Skip to main content
Top
Published in: Strahlentherapie und Onkologie 4/2016

01-04-2016 | Original Article

Prostate cancer treated with image-guided helical TomoTherapy® and image-guided LINAC-IMRT

Correlation between high-dose bladder volume, margin reduction, and genitourinary toxicity

Authors: Sonia Drozdz, Michael Schwedas, Henning Salz, Susan Foller, Thomas G. Wendt

Published in: Strahlentherapie und Onkologie | Issue 4/2016

Login to get access

Abstract

Background

We compared different image-guidance (IG) strategies for prostate cancer with high-precision IG intensity-modulated radiation therapy (IMRT) using TomoTherapy® (Accuray Inc., Madison, WI, USA) and linear accelerator (LINAC)-IMRT and their impact on planning target volume (PTV) margin reduction. Follow-up data showed reduced bladder toxicity in TomoTherapy patients compared to LINAC-IMRT. The purpose of this study was to quantify whether the treatment delivery technique and decreased margins affect reductions in bladder toxicity.

Patients and methods

Setup corrections from 30 patients treated with helical TomoTherapy and 30 treated with a LINAC were analyzed. These data were used to simulate three IG protocols based on setup error correction and a limited number of imaging sessions. For all patients, gastrointestinal (GI) and genitourinary (GU) toxicity was documented and correlated with the treatment delivery technique.

Results

For fiducial marker (FM)-based RT, a margin reduction of up to 3.1, 3.0, and 4.8 mm in the left–right (LR), superior–inferior (SI), and anterior-posterior (AP) directions, respectively, could be achieved with calculation of a setup correction from the first three fractions and IG every second day. Although the bladder volume was treated with mean doses of 35 Gy in the TomoTherapy group vs. 22 Gy in the LINAC group, we observed less GU toxicity after TomoTherapy.

Conclusion

Intraprostate FMs allow for small safety margins, help decrease imaging frequency after setup correction, and minimize the dose to bladder and rectum, resulting in lower GU toxicity. In addition, IMRT delivered with TomoTherapy helps to avoid hotspots in the bladder neck, a critical anatomic structure associated with post-RT urinary toxicity.
Literature
1.
go back to reference Cahlon O, Hunt M, Zelefsky MJ (2008) Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 18:48–57CrossRefPubMed Cahlon O, Hunt M, Zelefsky MJ (2008) Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol 18:48–57CrossRefPubMed
2.
go back to reference Spratt DE, Pei X, Yamada J, Kollmeier MA, Cox B, Zelefsky MJ (2013) Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 85:686–692CrossRefPubMed Spratt DE, Pei X, Yamada J, Kollmeier MA, Cox B, Zelefsky MJ (2013) Long-term survival and toxicity in patients treated with high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 85:686–692CrossRefPubMed
3.
go back to reference Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53CrossRefPubMed Guckenberger M, Lawrenz I, Flentje M (2014) Moderately hypofractionated radiotherapy for localized prostate cancer: long-term outcome using IMRT and volumetric IGRT. Strahlenther Onkol 190:48–53CrossRefPubMed
4.
go back to reference Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M (2012) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84:125–129CrossRefPubMed Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, Carver B, Coleman J, Lovelock M, Hunt M (2012) Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 84:125–129CrossRefPubMed
5.
go back to reference Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS, Martinez AA (2005) Prostate gland motion assessed with cine magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417CrossRefPubMed Ghilezan MJ, Jaffray DA, Siewerdsen JH, Van Herk M, Shetty A, Sharpe MB, Zafar Jafri S, Vicini FA, Matter RC, Brabbins DS, Martinez AA (2005) Prostate gland motion assessed with cine magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62:406–417CrossRefPubMed
6.
go back to reference Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, Schiff P (2005) Image-guided radio-therapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 61(2):561–569CrossRefPubMed Wong JR, Grimm L, Uematsu M, Oren R, Cheng CW, Merrick S, Schiff P (2005) Image-guided radio-therapy for prostate cancer by CT-linear accelerator combination: prostate movements and dosimetric considerations. Int J Radiat Oncol Biol Phys 61(2):561–569CrossRefPubMed
7.
go back to reference Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, Mijnheer B, Khoo V (2010) The European Society of Therapeutic Radiology and Oncology –European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol 94:129–144CrossRefPubMed Korreman S, Rasch C, McNair H, Verellen D, Oelfke U, Maingon P, Mijnheer B, Khoo V (2010) The European Society of Therapeutic Radiology and Oncology –European Institute of Radiotherapy (ESTRO-EIR) report on 3D CT-based in-room image guidance systems: a practical and technical review and guide. Radiother Oncol 94:129–144CrossRefPubMed
8.
go back to reference Tanyi JA, He T, Summers PA, Mburu RG, Kato CM, Rhodes SM, Hung AY, Fuss M (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys 78:1579–1585CrossRefPubMed Tanyi JA, He T, Summers PA, Mburu RG, Kato CM, Rhodes SM, Hung AY, Fuss M (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys 78:1579–1585CrossRefPubMed
9.
go back to reference Dehnad H, Nederveen AJ, van der Heide UA, van Moorselaar RJ, Hofman P, Lagendijk JJ (2003) Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother Oncol 67:295–302CrossRefPubMed Dehnad H, Nederveen AJ, van der Heide UA, van Moorselaar RJ, Hofman P, Lagendijk JJ (2003) Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. Radiother Oncol 67:295–302CrossRefPubMed
10.
go back to reference Langen KM, Zhang Y, Andrews RD, Hurley ME, Meeks SL, Poole DO (2005) Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. Int J Radiat Oncol Biol Phys 62:1517–1524CrossRefPubMed Langen KM, Zhang Y, Andrews RD, Hurley ME, Meeks SL, Poole DO (2005) Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. Int J Radiat Oncol Biol Phys 62:1517–1524CrossRefPubMed
11.
go back to reference Kupelian PA, Willoughby TR, Meeks SL, Forbes A, Wagner T, Maach M, Langen KM (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296CrossRefPubMed Kupelian PA, Willoughby TR, Meeks SL, Forbes A, Wagner T, Maach M, Langen KM (2005) Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. Int J Radiat Oncol Biol Phys 62:1291–1296CrossRefPubMed
12.
go back to reference Fortin I, Carrier JF, Beauchemin MC, Béliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471CrossRefPubMed Fortin I, Carrier JF, Beauchemin MC, Béliveau-Nadeau D, Delouya G, Taussky D (2014) Using fiducial markers in the prostate bed in postprostatectomy external beam radiation therapy improves accuracy over surgical clips. Strahlenther Onkol 190:467–471CrossRefPubMed
13.
go back to reference Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry JF, Chen H, Gottschalk AR, Xia P, Pouliot J (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827CrossRefPubMed Morin O, Gillis A, Descovich M, Chen J, Aubin M, Aubry JF, Chen H, Gottschalk AR, Xia P, Pouliot J (2007) Patient dose considerations for routine megavoltage cone-beam CT imaging. Med Phys 34:1819–1827CrossRefPubMed
14.
go back to reference Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL (2008) Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phys 70:1579–1587CrossRefPubMed Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL (2008) Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phys 70:1579–1587CrossRefPubMed
16.
go back to reference van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed
17.
go back to reference Mah D, Freedman G, Milestone B, Hanlon A, Palacio E, Richardson T, Movsas B, Mitra R, Horwitz E, Hanks GE (2002) Measurement of intrafractional prostate motion using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 54:568–5759CrossRefPubMed Mah D, Freedman G, Milestone B, Hanlon A, Palacio E, Richardson T, Movsas B, Mitra R, Horwitz E, Hanks GE (2002) Measurement of intrafractional prostate motion using magnetic resonance imaging. Int J Radiat Oncol Biol Phys 54:568–5759CrossRefPubMed
18.
go back to reference Aubry JF, Beaulieu L, Girouard LM, Aubin S, Tremblay D, Laverdière J, Vigneault E (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–3915CrossRefPubMed Aubry JF, Beaulieu L, Girouard LM, Aubin S, Tremblay D, Laverdière J, Vigneault E (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–3915CrossRefPubMed
19.
go back to reference Britton KR, Takai Y, Mitsuya M, Nemoto K, Ogawa Y, Yamada S (2005) Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med 23:14–24PubMed Britton KR, Takai Y, Mitsuya M, Nemoto K, Ogawa Y, Yamada S (2005) Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. Radiat Med 23:14–24PubMed
20.
go back to reference Huang E, Dong L, Chandra A, Kuban DA, Rosen II, Evans A, Pollack A (2002) Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261–268CrossRefPubMed Huang E, Dong L, Chandra A, Kuban DA, Rosen II, Evans A, Pollack A (2002) Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261–268CrossRefPubMed
21.
go back to reference Moiseenko V, Liu M, Kristensen S, Gelowitz G, Berthelet E (2007) Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J Applied Clin Med Phys 8:55–68 Moiseenko V, Liu M, Kristensen S, Gelowitz G, Berthelet E (2007) Effect of bladder filling on doses to prostate and organs at risk: a treatment planning study. J Applied Clin Med Phys 8:55–68
22.
go back to reference Nakamura N, Shikama N, Takahashi O, Ito M, Hashimoto M, Uematsu M, Hama Y, Sekiguchi K, Nakagawa K (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186:637–642CrossRefPubMed Nakamura N, Shikama N, Takahashi O, Ito M, Hashimoto M, Uematsu M, Hama Y, Sekiguchi K, Nakagawa K (2010) Variability in bladder volumes of full bladders in definitive radiotherapy for cases of localized prostate cancer. Strahlenther Onkol 186:637–642CrossRefPubMed
23.
go back to reference O’Doherty UM, McNair HA, Norman AR, Miles E, Hooper S, Davies M, Lincoln N, Balyckyi J, Childs P, Dearnaley DP, Huddart RA (2006) Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 79:335–340CrossRefPubMed O’Doherty UM, McNair HA, Norman AR, Miles E, Hooper S, Davies M, Lincoln N, Balyckyi J, Childs P, Dearnaley DP, Huddart RA (2006) Variability of bladder filling in patients receiving radical radiotherapy to the prostate. Radiother Oncol 79:335–340CrossRefPubMed
24.
go back to reference Hynds S, McGarry CK, Mitchell DM, Early S, Shum L, Stewart DP, Harney JA, Cardwell CR, O’Sullivan JM (2011) Assessing the daily consistency of bladder filling using an ultrasonic Bladderscan device in men receiving radical conformal radiotherapy for prostate cancer. Br J Radiol 84:813–818CrossRefPubMedPubMedCentral Hynds S, McGarry CK, Mitchell DM, Early S, Shum L, Stewart DP, Harney JA, Cardwell CR, O’Sullivan JM (2011) Assessing the daily consistency of bladder filling using an ultrasonic Bladderscan device in men receiving radical conformal radiotherapy for prostate cancer. Br J Radiol 84:813–818CrossRefPubMedPubMedCentral
25.
go back to reference Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295CrossRefPubMed Beltran C, Herman MG, Davis BJ (2008) Planning target margin calculations for prostate radiotherapy based on intrafraction and interfraction motion using four localization methods. Int J Radiat Oncol Biol Phys 70:289–295CrossRefPubMed
26.
go back to reference Nederveen AJ, van der Heide UA, Dehnad H, van Moorselaar RJ, Hofman P, Lagendijk JJ (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214CrossRefPubMed Nederveen AJ, van der Heide UA, Dehnad H, van Moorselaar RJ, Hofman P, Lagendijk JJ (2002) Measurements and clinical consequences of prostate motion during a radiotherapy fraction. Int J Radiat Oncol Biol Phys 53:206–214CrossRefPubMed
27.
go back to reference Alasti H, Petric MP, Catton CN, Warde PR (2001) Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 49:869–884CrossRefPubMed Alasti H, Petric MP, Catton CN, Warde PR (2001) Portal imaging for evaluation of daily on-line setup errors and off-line organ motion during conformal irradiation of carcinoma of the prostate. Int J Radiat Oncol Biol Phys 49:869–884CrossRefPubMed
28.
go back to reference Althof VGM, Hoekstra CJ, te Loo HJ (1996) Variation in prostate position relative to adjacent bony anatomy. Int J Radiat Oncol Biol Phys 34:709–715CrossRefPubMed Althof VGM, Hoekstra CJ, te Loo HJ (1996) Variation in prostate position relative to adjacent bony anatomy. Int J Radiat Oncol Biol Phys 34:709–715CrossRefPubMed
29.
go back to reference Rudat V, Schraube P, Oetzel D, Zierhut D, Flentje M, Wannenmacher M (1996) Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 35:1027–1034CrossRefPubMed Rudat V, Schraube P, Oetzel D, Zierhut D, Flentje M, Wannenmacher M (1996) Combined error of patient positioning variability and prostate motion uncertainty in 3D conformal radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 35:1027–1034CrossRefPubMed
30.
go back to reference Keyes M, Miller S, Moravan V, Pickles T, McKenzie M, Pai H, Liu M, Kwan W, Agranovich A, Spadinger I, Lapointe V, Halperin R, Morris WJ (2009) Predictive factors for acute and late urinary toxicity after permanent prostate brachytherapy: long-term outcome in 712 consecutive patients. Int J Radiat Oncol Biol Phys 73:1023–1032CrossRefPubMed Keyes M, Miller S, Moravan V, Pickles T, McKenzie M, Pai H, Liu M, Kwan W, Agranovich A, Spadinger I, Lapointe V, Halperin R, Morris WJ (2009) Predictive factors for acute and late urinary toxicity after permanent prostate brachytherapy: long-term outcome in 712 consecutive patients. Int J Radiat Oncol Biol Phys 73:1023–1032CrossRefPubMed
31.
go back to reference Ghadjar P, Zelefsky MJ, Spratt DE, Munck af Rosenschöld P, Oh JH, Hunt M, Kollmeier M, Happersett L, Yorke E, Deasy JO, Jackson A (2014) Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 88:339–344CrossRefPubMedPubMedCentral Ghadjar P, Zelefsky MJ, Spratt DE, Munck af Rosenschöld P, Oh JH, Hunt M, Kollmeier M, Happersett L, Yorke E, Deasy JO, Jackson A (2014) Impact of dose to the bladder trigone on long-term urinary function after high-dose intensity modulated radiation therapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 88:339–344CrossRefPubMedPubMedCentral
32.
go back to reference Roeloffzen EM, Monninkhof EM, Battermann JJ, van Roermund JG, Moerland MA, van Vulpen M (2011) Acute urinary retention after I-125 prostate brachytherapy in relation to dose in different regions of the prostate. Int J Radiat Oncol Biol Phys 80:76–84CrossRefPubMed Roeloffzen EM, Monninkhof EM, Battermann JJ, van Roermund JG, Moerland MA, van Vulpen M (2011) Acute urinary retention after I-125 prostate brachytherapy in relation to dose in different regions of the prostate. Int J Radiat Oncol Biol Phys 80:76–84CrossRefPubMed
33.
go back to reference Hathout L, Folkert MR, Kollmeier MA, Yamada Y, Cohen GN, Zelefsky MJ (2014) Dose to the bladder neck is the most important predictor for acute and late toxicity after low-dose-rate prostate brachytherapy: implications for establishing new dose constraints for treatment planning. Int J Radiat Oncol Biol Phys 90:312–319CrossRefPubMed Hathout L, Folkert MR, Kollmeier MA, Yamada Y, Cohen GN, Zelefsky MJ (2014) Dose to the bladder neck is the most important predictor for acute and late toxicity after low-dose-rate prostate brachytherapy: implications for establishing new dose constraints for treatment planning. Int J Radiat Oncol Biol Phys 90:312–319CrossRefPubMed
34.
go back to reference Heemsbergen WD, Al-Mamgani A, Witte MG, van Herk M, Pos FJ, Lebesque JV (2010) Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy vs. 78 Gy): relationships with local dose, acute effects, and baseline characteristics. Int J Radiat Oncol Biol Phys 78:19–25CrossRefPubMed Heemsbergen WD, Al-Mamgani A, Witte MG, van Herk M, Pos FJ, Lebesque JV (2010) Urinary obstruction in prostate cancer patients from the Dutch trial (68 Gy vs. 78 Gy): relationships with local dose, acute effects, and baseline characteristics. Int J Radiat Oncol Biol Phys 78:19–25CrossRefPubMed
35.
go back to reference Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomized trial. Lancet 353:267–272CrossRefPubMed Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, Yarnold J, Horwich A (1999) Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomized trial. Lancet 353:267–272CrossRefPubMed
36.
go back to reference Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116CrossRefPubMed Zelefsky MJ, Fuks Z, Hunt M, Yamada Y, Marion C, Ling CC, Amols H, Venkatraman ES, Leibel SA (2002) High-dose intensity modulated radiation therapy for prostate cancer: early toxicity and biochemical outcome in 772 patients. Int J Radiat Oncol Biol Phys 53:1111–1116CrossRefPubMed
Metadata
Title
Prostate cancer treated with image-guided helical TomoTherapy® and image-guided LINAC-IMRT
Correlation between high-dose bladder volume, margin reduction, and genitourinary toxicity
Authors
Sonia Drozdz
Michael Schwedas
Henning Salz
Susan Foller
Thomas G. Wendt
Publication date
01-04-2016
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 4/2016
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-015-0935-y

Other articles of this Issue 4/2016

Strahlentherapie und Onkologie 4/2016 Go to the issue