Skip to main content
Top
Published in: Strahlentherapie und Onkologie 1/2017

01-01-2017 | Original Article

Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails

Does target motion differ between superior and inferior portions of the clinical target volume?

Authors: Vivek Verma, MD, Shifeng Chen, PhD, Sumin Zhou, PhD, Charles A. Enke, MD, Andrew O. Wahl, MD

Published in: Strahlentherapie und Onkologie | Issue 1/2017

Login to get access

Abstract

Purpose

Using high-quality CT-on-rails imaging, the daily motion of the prostate bed clinical target volume (PB-CTV) based on consensus Radiation Therapy Oncology Group (RTOG) definitions (instead of surgical clips/fiducials) was studied. It was assessed whether PB motion in the superior portion of PB-CTV (SUP-CTV) differed from the inferior PB-CTV (INF-CTV).

Patients and methods

Eight pT2-3bN0-1M0 patients underwent postprostatectomy intensity-modulated radiotherapy, totaling 300 fractions. INF-CTV and SUP-CTV were defined as PB-CTV located inferior and superior to the superior border of the pubic symphysis, respectively. Daily pretreatment CT-on-rails images were compared to the planning CT in the left–right (LR), superoinferior (SI), and anteroposterior (AP) directions. Two parameters were defined: “total PB-CTV motion” represented total shifts from skin tattoos to RTOG-defined anatomic areas; “PB-CTV target motion” (performed for both SUP-CTV and INF-CTV) represented shifts from bone to RTOG-defined anatomic areas (i. e., subtracting shifts from skin tattoos to bone).

Results

Mean (± standard deviation, SD) total PB-CTV motion was −1.5 (± 6.0), 1.3 (± 4.5), and 3.7 (± 5.7) mm in LR, SI, and AP directions, respectively. Mean (± SD) PB-CTV target motion was 0.2 (±1.4), 0.3 (±2.4), and 0 (±3.1) mm in the LR, SI, and AP directions, respectively. Mean (± SD) INF-CTV target motion was 0.1 (± 2.8), 0.5 (± 2.2), and 0.2 (± 2.5) mm, and SUP-CTV target motion was 0.3 (± 1.8), 0.5 (± 2.3), and 0 (± 5.0) mm in LR, SI, and AP directions, respectively. No statistically significant differences between INF-CTV and SUP-CTV motion were present in any direction.

Conclusion

There are no statistically apparent motion differences between SUP-CTV and INF-CTV. Current uniform planning target volume (PTV) margins are adequate to cover both portions of the CTV.
Literature
1.
go back to reference Underwood W 3rd, Jackson J, Wei JT et al (2005) Racial treatment trends in localized/regional prostate carcinoma: 1992–1999. Cancer 103:538–545CrossRefPubMed Underwood W 3rd, Jackson J, Wei JT et al (2005) Racial treatment trends in localized/regional prostate carcinoma: 1992–1999. Cancer 103:538–545CrossRefPubMed
2.
go back to reference Parker C, Sydes MR, Catton C et al (2007) Radiotherapy and androgen deprivation in combination after local surgery (RADICALS): a new Medical Research Council/National Cancer Institute of Canada phase III trial of adjuvant treatment after radical prostatectomy. BJU Int 99:1376–1379CrossRefPubMed Parker C, Sydes MR, Catton C et al (2007) Radiotherapy and androgen deprivation in combination after local surgery (RADICALS): a new Medical Research Council/National Cancer Institute of Canada phase III trial of adjuvant treatment after radical prostatectomy. BJU Int 99:1376–1379CrossRefPubMed
3.
go back to reference Thompson IM Jr, Tangen CM, Paradelo J et al (2006) Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296:2329–2335CrossRefPubMed Thompson IM Jr, Tangen CM, Paradelo J et al (2006) Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296:2329–2335CrossRefPubMed
4.
go back to reference Bolla M, van Poppel H, Collette L et al (2005) Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet 366:572–578CrossRefPubMed Bolla M, van Poppel H, Collette L et al (2005) Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet 366:572–578CrossRefPubMed
5.
go back to reference Zelefsky MJ, Aschkenasy E, Kelsen S et al (1997) Tolerance and early outcome results of postprostatectomy three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 39:327–333CrossRefPubMed Zelefsky MJ, Aschkenasy E, Kelsen S et al (1997) Tolerance and early outcome results of postprostatectomy three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 39:327–333CrossRefPubMed
6.
go back to reference Teh BS, Mai WY, Augspurger ME et al (2001) Intensity modulated radiation therapy (IMRT) following prostatectomy: more favorable acute genitourinary toxicity profile compared to primary IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 49:465–472CrossRefPubMed Teh BS, Mai WY, Augspurger ME et al (2001) Intensity modulated radiation therapy (IMRT) following prostatectomy: more favorable acute genitourinary toxicity profile compared to primary IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 49:465–472CrossRefPubMed
7.
go back to reference Wiltshire KL, Brock KK, Haider MA et al (2007) Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int J Radiat Oncol Biol Phys 69:1090–1099CrossRefPubMed Wiltshire KL, Brock KK, Haider MA et al (2007) Anatomic boundaries of the clinical target volume (prostate bed) after radical prostatectomy. Int J Radiat Oncol Biol Phys 69:1090–1099CrossRefPubMed
8.
go back to reference Michalski JM, Lawton C, El Naqa I et al (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76:361–368CrossRefPubMed Michalski JM, Lawton C, El Naqa I et al (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76:361–368CrossRefPubMed
9.
go back to reference Ten Haken RK, Forman JD, Heimburger DK et al (1991) Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. Int J Radiat Oncol Biol Phys 20:1317–1324CrossRefPubMed Ten Haken RK, Forman JD, Heimburger DK et al (1991) Treatment planning issues related to prostate movement in response to differential filling of the rectum and bladder. Int J Radiat Oncol Biol Phys 20:1317–1324CrossRefPubMed
10.
go back to reference van Herk M, Bruce A, Kroes AP et al (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320CrossRefPubMed van Herk M, Bruce A, Kroes AP et al (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320CrossRefPubMed
11.
go back to reference Zelefsky MJ, Happersett L, Leibel SA et al (1997) The effect of treatment positioning on normal tissue dose in patients with prostate cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 37:13–19CrossRefPubMed Zelefsky MJ, Happersett L, Leibel SA et al (1997) The effect of treatment positioning on normal tissue dose in patients with prostate cancer treated with three-dimensional conformal radiotherapy. Int J Radiat Oncol Biol Phys 37:13–19CrossRefPubMed
12.
go back to reference Balter JM, Sandler HM, Lam K et al (1995) Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 31:113–118CrossRefPubMed Balter JM, Sandler HM, Lam K et al (1995) Measurement of prostate movement over the course of routine radiotherapy using implanted markers. Int J Radiat Oncol Biol Phys 31:113–118CrossRefPubMed
13.
go back to reference Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42CrossRefPubMed Crook JM, Raymond Y, Salhani D et al (1995) Prostate motion during standard radiotherapy as assessed by fiducial markers. Radiother Oncol 37:35–42CrossRefPubMed
14.
go back to reference Litzenberg D, Dawson LA, Sandler H et al (2002) Daily prostate targeting using implanted radiopaque markers. Int J Radiat Oncol Biol Phys 52:699–703CrossRefPubMed Litzenberg D, Dawson LA, Sandler H et al (2002) Daily prostate targeting using implanted radiopaque markers. Int J Radiat Oncol Biol Phys 52:699–703CrossRefPubMed
15.
go back to reference Nederveen AJ, van der Heide UA, Dehnad H et al (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214CrossRefPubMed Nederveen AJ, van der Heide UA, Dehnad H et al (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214CrossRefPubMed
16.
go back to reference Garsa AA, Verma V, Michalski JM, Gay HA (2014) Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy. Pract Radiat Oncol 4:415–421CrossRefPubMed Garsa AA, Verma V, Michalski JM, Gay HA (2014) Transperineal ultrasound-guided implantation of electromagnetic transponders in the prostatic fossa for localization and tracking during external beam radiation therapy. Pract Radiat Oncol 4:415–421CrossRefPubMed
17.
go back to reference Schiffner DC, Gottschalk AR, Lometti M et al (2007) Daily electronic portal imaging of implanted gold seed fiducials in patients undergoing radiotherapy after radical prostatectomy. Int J Radiat Oncol Biol Phys 67:610–619CrossRefPubMed Schiffner DC, Gottschalk AR, Lometti M et al (2007) Daily electronic portal imaging of implanted gold seed fiducials in patients undergoing radiotherapy after radical prostatectomy. Int J Radiat Oncol Biol Phys 67:610–619CrossRefPubMed
18.
go back to reference Canter D, Greenberg RE, Horwitz EM et al (2010) Implantation of electromagnetic transponders following radical prostatectomy for delivery of IMRT. Can J Urol 17:5375–5369 Canter D, Greenberg RE, Horwitz EM et al (2010) Implantation of electromagnetic transponders following radical prostatectomy for delivery of IMRT. Can J Urol 17:5375–5369
19.
go back to reference Fortin I, Carrier JF, Beauchemin MC, Beliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471CrossRefPubMed Fortin I, Carrier JF, Beauchemin MC, Beliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471CrossRefPubMed
20.
go back to reference Verma V, Chen L, Michalski JM, et al (2015) Evaluation of 3 T pelvic MRI imaging in prostate cancer patients receiving post-prostatectomy IMRT. World J Urol 33:69–75CrossRefPubMed Verma V, Chen L, Michalski JM, et al (2015) Evaluation of 3 T pelvic MRI imaging in prostate cancer patients receiving post-prostatectomy IMRT. World J Urol 33:69–75CrossRefPubMed
21.
go back to reference Klayton T, Price R, Buyyounouski MK et al (2012) Prostate bed motion during intensity-modulated radiotherapy treatment. Int J Radiat Oncol Biol Phys 84(1):130–136CrossRefPubMedPubMedCentral Klayton T, Price R, Buyyounouski MK et al (2012) Prostate bed motion during intensity-modulated radiotherapy treatment. Int J Radiat Oncol Biol Phys 84(1):130–136CrossRefPubMedPubMedCentral
22.
go back to reference Kupelian PA, Langen KM, Willoughby TR et al (2006) Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 66:593–596CrossRefPubMed Kupelian PA, Langen KM, Willoughby TR et al (2006) Daily variations in the position of the prostate bed in patients with prostate cancer receiving postoperative external beam radiation therapy. Int J Radiat Oncol Biol Phys 66:593–596CrossRefPubMed
23.
go back to reference Kruse JJ, Herman MG, Hagness BJ, Davis TM, Pisansky TM (2001) Daily monitoring of patient setup variation and prostatic fossa tissue motion with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 31:S387CrossRef Kruse JJ, Herman MG, Hagness BJ, Davis TM, Pisansky TM (2001) Daily monitoring of patient setup variation and prostatic fossa tissue motion with an electronic portal imaging device. Int J Radiat Oncol Biol Phys 31:S387CrossRef
24.
go back to reference van Herk M, Bruce A, Kroes AP, Shouman T, Touw A, Lebesque JV (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three-dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320CrossRefPubMed van Herk M, Bruce A, Kroes AP, Shouman T, Touw A, Lebesque JV (1995) Quantification of organ motion during conformal radiotherapy of the prostate by three-dimensional image registration. Int J Radiat Oncol Biol Phys 33:1311–1320CrossRefPubMed
25.
go back to reference Wang KK, Vapiwala N, Deville C (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83(3):1055–1063CrossRefPubMed Wang KK, Vapiwala N, Deville C (2012) A study to quantify the effectiveness of daily endorectal balloon for prostate intrafraction motion management. Int J Radiat Oncol Biol Phys 83(3):1055–1063CrossRefPubMed
26.
go back to reference Huang K, Palma DA, Scott D et al (2012) Inter- and intra-fractional uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys 84(2):402–407CrossRefPubMed Huang K, Palma DA, Scott D et al (2012) Inter- and intra-fractional uncertainty in prostate bed image-guided radiotherapy. Int J Radiat Oncol Biol Phys 84(2):402–407CrossRefPubMed
27.
go back to reference Bell LJ, Cox J, Eade T, Rinks M, Herschtal A, Kneebone A (2015) Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy. Radiat Oncol 10:151CrossRefPubMedPubMedCentral Bell LJ, Cox J, Eade T, Rinks M, Herschtal A, Kneebone A (2015) Determining optimal planning target volume and image guidance policy for post-prostatectomy intensity modulated radiotherapy. Radiat Oncol 10:151CrossRefPubMedPubMedCentral
28.
go back to reference Rudat V, Nour A, Hammoud M, Alaradi A, Mohammed A (2016) Image-guided intensity-modulated radiotherapy of prostate cancer: analysis of interfractional errors and acute toxicity. Strahlenther Onkol 192:109–117CrossRefPubMed Rudat V, Nour A, Hammoud M, Alaradi A, Mohammed A (2016) Image-guided intensity-modulated radiotherapy of prostate cancer: analysis of interfractional errors and acute toxicity. Strahlenther Onkol 192:109–117CrossRefPubMed
Metadata
Title
Prostate bed target interfractional motion using RTOG consensus definitions and daily CT on rails
Does target motion differ between superior and inferior portions of the clinical target volume?
Authors
Vivek Verma, MD
Shifeng Chen, PhD
Sumin Zhou, PhD
Charles A. Enke, MD
Andrew O. Wahl, MD
Publication date
01-01-2017
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 1/2017
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-1077-6

Other articles of this Issue 1/2017

Strahlentherapie und Onkologie 1/2017 Go to the issue