:54CrossRefPubMedPubMedCentral
13.
go back to reference Bélohlávek O, Šimonová G, Kantorová I et al (2003) Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: Can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging 30:96–100CrossRefPubMed Bélohlávek O, Šimonová G, Kantorová I et al (2003) Brain metastases after stereotactic radiosurgery using the Leksell gamma knife: Can FDG PET help to differentiate radionecrosis from tumour progression? Eur J Nucl Med Mol Imaging 30:96–100CrossRefPubMed
14.
go back to reference Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197CrossRefPubMed Chao ST, Suh JH, Raja S et al (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197CrossRefPubMed
15.
go back to reference Galldiks N, Langen K-J, Pope WB (2015) From the clinician’s point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 17:1434–1444CrossRefPubMedPubMedCentral Galldiks N, Langen K-J, Pope WB (2015) From the clinician’s point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro Oncol 17:1434–1444CrossRefPubMedPubMedCentral
16.
go back to reference Rottenburger C, Hentschel M, Kelly T et al (2011) Comparison of C-11 Methionine and C-11 Choline for PET Imaging of Brain Metastases. Clin Nucl Med 36:639–642CrossRefPubMed Rottenburger C, Hentschel M, Kelly T et al (2011) Comparison of C-11 Methionine and C-11 Choline for PET Imaging of Brain Metastases. Clin Nucl Med 36:639–642CrossRefPubMed
17.
go back to reference Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699CrossRefPubMed Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699CrossRefPubMed
18.
go back to reference Galldiks N, Stoffels G, Filss CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53:1367–1374CrossRefPubMed Galldiks N, Stoffels G, Filss CP et al (2012) Role of O-(2-(18)F-fluoroethyl)-L-tyrosine PET for differentiation of local recurrent brain metastasis from radiation necrosis. J Nucl Med 53:1367–1374CrossRefPubMed
19.
go back to reference Lizarraga KJ, Allen-Auerbach M, Czernin J et al (2014) 18F-FDOPA PET for Differentiating Recurrent or Progressive Brain Metastatic Tumors from Late or Delayed Radiation Injury After Radiation Treatment. J Nucl Med 55:30–36CrossRefPubMed Lizarraga KJ, Allen-Auerbach M, Czernin J et al (2014) 18F-FDOPA PET for Differentiating Recurrent or Progressive Brain Metastatic Tumors from Late or Delayed Radiation Injury After Radiation Treatment. J Nucl Med 55:30–36CrossRefPubMed
20.
go back to reference Alkonyi B, Barger GR, Mittal S et al (2012) Accurate Differentiation of Recurrent Gliomas from Radiation Injury by Kinetic Analysis of -11C-Methyl-L-Tryptophan PET. J Nucl Med 53:1058–1064CrossRefPubMedPubMedCentral Alkonyi B, Barger GR, Mittal S et al (2012) Accurate Differentiation of Recurrent Gliomas from Radiation Injury by Kinetic Analysis of -11C-Methyl-L-Tryptophan PET. J Nucl Med 53:1058–1064CrossRefPubMedPubMedCentral
21.
go back to reference Albert NL, Weller M, Suchorska B et al (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. doi:10.1093/neuonc/now058 Albert NL, Weller M, Suchorska B et al (2016) Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro Oncol. doi:10.​1093/​neuonc/​now058
22.
go back to reference Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for Glioma Grading. Clin Nucl Med 36:841–847CrossRefPubMed Calcagni ML, Galli G, Giordano A et al (2011) Dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (F-18 FET) PET for Glioma Grading. Clin Nucl Med 36:841–847CrossRefPubMed
23.
go back to reference Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefPubMed Pöpperl G, Kreth FW, Mehrkens JH et al (2007) FET PET for the evaluation of untreated gliomas: correlation of FET uptake and uptake kinetics with tumour grading. Eur J Nucl Med Mol Imaging 34:1933–1942CrossRefPubMed
24.
go back to reference Lohmann P, Herzog H, Rota Kops E et al (2015) Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol 25:3017–3024CrossRefPubMed Lohmann P, Herzog H, Rota Kops E et al (2015) Dual-time-point O-(2-[18F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol 25:3017–3024CrossRefPubMed
25.
go back to reference Jansen NL, Graute V, Armbruster L et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39:1021–1029CrossRefPubMed Jansen NL, Graute V, Armbruster L et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39:1021–1029CrossRefPubMed
26.
go back to reference Jansen NL, Suchorska B, Wenter V et al (2014) Dynamic 18F-FET PET in Newly Diagnosed Astrocytic Low-Grade Glioma Identifies High-Risk Patients. J Nucl Med 55:198–203CrossRefPubMed Jansen NL, Suchorska B, Wenter V et al (2014) Dynamic 18F-FET PET in Newly Diagnosed Astrocytic Low-Grade Glioma Identifies High-Risk Patients. J Nucl Med 55:198–203CrossRefPubMed
27.
go back to reference Jansen NL, Suchorska B, Wenter V et al (2015) Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med 56:9–15CrossRefPubMed Jansen NL, Suchorska B, Wenter V et al (2015) Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med 56:9–15CrossRefPubMed
28.
go back to reference Ceccon G, Lohmann P, Stoffels G et al (2016) Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. doi:10.1093/neuonc/now149 Ceccon G, Lohmann P, Stoffels G et al (2016) Dynamic O-(2-18F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy. Neuro Oncol. doi:10.​1093/​neuonc/​now149
29.
go back to reference Galldiks N, Dunkl V, Stoffels G et al (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695CrossRefPubMed Galldiks N, Dunkl V, Stoffels G et al (2015) Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-l-tyrosine PET. Eur J Nucl Med Mol Imaging 42:685–695CrossRefPubMed
30.
go back to reference Galldiks N, Stoffels G, Filss C et al (2015) The use of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 17:1293–1300CrossRefPubMedPubMedCentral Galldiks N, Stoffels G, Filss C et al (2015) The use of dynamic O-(2-18F-fluoroethyl)-L-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol 17:1293–1300CrossRefPubMedPubMedCentral
31.
go back to reference Moulin-Romsée G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087CrossRefPubMed Moulin-Romsée G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087CrossRefPubMed
32.
go back to reference Kratochwil C, Combs SE, Leotta K et al (2014) Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 16:434–440CrossRefPubMed Kratochwil C, Combs SE, Leotta K et al (2014) Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 16:434–440CrossRefPubMed
33.
go back to reference Marusyk A, Polyak K (2011) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:1–28 Marusyk A, Polyak K (2011) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805:1–28
35.
go back to reference Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral Tixier F, Le Rest CC, Hatt M et al (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378CrossRefPubMedPubMedCentral
36.
go back to reference Pyka T, Gempt J, Hiob D et al (2016) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 43:133–141CrossRefPubMed Pyka T, Gempt J, Hiob D et al (2016) Textural analysis of pre-therapeutic [18F]-FET-PET and its correlation with tumor grade and patient survival in high-grade gliomas. Eur J Nucl Med Mol Imaging 43:133–141CrossRefPubMed
37.
go back to reference Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069CrossRefPubMed Castellano G, Bonilha L, Li LM, Cendes F (2004) Texture analysis of medical images. Clin Radiol 59:1061–1069CrossRefPubMed
38.
go back to reference Chowdhury R, Ganeshan B, Irshad S et al (2014) The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 87:1–15CrossRef Chowdhury R, Ganeshan B, Irshad S et al (2014) The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 87:1–15CrossRef
39.
go back to reference Murrell DH, Hamilton AM, Mallett CL et al (2015) Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy. Transl Oncol 8:176–184CrossRefPubMedPubMedCentral Murrell DH, Hamilton AM, Mallett CL et al (2015) Understanding Heterogeneity and Permeability of Brain Metastases in Murine Models of HER2-Positive Breast Cancer Through Magnetic Resonance Imaging: Implications for Detection and Therapy. Transl Oncol 8:176–184CrossRefPubMedPubMedCentral
40.
go back to reference Lin NU, Lee EQ, Aoyama H et al (2015) Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol 16:270–278CrossRef Lin NU, Lee EQ, Aoyama H et al (2015) Response assessment criteria for brain metastases: Proposal from the RANO group. Lancet Oncol 16:270–278CrossRef
41.
go back to reference Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefPubMed Hamacher K, Coenen HH (2002) Efficient routine production of the 18F-labelled amino acid O-2-18F fluoroethyl-L-tyrosine. Appl Radiat Isot 57:853–856CrossRefPubMed
42.
go back to reference Langen K-J, Bartenstein P, Boecker H et al (2011) German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 50:167–173CrossRefPubMed Langen K-J, Bartenstein P, Boecker H et al (2011) German guidelines for brain tumour imaging by PET and SPECT using labelled amino acids. Nuklearmedizin 50:167–173CrossRefPubMed
43.
go back to reference Herzog H, Tellmann L, Hocke C et al (2004) NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans Nucl Sci 51:2662–2669CrossRef Herzog H, Tellmann L, Hocke C et al (2004) NEMA NU2-2001 guided performance evaluation of four Siemens ECAT PET scanners. IEEE Trans Nucl Sci 51:2662–2669CrossRef
44.
go back to reference Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefPubMed Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128:678–687CrossRefPubMed
45.
go back to reference Fang Y-HD, Lin C-Y, Shih M-J et al (2014) Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. Biomed Res Int 2014:248505PubMedPubMedCentral Fang Y-HD, Lin C-Y, Shih M-J et al (2014) Development and evaluation of an open-source software package “CGITA” for quantifying tumor heterogeneity with molecular images. Biomed Res Int 2014:248505PubMedPubMedCentral
46.
go back to reference Haralick RM, Shanmugam K, Dinstein I (1973) Textural Features for Image Classification. IEEE Trans Syst Man Cybern 3:610–621 Haralick RM, Shanmugam K, Dinstein I (1973) Textural Features for Image Classification. IEEE Trans Syst Man Cybern 3:610–621
47.
go back to reference Loh H-H, Leu J-G, Luo RC (1988) The analysis of natural textures using run length features. IEEE Trans Ind Electron 35:323–328CrossRef Loh H-H, Leu J-G, Luo RC (1988) The analysis of natural textures using run length features. IEEE Trans Ind Electron 35:323–328CrossRef
48.
go back to reference Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–1274CrossRef Amadasun M, King R (1989) Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern 19:1264–1274CrossRef
49.
go back to reference Thibault G, Fertil B, Navarro C, et al (2009) Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification. Pattern Recognit Inf Process 140–145. Thibault G, Fertil B, Navarro C, et al (2009) Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification. Pattern Recognit Inf Process 140–145.
50.
go back to reference He D-C, Wang L (1991) Texture features based on texture spectrum. Pattern Recognit 24:391–399CrossRef He D-C, Wang L (1991) Texture features based on texture spectrum. Pattern Recognit 24:391–399CrossRef
51.
go back to reference Horng MH, Sun YN, Lin XZ (2002) Texture feature coding method for classification of liver sonography. Comput Med Imaging Graph 26:33–42CrossRefPubMed Horng MH, Sun YN, Lin XZ (2002) Texture feature coding method for classification of liver sonography. Comput Med Imaging Graph 26:33–42CrossRefPubMed
52.
go back to reference Sun C, Wee WG (1983) Neighboring gray level dependence matrix for texture classification. Comput Vision, Graph Image Process 23:341–352CrossRef Sun C, Wee WG (1983) Neighboring gray level dependence matrix for texture classification. Comput Vision, Graph Image Process 23:341–352CrossRef
53.
go back to reference Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefPubMed Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36CrossRefPubMed
54.
go back to reference Geertzen J (2012) Inter-Rater Agreement with multiple raters and variables. https:/nlp-ml.io/jg/software/ira/. Accessed 27 Apr 2016 Geertzen J (2012) Inter-Rater Agreement with multiple raters and variables. https:/nlp-ml.io/jg/software/ira/. Accessed 27 Apr 2016
55.
go back to reference Lowry R (1998) VassarStats: Website for Statistical Computation. http://vassarstats.net/roc_comp.html. Accessed 29 Sep 2016 Lowry R (1998) VassarStats: Website for Statistical Computation. http://​vassarstats.​net/​roc_​comp.​html.​ Accessed 29 Sep 2016
56.
go back to reference Cook GJR, Yip C, Siddique M et al (2012) Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J Nucl Med 54:19–26CrossRefPubMed Cook GJR, Yip C, Siddique M et al (2012) Are Pretreatment 18F-FDG PET Tumor Textural Features in Non-Small Cell Lung Cancer Associated with Response and Survival After Chemoradiotherapy? J Nucl Med 54:19–26CrossRefPubMed
57.
go back to reference Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727CrossRefPubMedPubMedCentral Yang F, Thomas MA, Dehdashti F, Grigsby PW (2013) Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer. Eur J Nucl Med Mol Imaging 40:716–727CrossRefPubMedPubMedCentral
58.
go back to reference Huang B, Chan T, Kwong DLW et al (2012) Nasopharyngeal carcinoma: Investigation of intratumoral heterogeneity with FDG PET/CT. Am J Roentgenol 199:169–174CrossRef Huang B, Chan T, Kwong DLW et al (2012) Nasopharyngeal carcinoma: Investigation of intratumoral heterogeneity with FDG PET/CT. Am J Roentgenol 199:169–174CrossRef
59.
go back to reference Salamon J, Derlin T, Bannas P et al (2013) Evaluation of intratumoural heterogeneity on 18F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40:685–692CrossRefPubMed Salamon J, Derlin T, Bannas P et al (2013) Evaluation of intratumoural heterogeneity on 18F-FDG PET/CT for characterization of peripheral nerve sheath tumours in neurofibromatosis type 1. Eur J Nucl Med Mol Imaging 40:685–692CrossRefPubMed
60.
go back to reference Galldiks N, Stoffels G, Ruge MI et al (2013) Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54:2046–2054CrossRefPubMed Galldiks N, Stoffels G, Ruge MI et al (2013) Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54:2046–2054CrossRefPubMed
61.
go back to reference Bailly C, Bodet-Milin C, Couespel S et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11:1–16 Bailly C, Bodet-Milin C, Couespel S et al (2016) Revisiting the robustness of PET-based textural features in the context of multi-centric trials. PLoS One 11:1–16
62.
go back to reference Piroth MD, Liebenstund S, Galldiks N et al (2013) Monitoring of radiochemotherapy in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography: Is dynamic imaging helpful? Mol Imaging 12:1–8 Piroth MD, Liebenstund S, Galldiks N et al (2013) Monitoring of radiochemotherapy in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography: Is dynamic imaging helpful? Mol Imaging 12:1–8
Metadata
Title
Radiation injury vs. recurrent brain metastasis: combining textural feature radiomics analysis and standard parameters may increase 18F-FET PET accuracy without dynamic scans
Authors
Philipp Lohmann
Gabriele Stoffels
Garry Ceccon
Marion Rapp
Michael Sabel
Christian P. Filss
Marcel A. Kamp
Carina Stegmayr
Bernd Neumaier
Nadim J. Shah
Karl-Josef Langen
Norbert Galldiks
Publication date
01-07-2017
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 7/2017
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-016-4638-2

Other articles of this Issue 7/2017

European Radiology 7/2017 Go to the issue