Skip to main content
Top
Published in: Strahlentherapie und Onkologie 5/2017

Open Access 01-05-2017 | Review Article

Quality assurance guidelines for superficial hyperthermia clinical trials

II. Technical requirements for heating devices

Authors: Hana Dobšíček Trefná, Johannes Crezee, Manfred Schmidt, Dietmar Marder, Ulf Lamprecht, Michael Ehmann, Jacek Nadobny, Josefin Hartmann, Nicolleta Lomax, Sultan Abdel-Rahman, Sergio Curto, Akke Bakker, Mark D. Hurwitz, Chris J. Diederich, Paul R. Stauffer, Gerard C. Van Rhoon

Published in: Strahlentherapie und Onkologie | Issue 5/2017

Login to get access

Abstract

Quality assurance (QA) guidelines are essential to provide uniform execution of clinical trials with uniform quality hyperthermia treatments. This document outlines the requirements for appropriate QA of all current superficial heating equipment including electromagnetic (radiative and capacitive), ultrasound, and infrared heating techniques. Detailed instructions are provided how to characterize and document the performance of these hyperthermia applicators in order to apply reproducible hyperthermia treatments of uniform high quality. Earlier documents used specific absorption rate (SAR) to define and characterize applicator performance. In these QA guidelines, temperature rise is the leading parameter for characterization of applicator performance. The intention of this approach is that characterization can be achieved with affordable equipment and easy-to-implement procedures. These characteristics are essential to establish for each individual applicator the specific maximum size and depth of tumors that can be heated adequately. The guidelines in this document are supplemented with a second set of guidelines focusing on the clinical application. Both sets of guidelines were developed by the European Society for Hyperthermic Oncology (ESHO) Technical Committee with participation of senior Society of Thermal Medicine (STM) members and members of the Atzelsberg Circle.
Appendix
Available only for authorised users
Footnotes
1
This range includes room temperature as required for QA, in addition to the 30–45 °C range typical for clinical treatments.
 
2
The efficiency of the superficial hyperthermia system is obtained by calculating the ratio of the EM power absorbed in the phantom to the net power input to the applicator (forward minus reflected power measured at the output of the amplifier minus cable losses between amplifier and applicator). The EM power absorbed in the phantom is measured using the calorimetric method: a well-insulated and well-stirred liquid muscle-tissue equivalent phantom is heated by the applicator for 10 min with a high EM-power input. The homogeneous temperature increase of the liquid muscle-tissue equivalent phantom is measured and total absorbed energy calculated from Pa = ρ∗cp∗V∗dT/dt [J/s], in which Pa is absorbed power, ρ is the density, and cp is the specific heat capacity of the liquid muscle-tissue equivalent phantom material, V is the volume, dT the temperature increase, dt is the duration of heating.
 
3
TX 150 & TX 151 (Oil Center Research International, L.L.C., Lafayette, LA 70503).
* In original work [70], highly toxic NaN3 was used as preservative. Other, less toxic preservatives were given with the mass equivalent quantities of NaCl, to compensate the conductivity decrease. Here the recipe is adopted for use with formaldehyde 8%. The phantom can be, however, prepared even without this preservative. In such a case, an equivalent amount of water should be used.
 
Literature
4.
go back to reference Bruggmoser G (2012) Some aspects of quality management in deep regional hyperthermia. Int J Hyperthermia 28(6):562–569CrossRefPubMed Bruggmoser G (2012) Some aspects of quality management in deep regional hyperthermia. Int J Hyperthermia 28(6):562–569CrossRefPubMed
5.
go back to reference Bruggmoser G, Atzelsberg Research Group, European Society for Hyperthermic Oncology, - (2012) Guideline for the clinical application documentation and analysis of clinical studies for regional deep hyperthermia: quality management in regional deep hyperthermia. Strahlenther Onkol 188(Suppl 2):198–211CrossRefPubMed Bruggmoser G, Atzelsberg Research Group, European Society for Hyperthermic Oncology, - (2012) Guideline for the clinical application documentation and analysis of clinical studies for regional deep hyperthermia: quality management in regional deep hyperthermia. Strahlenther Onkol 188(Suppl 2):198–211CrossRefPubMed
6.
go back to reference Perez CA et al (1989) Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a report by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 16:551–558CrossRefPubMed Perez CA et al (1989) Quality assurance problems in clinical hyperthermia and their impact on therapeutic outcome: a report by the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 16:551–558CrossRefPubMed
7.
go back to reference Hand JW et al (1989) Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5:421–428CrossRefPubMed Hand JW et al (1989) Quality assurance guidelines for ESHO protocols. Int J Hyperthermia 5:421–428CrossRefPubMed
8.
go back to reference Dewhirst MW et al (1990) RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18:1249–1259CrossRefPubMed Dewhirst MW et al (1990) RTOG quality assurance guidelines for clinical trials using hyperthermia. Int J Radiat Oncol Biol Phys 18:1249–1259CrossRefPubMed
10.
go back to reference Chou CK (1990) Use of heating rate and specific absorption rate in the hyperthermia clinic. Int J Hyperthermia 6:367–370CrossRefPubMed Chou CK (1990) Use of heating rate and specific absorption rate in the hyperthermia clinic. Int J Hyperthermia 6:367–370CrossRefPubMed
11.
go back to reference Stauffer PR (2005) Evolving technology for thermal therapy of cancer. Int J Hyperthermia 21:731–744CrossRefPubMed Stauffer PR (2005) Evolving technology for thermal therapy of cancer. Int J Hyperthermia 21:731–744CrossRefPubMed
12.
go back to reference Lee ER (1995) Electromagnetic superficial heating technology. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and Thermochemotherapy. Springer, Berlin Heidelberg, pp 193–217CrossRef Lee ER (1995) Electromagnetic superficial heating technology. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Thermoradiotherapy and Thermochemotherapy. Springer, Berlin Heidelberg, pp 193–217CrossRef
13.
go back to reference Van Rhoon GC (2013) External electromagnetic methods and devices. In: Moros EG (ed) Physics of thermal therapy – Fundamentals and clinical applications. CRC Press Taylor & Francis Group, Boca Raton, pp 139–158 Van Rhoon GC (2013) External electromagnetic methods and devices. In: Moros EG (ed) Physics of thermal therapy – Fundamentals and clinical applications. CRC Press Taylor & Francis Group, Boca Raton, pp 139–158
14.
go back to reference Chen L (2013) Clinical external ultrasonic treatment devices. In: Moros E (ed) Physics of thermal therapy : fundamentals and clinical applications. CRC Press Taylor & Francis Group, Boca Raton, pp 177–188 Chen L (2013) Clinical external ultrasonic treatment devices. In: Moros E (ed) Physics of thermal therapy : fundamentals and clinical applications. CRC Press Taylor & Francis Group, Boca Raton, pp 177–188
16.
go back to reference Lee ER (1995) Electromagnetic superficial heating technology. Principles and practice of thermoradiotherapy and thermochemotherapy. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Biology, physiology, physics, vol 1. Springer Verlag, Berlin, Heidelberg, New York, pp 193–217 Lee ER (1995) Electromagnetic superficial heating technology. Principles and practice of thermoradiotherapy and thermochemotherapy. In: Seegenschmiedt MH, Fessenden P, Vernon CC (eds) Biology, physiology, physics, vol 1. Springer Verlag, Berlin, Heidelberg, New York, pp 193–217
17.
go back to reference Rietveld PJM et al (1998) Effectiveness of the Gaussian beam model in predicting SAR distributions from the lucite cone applicator. Int J Hyperthermia 14:293–308CrossRefPubMed Rietveld PJM et al (1998) Effectiveness of the Gaussian beam model in predicting SAR distributions from the lucite cone applicator. Int J Hyperthermia 14:293–308CrossRefPubMed
18.
go back to reference van Rhoon GC, Rietveld PJ, van der Zee J (1998) A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia. Int J Hyperthermia 14(1):13–27CrossRefPubMed van Rhoon GC, Rietveld PJ, van der Zee J (1998) A 433 MHz Lucite cone waveguide applicator for superficial hyperthermia. Int J Hyperthermia 14(1):13–27CrossRefPubMed
19.
go back to reference Gelvich EA, Mazokhin VN (2002) Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. IEEE Trans Biomed Eng 49(9):1015–1023CrossRefPubMed Gelvich EA, Mazokhin VN (2002) Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. IEEE Trans Biomed Eng 49(9):1015–1023CrossRefPubMed
20.
go back to reference Kok HP et al (2009) FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. Int J Hyperthermia 25(6):462–476CrossRefPubMed Kok HP et al (2009) FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. Int J Hyperthermia 25(6):462–476CrossRefPubMed
21.
go back to reference Kok HP et al (2010) SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. Int J Hyperthermia 26(2):171–184CrossRef Kok HP et al (2010) SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. Int J Hyperthermia 26(2):171–184CrossRef
22.
go back to reference Lamaitre G et al (1996) SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia. Int J Hyperthermia 12(2):255–269CrossRefPubMed Lamaitre G et al (1996) SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia. Int J Hyperthermia 12(2):255–269CrossRefPubMed
23.
go back to reference Curto S, Prakash P (2015) Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system. Int J Hyperthermia 31(7):726–723CrossRefPubMed Curto S, Prakash P (2015) Design of a compact antenna with flared groundplane for a wearable breast hyperthermia system. Int J Hyperthermia 31(7):726–723CrossRefPubMed
24.
go back to reference Chakaravarthi G, Arunachalam K (2015) Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Int J Hyperthermia 31(7):737–748CrossRefPubMed Chakaravarthi G, Arunachalam K (2015) Design and characterisation of miniaturised cavity-backed patch antenna for microwave hyperthermia. Int J Hyperthermia 31(7):737–748CrossRefPubMed
25.
go back to reference Bach Andersen J et al (1984) A hyperthermia system utilizing a new type of inductive applicator. IEEE Trans Biomed Eng 31:21–27CrossRef Bach Andersen J et al (1984) A hyperthermia system utilizing a new type of inductive applicator. IEEE Trans Biomed Eng 31:21–27CrossRef
26.
go back to reference Lee WM et al (2004) Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia. Int J Hyperthermia 20(6):607–624CrossRefPubMed Lee WM et al (2004) Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia. Int J Hyperthermia 20(6):607–624CrossRefPubMed
27.
go back to reference Johnson JE et al (2006) Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia. Int J Hyperthermia 22(6):475–490CrossRefPubMed Johnson JE et al (2006) Evaluation of a dual-arm Archimedean spiral array for microwave hyperthermia. Int J Hyperthermia 22(6):475–490CrossRefPubMed
28.
go back to reference Lee ER et al (1992) Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39(5):470–483CrossRefPubMed Lee ER et al (1992) Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia. IEEE Trans Biomed Eng 39(5):470–483CrossRefPubMed
29.
go back to reference Samulski TV et al (1990) Spiral microstrip hyperthermia applicators: technical design and clinical performance. Int J Radiat Oncol Biol Phys 18(1):233–242CrossRefPubMed Samulski TV et al (1990) Spiral microstrip hyperthermia applicators: technical design and clinical performance. Int J Radiat Oncol Biol Phys 18(1):233–242CrossRefPubMed
30.
go back to reference Rossetto F, Diederich CJ, Stauffer PR (2000) Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Med Phys 27(4):745–753CrossRefPubMed Rossetto F, Diederich CJ, Stauffer PR (2000) Thermal and SAR characterization of multielement dual concentric conductor microwave applicators for hyperthermia, a theoretical investigation. Med Phys 27(4):745–753CrossRefPubMed
31.
go back to reference Rossetto F, Stauffer PR (2001) Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz. Int J Hyperthermia 17(3):258–270CrossRefPubMed Rossetto F, Stauffer PR (2001) Theoretical characterization of dual concentric conductor microwave applicators for hyperthermia at 433 MHz. Int J Hyperthermia 17(3):258–270CrossRefPubMed
32.
go back to reference Stauffer PR et al (1998) Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia. IEEE Trans Biomed Eng 45(5):605–613CrossRefPubMed Stauffer PR et al (1998) Radiation patterns of dual concentric conductor microstrip antennas for superficial hyperthermia. IEEE Trans Biomed Eng 45(5):605–613CrossRefPubMed
33.
34.
go back to reference Gopal MK (1992) Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8(2):227–240CrossRefPubMed Gopal MK (1992) Current sheet applicator arrays for superficial hyperthermia of chestwall lesions. Int J Hyperthermia 8(2):227–240CrossRefPubMed
35.
go back to reference Diederich CJ, Stauffer PR (1993) Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 9(2):227–246CrossRefPubMed Diederich CJ, Stauffer PR (1993) Pre-clinical evaluation of a microwave planar array applicator for superficial hyperthermia. Int J Hyperthermia 9(2):227–246CrossRefPubMed
36.
go back to reference Kosterev VV et al (2015) Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31(4):443–452CrossRefPubMed Kosterev VV et al (2015) Development of a novel method to enhance the therapeutic effect on tumours by simultaneous action of radiation and heating. Int J Hyperthermia 31(4):443–452CrossRefPubMed
37.
go back to reference de Bruijne M et al (2006) Effects of water bolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator. Int J Hyperthermia 22:15–28CrossRefPubMed de Bruijne M et al (2006) Effects of water bolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator. Int J Hyperthermia 22:15–28CrossRefPubMed
38.
go back to reference Arunachalam K (2009) Design of a water coupling bolus with improved flow distribution for multi-element superficial hyperthermia applicators. Int J Hyperthermia 25(7):554–565CrossRefPubMedPubMedCentral Arunachalam K (2009) Design of a water coupling bolus with improved flow distribution for multi-element superficial hyperthermia applicators. Int J Hyperthermia 25(7):554–565CrossRefPubMedPubMedCentral
39.
go back to reference Birkelund Y (2009) Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia. Phys Med Biol 54(13):3937–3953CrossRefPubMedPubMedCentral Birkelund Y (2009) Flow patterns and heat convection in a rectangular water bolus for use in superficial hyperthermia. Phys Med Biol 54(13):3937–3953CrossRefPubMedPubMedCentral
40.
go back to reference Juang T et al (2006) Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease. Int J Hyperthermia 22:527–544CrossRefPubMed Juang T et al (2006) Multilayer conformal applicator for microwave heating and brachytherapy treatment of superficial tissue disease. Int J Hyperthermia 22:527–544CrossRefPubMed
41.
go back to reference Van der Gaag ML et al (2006) Development of a guideline for the water bolus temperature in superficial hyperthermia. Int J Hyperthermia 22(8):637–656CrossRefPubMed Van der Gaag ML et al (2006) Development of a guideline for the water bolus temperature in superficial hyperthermia. Int J Hyperthermia 22(8):637–656CrossRefPubMed
42.
go back to reference Kato H, Hiraoka M, Nakajima T, Ishida T (1985) Deep-heating characteristics of an RF capacitive heating device. Int J Hyperthermia 1(1):15–28CrossRefPubMed Kato H, Hiraoka M, Nakajima T, Ishida T (1985) Deep-heating characteristics of an RF capacitive heating device. Int J Hyperthermia 1(1):15–28CrossRefPubMed
43.
go back to reference Brezovich IA et al (1981) A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys 7:423–430CrossRefPubMed Brezovich IA et al (1981) A practical system for clinical radiofrequency hyperthermia. Int J Radiat Oncol Biol Phys 7:423–430CrossRefPubMed
44.
go back to reference Reddy NMS, Shanta V, Krishnamurthi S (1986) On minimization of toxicity to skin during capacitive radiofrequency hyperthermia. Br J Radiol 59:1129–1131CrossRefPubMed Reddy NMS, Shanta V, Krishnamurthi S (1986) On minimization of toxicity to skin during capacitive radiofrequency hyperthermia. Br J Radiol 59:1129–1131CrossRefPubMed
45.
go back to reference Gelvich EA, Mazokhin VN (2000) Resonance effects in applicator water boluses and their influence on SAR distribution patterns. Int J Hyperthermia 16(2):113–128CrossRefPubMed Gelvich EA, Mazokhin VN (2000) Resonance effects in applicator water boluses and their influence on SAR distribution patterns. Int J Hyperthermia 16(2):113–128CrossRefPubMed
46.
go back to reference Neuman DG et al (2002) SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. Int J Hyperthermia 18:180–193CrossRefPubMed Neuman DG et al (2002) SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. Int J Hyperthermia 18:180–193CrossRefPubMed
47.
go back to reference Correia D et al (2009) Body conformal antennas for superficial hyperthermia: The impact of bending contact flexible microstrip applicators on their electromagnetic behavior. IEEE Trans Biomed Eng 56(12):2917–2926CrossRefPubMed Correia D et al (2009) Body conformal antennas for superficial hyperthermia: The impact of bending contact flexible microstrip applicators on their electromagnetic behavior. IEEE Trans Biomed Eng 56(12):2917–2926CrossRefPubMed
48.
go back to reference Rossetto F, Stauffer PR (1999) Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. IEEE Trans Biomed Eng 46:1310–1319CrossRefPubMed Rossetto F, Stauffer PR (1999) Effect of complex bolus-tissue load configurations on SAR distributions from dual concentric conductor applicators. IEEE Trans Biomed Eng 46:1310–1319CrossRefPubMed
49.
go back to reference Arunachalam K et al (2010) Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence. Phys Med Biol 55(7):1949–1969CrossRefPubMedPubMedCentral Arunachalam K et al (2010) Thermal characteristics of thermobrachytherapy surface applicators for treating chest wall recurrence. Phys Med Biol 55(7):1949–1969CrossRefPubMedPubMedCentral
50.
go back to reference Wust P et al (1995) Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 11(2):151–167CrossRefPubMed Wust P et al (1995) Clinical, physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 11(2):151–167CrossRefPubMed
51.
go back to reference Guy AW, Lehmann JC, Stonebridge JB (1974) Therapeutic applications of electromagnetic power. Proc IEEE 62:55–75CrossRef Guy AW, Lehmann JC, Stonebridge JB (1974) Therapeutic applications of electromagnetic power. Proc IEEE 62:55–75CrossRef
52.
go back to reference Hand JW, ter Haar G (1981) Heating techniques in hyperthermia. I. Introduction and assessment of techniques. Br J Radiol 54(642):443–446CrossRefPubMed Hand JW, ter Haar G (1981) Heating techniques in hyperthermia. I. Introduction and assessment of techniques. Br J Radiol 54(642):443–446CrossRefPubMed
53.
go back to reference Tanaka A et al (1994) A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors. Acta Med Okayama 48(4):211–216PubMed Tanaka A et al (1994) A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors. Acta Med Okayama 48(4):211–216PubMed
54.
go back to reference Kato H et al (2013) Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants. Int J Hyperthermia 29(3):194–205CrossRefPubMed Kato H et al (2013) Quality assurance: recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants. Int J Hyperthermia 29(3):194–205CrossRefPubMed
55.
go back to reference Kikuchi M et al (1993) Guide to the use of hyperthermic equipment. 1. Capacitively-coupled heating. Int J Hyperthermia 9(2):187–203CrossRefPubMed Kikuchi M et al (1993) Guide to the use of hyperthermic equipment. 1. Capacitively-coupled heating. Int J Hyperthermia 9(2):187–203CrossRefPubMed
56.
go back to reference Kok HP, Crezee J (2016) A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia 6:1–26 Kok HP, Crezee J (2016) A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Int J Hyperthermia 6:1–26
57.
go back to reference Oleson JR, Samulski TV (1989) Improved coupling of ultrasound hyperthermia applicators to patients. Int J Radiat Oncol Biol Phys 16(3):609–612CrossRefPubMed Oleson JR, Samulski TV (1989) Improved coupling of ultrasound hyperthermia applicators to patients. Int J Radiat Oncol Biol Phys 16(3):609–612CrossRefPubMed
58.
go back to reference Diederich CJ, Stauffer PR, Bozzo D (1994) An improved bolus configuration for commercial multielement ultrasound and microwave hyperthermia systems. Med Phys 21(9):1401–1403CrossRefPubMed Diederich CJ, Stauffer PR, Bozzo D (1994) An improved bolus configuration for commercial multielement ultrasound and microwave hyperthermia systems. Med Phys 21(9):1401–1403CrossRefPubMed
59.
go back to reference Samulski TV et al (1990) Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 6:909–922CrossRefPubMed Samulski TV et al (1990) Clinical experience with a multi-element ultrasonic hyperthermia system: analysis of treatment temperatures. Int J Hyperthermia 6:909–922CrossRefPubMed
60.
go back to reference Underwood HR et al (1987) A multi-element ultrasonic hyperthermia applicator with independent element control. Int J Hyperthermia 3:257–267CrossRefPubMed Underwood HR et al (1987) A multi-element ultrasonic hyperthermia applicator with independent element control. Int J Hyperthermia 3:257–267CrossRefPubMed
61.
go back to reference Hynynen K et al (1987) A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. Int J Hyperthermia 3(1):21–35CrossRefPubMed Hynynen K et al (1987) A scanned, focused, multiple transducer ultrasonic system for localized hyperthermia treatments. Int J Hyperthermia 3(1):21–35CrossRefPubMed
62.
go back to reference Lu XQ et al (1996) Design of an ultrasonic therapy system for breast cancer treatment. Int J Hyperthermia 12(3):375–399CrossRefPubMed Lu XQ et al (1996) Design of an ultrasonic therapy system for breast cancer treatment. Int J Hyperthermia 12(3):375–399CrossRefPubMed
63.
go back to reference Lindsley K et al (1993) Heating patterns of the Helios ultrasound hyperthermia system. Int J Hyperthermia 9(5):675–684CrossRefPubMed Lindsley K et al (1993) Heating patterns of the Helios ultrasound hyperthermia system. Int J Hyperthermia 9(5):675–684CrossRefPubMed
64.
go back to reference Novak P et al (2005) SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description. Med Phys 32:230–240CrossRefPubMed Novak P et al (2005) SURLAS: a new clinical grade ultrasound system for sequential or concomitant thermoradiotherapy of superficial tumors: applicator description. Med Phys 32:230–240CrossRefPubMed
65.
go back to reference Penagaricano JA et al (2008) Feasibility of concurrent treatment with the scanning ultrasound reflector linear array system (SURLAS) and the helical tomotherapy system. Int J Hyperthermia 24:377–388CrossRefPubMedPubMedCentral Penagaricano JA et al (2008) Feasibility of concurrent treatment with the scanning ultrasound reflector linear array system (SURLAS) and the helical tomotherapy system. Int J Hyperthermia 24:377–388CrossRefPubMedPubMedCentral
66.
go back to reference Samaras T, Rietveld PJM, van Rhoon GC (2000) Effectiveness of FDTD in Predicting SAR Distributions from the Lucite Cone Applicator. IEEE Trans Microw Theory Tech 48(11):2059–2063CrossRef Samaras T, Rietveld PJM, van Rhoon GC (2000) Effectiveness of FDTD in Predicting SAR Distributions from the Lucite Cone Applicator. IEEE Trans Microw Theory Tech 48(11):2059–2063CrossRef
67.
go back to reference Vaupel P, Kelleher DK, Krüger W (1992) Water-filtered infrared-A radiation: a novel technique to heat superficial tumors. Strahlenther Onkol 168:633–639PubMed Vaupel P, Kelleher DK, Krüger W (1992) Water-filtered infrared-A radiation: a novel technique to heat superficial tumors. Strahlenther Onkol 168:633–639PubMed
68.
go back to reference Vaupel P, Krüger W (1995) Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung, Grundlagen und Anwendungsmöglichkeiten, 2nd edn. Hippokrates, Stuttgart Vaupel P, Krüger W (1995) Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung, Grundlagen und Anwendungsmöglichkeiten, 2nd edn. Hippokrates, Stuttgart
69.
go back to reference Notter M, Piazena H, Vaupel P (2016) Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 28:1–10 Notter M, Piazena H, Vaupel P (2016) Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 28:1–10
70.
go back to reference Seegenschmiedt MH et al (1996) Wassergefilterte Infrarot-A-Hyperthermie, kombiniert mit Radiotherapie bei fortgeschrittenen und rezidivierten tumoren. Strahlenther Onkol 172:475–484PubMed Seegenschmiedt MH et al (1996) Wassergefilterte Infrarot-A-Hyperthermie, kombiniert mit Radiotherapie bei fortgeschrittenen und rezidivierten tumoren. Strahlenther Onkol 172:475–484PubMed
71.
go back to reference Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefPubMed Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269CrossRefPubMed
72.
go back to reference Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64(2):423–457CrossRefPubMed Goss SA, Johnston RL, Dunn F (1978) Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 64(2):423–457CrossRefPubMed
73.
go back to reference Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, London New York San Francisco, pp 73–166CrossRef Duck FA (1990) Physical properties of tissues: a comprehensive reference book. Academic Press, London New York San Francisco, pp 73–166CrossRef
75.
go back to reference Bashkatov AN et al (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543–2555CrossRef Bashkatov AN et al (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38:2543–2555CrossRef
76.
go back to reference Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–61CrossRefPubMed Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–61CrossRefPubMed
77.
go back to reference Nilsson P (1984) Physics and technique of microwave-induced hyperthermia in the treatment of malignant tumours. PhD thesis. University of Lund, Lund Nilsson P (1984) Physics and technique of microwave-induced hyperthermia in the treatment of malignant tumours. PhD thesis. University of Lund, Lund
78.
go back to reference Ito K et al (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Jpn 1(84):1126–1135 Ito K et al (2001) Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron Commun Jpn 1(84):1126–1135
79.
80.
go back to reference Chou CK et al (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5:435–441CrossRefPubMed Chou CK et al (1984) Formulas for preparing phantom muscle tissue at various radiofrequencies. Bioelectromagnetics 5:435–441CrossRefPubMed
82.
go back to reference Lagendijk JJW, Nilson P (1985) Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems. Int J Hyperthermia 30:709–712 Lagendijk JJW, Nilson P (1985) Hyperthermia dough: a fat and bone equivalent phantom to test microwave/radiofrequency hyperthermia heating systems. Int J Hyperthermia 30:709–712
83.
go back to reference King RL et al (2011) Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1397–1405CrossRefPubMed King RL et al (2011) Development and characterization of a tissue-mimicking material for high-intensity focused ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1397–1405CrossRefPubMed
84.
go back to reference Madsen E, Zagzebski J, Frank G (1982) Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol 8(3):277–287CrossRefPubMed Madsen E, Zagzebski J, Frank G (1982) Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials. Ultrasound Med Biol 8(3):277–287CrossRefPubMed
85.
go back to reference Madsen EL et al (2003) Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms. Ultrason Imaging 25:17–38CrossRefPubMed Madsen EL et al (2003) Tissue-mimicking oil-in-gelatin dispersions for use in heterogeneous elastography phantoms. Ultrason Imaging 25:17–38CrossRefPubMed
86.
go back to reference D’Souza WD et al (2001) Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys 28:688CrossRefPubMed D’Souza WD et al (2001) Tissue mimicking materials for a multi-imaging modality prostate phantom. Med Phys 28:688CrossRefPubMed
87.
go back to reference Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt. DOI:10.1117/1.2335429 Pogue BW, Patterson MS (2006) Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J Biomed Opt. DOI:10.​1117/​1.​2335429
88.
go back to reference Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G (1997) A solid tissue phantom for photon migration studies. Phys Med Biol 42(10):1972–1979CrossRef Cubeddu R, Pifferi A, Taroni P, Torricelli A, Valentini G (1997) A solid tissue phantom for photon migration studies. Phys Med Biol 42(10):1972–1979CrossRef
89.
go back to reference Lualdi M et al (2001) A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med 28(3):237–243CrossRefPubMed Lualdi M et al (2001) A phantom with tissue-like optical properties in the visible and near infrared for use in photomedicine. Lasers Surg Med 28(3):237–243CrossRefPubMed
Metadata
Title
Quality assurance guidelines for superficial hyperthermia clinical trials
II. Technical requirements for heating devices
Authors
Hana Dobšíček Trefná
Johannes Crezee
Manfred Schmidt
Dietmar Marder
Ulf Lamprecht
Michael Ehmann
Jacek Nadobny
Josefin Hartmann
Nicolleta Lomax
Sultan Abdel-Rahman
Sergio Curto
Akke Bakker
Mark D. Hurwitz
Chris J. Diederich
Paul R. Stauffer
Gerard C. Van Rhoon
Publication date
01-05-2017
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 5/2017
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-017-1106-0

Other articles of this Issue 5/2017

Strahlentherapie und Onkologie 5/2017 Go to the issue