Skip to main content
Top
Published in: Strahlentherapie und Onkologie 12/2015

Open Access 01-12-2015 | Original Article

Comparison of CT number calibration techniques for CBCT-based dose calculation

Authors: Dr. Alex Dunlop, PhD, Dualta McQuaid, PhD, Simeon Nill, PhD, Julia Murray, FRCR, Gavin Poludniowski, PhD, Vibeke N. Hansen, PhD, Shreerang Bhide, FRCR, Christopher Nutting, FRCR, Kevin Harrington, FRCR, Kate Newbold, FRCR, Uwe Oelfke, PhD

Published in: Strahlentherapie und Onkologie | Issue 12/2015

Login to get access

Abstract

Purpose

The aim of this work was to compare and validate various computed tomography (CT) number calibration techniques with respect to cone beam CT (CBCT) dose calculation accuracy.

Methods

CBCT dose calculation accuracy was assessed for pelvic, lung, and head and neck (H&N) treatment sites for two approaches: (1) physics-based scatter correction methods (CBCTr); (2) density override approaches including assigning water density to the entire CBCT (W), assignment of either water or bone density (WB), and assignment of either water or lung density (WL). Methods for CBCT density assignment within a commercially available treatment planning system (RSauto), where CBCT voxels are binned into six density levels, were assessed and validated. Dose-difference maps and dose-volume statistics were used to compare the CBCT dose distributions with the ground truth of a planning CT acquired the same day as the CBCT.

Results

For pelvic cases, all CTN calibration methods resulted in average dose-volume deviations below 1.5 %. RSauto provided larger than average errors for pelvic treatments for patients with large amounts of adipose tissue. For H&N cases, all CTN calibration methods resulted in average dose-volume differences below 1.0 % with CBCTr (0.5 %) and RSauto (0.6 %) performing best. For lung cases, WL and RSauto methods generated dose distributions most similar to the ground truth.

Conclusion

The RSauto density override approach is an attractive option for CTN adjustments for a variety of anatomical sites. RSauto methods were validated, resulting in dose calculations that were consistent with those calculated on diagnostic-quality CT images, for CBCT images acquired of the lung, for patients receiving pelvic RT in cases without excess adipose tissue, and for H&N cases.
Literature
1.
go back to reference Smitsmans MH, de Bois J, Sonke JJ et al (2005) Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. Int J Radiat Oncol Biol Phys 63:975–984CrossRefPubMed Smitsmans MH, de Bois J, Sonke JJ et al (2005) Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. Int J Radiat Oncol Biol Phys 63:975–984CrossRefPubMed
2.
go back to reference Purdie TG, Bissonnette JP, Franks K et al (2007) Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys 68:243–252CrossRefPubMed Purdie TG, Bissonnette JP, Franks K et al (2007) Cone-beam computed tomography for on-line image guidance of lung stereotactic radiotherapy: localization, verification, and intrafraction tumor position. Int J Radiat Oncol Biol Phys 68:243–252CrossRefPubMed
3.
go back to reference Moseley DJ, White EA, Wiltshire KL et al (2007) Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 67:942–953PubMedCentralCrossRefPubMed Moseley DJ, White EA, Wiltshire KL et al (2007) Comparison of localization performance with implanted fiducial markers and cone-beam computed tomography for on-line image-guided radiotherapy of the prostate. Int J Radiat Oncol Biol Phys 67:942–953PubMedCentralCrossRefPubMed
4.
go back to reference Jaffray D, Siewerdsen J, Wong J et al (2001) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349CrossRef Jaffray D, Siewerdsen J, Wong J et al (2001) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349CrossRef
5.
go back to reference Vestergaars A, Muren L, Sondergaard J et al (2013) Adaptive plan selection vs. Re-optimisation in radiotherapy for bladder cancer: a dose accumulation comparison. Radiother Oncol 109:457–462CrossRef Vestergaars A, Muren L, Sondergaard J et al (2013) Adaptive plan selection vs. Re-optimisation in radiotherapy for bladder cancer: a dose accumulation comparison. Radiother Oncol 109:457–462CrossRef
6.
go back to reference Pos F, Hulshof M, Lebesque J et al (2006) Adaptive radiotherapy for invasive bladder cancer: a feasibility study. Int J Radiat Oncol Biol Phys 64:862–868CrossRefPubMed Pos F, Hulshof M, Lebesque J et al (2006) Adaptive radiotherapy for invasive bladder cancer: a feasibility study. Int J Radiat Oncol Biol Phys 64:862–868CrossRefPubMed
7.
go back to reference Hansen E, Bucci M, Quivey J et al (2006) Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 64:355–362CrossRefPubMed Hansen E, Bucci M, Quivey J et al (2006) Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 64:355–362CrossRefPubMed
8.
go back to reference Schwartz D, Dong L (2011) Adaptive radiation therapy for head and neck cancer—can an old goal evolve into a new standard? J Oncol 2011. doi:10.1155/2011/690595. (Article ID 690595, 13 pages) Schwartz D, Dong L (2011) Adaptive radiation therapy for head and neck cancer—can an old goal evolve into a new standard? J Oncol 2011. doi:10.1155/2011/690595. (Article ID 690595, 13 pages)
9.
go back to reference Chai X, van Herk M, Betgen A et al (2012) Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model. Phys Med Biol 57:3945–3962CrossRefPubMed Chai X, van Herk M, Betgen A et al (2012) Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model. Phys Med Biol 57:3945–3962CrossRefPubMed
10.
go back to reference Létourneau D, Wong R, Moseley D et al (2007) Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image quality and system performance. Int J Radiat Oncol Biol Phys 67:1229–1237CrossRefPubMed Létourneau D, Wong R, Moseley D et al (2007) Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image quality and system performance. Int J Radiat Oncol Biol Phys 67:1229–1237CrossRefPubMed
11.
go back to reference Létourneau D, Kaus M, Wong R et al (2008) Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med Phys 35:367–376CrossRefPubMed Létourneau D, Kaus M, Wong R et al (2008) Semiautomatic vertebrae visualization, detection, and identification for online palliative radiotherapy of bone metastases of the spine. Med Phys 35:367–376CrossRefPubMed
12.
go back to reference Fotina I, Hopfgartner J, Stock M et al (2012) Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques. Radiother Oncol 104:249–256CrossRefPubMed Fotina I, Hopfgartner J, Stock M et al (2012) Feasibility of CBCT-based dose calculation: comparative analysis of HU adjustment techniques. Radiother Oncol 104:249–256CrossRefPubMed
13.
go back to reference Kim S, Yoo S, Yin FF et al (2010) Kilovoltage cone-beam CT: comparative dose and image quality evaluations in partial and full-angle scan protocols. Med Phys 37:3648–3459CrossRefPubMed Kim S, Yoo S, Yin FF et al (2010) Kilovoltage cone-beam CT: comparative dose and image quality evaluations in partial and full-angle scan protocols. Med Phys 37:3648–3459CrossRefPubMed
14.
go back to reference Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image- guided radiotherapy (IGRT) devices: a comparative study. Radiother Oncol 93:1–7PubMedCentralCrossRefPubMed Stock M, Pasler M, Birkfellner W et al (2009) Image quality and stability of image- guided radiotherapy (IGRT) devices: a comparative study. Radiother Oncol 93:1–7PubMedCentralCrossRefPubMed
15.
go back to reference Yang Y, Schrwibmann E, Wang C et al (2007) Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 52:685–705CrossRefPubMed Yang Y, Schrwibmann E, Wang C et al (2007) Evaluation of on-board kV cone beam CT (CBCT)-based dose calculation. Phys Med Biol 52:685–705CrossRefPubMed
16.
go back to reference Yoo S, Yin F-F (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66:1553–1561CrossRefPubMed Yoo S, Yin F-F (2006) Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int J Radiat Oncol Biol Phys 66:1553–1561CrossRefPubMed
17.
18.
go back to reference Hatton J, McCurdy B, Greer P (2009) Cone beam computerized tomography: the effect of calibration of the Hounsfield unit to electron density on dose calculation accuracy for adaptive radiotherapy. Phys Med Biol 54:329–346CrossRef Hatton J, McCurdy B, Greer P (2009) Cone beam computerized tomography: the effect of calibration of the Hounsfield unit to electron density on dose calculation accuracy for adaptive radiotherapy. Phys Med Biol 54:329–346CrossRef
19.
go back to reference Hatton J, Greer P, Tang C et al (2011) Does the planning dose-volume histogram represent treatment doses in image-guided prostate radiation therapy? Assessment with cone-beam computerised tomography scans. Radiother Oncol 98:162–168CrossRefPubMed Hatton J, Greer P, Tang C et al (2011) Does the planning dose-volume histogram represent treatment doses in image-guided prostate radiation therapy? Assessment with cone-beam computerised tomography scans. Radiother Oncol 98:162–168CrossRefPubMed
20.
go back to reference Poludniowski G, Evans P, Webb S (2012) Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys 84:109–114CrossRef Poludniowski G, Evans P, Webb S (2012) Cone beam computed tomography number errors and consequences for radiotherapy planning: an investigation of correction methods. Int J Radiat Oncol Biol Phys 84:109–114CrossRef
21.
go back to reference Onozato Y, Kadoya N, Fujita Y et al (2014) Evaluation of on-board cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int J Radiat Oncol Biol Phys 89:416–423CrossRefPubMed Onozato Y, Kadoya N, Fujita Y et al (2014) Evaluation of on-board cone beam computed tomography-based dose calculation with deformable image registration using Hounsfield unit modifications. Int J Radiat Oncol Biol Phys 89:416–423CrossRefPubMed
22.
go back to reference Poludniowski G, Evans P, Hansen VN et al (2009) An efficient Monte-Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol 54:3847–3864CrossRefPubMed Poludniowski G, Evans P, Hansen VN et al (2009) An efficient Monte-Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol 54:3847–3864CrossRefPubMed
23.
go back to reference Wang J, Hu W, Cai G et al (2013) Using corrected cone-beam CT image for accelerated partial breast irradiation treatment dose verification: the preliminary experience. Radiat Oncol 8:214–222PubMedCentralCrossRefPubMed Wang J, Hu W, Cai G et al (2013) Using corrected cone-beam CT image for accelerated partial breast irradiation treatment dose verification: the preliminary experience. Radiat Oncol 8:214–222PubMedCentralCrossRefPubMed
24.
go back to reference Veiga C, McClelland J, Moinuddin S et al (2014) Toward adaptive radiotherapy for head and neck patients: feasibility study on CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys 41:031703CrossRefPubMed Veiga C, McClelland J, Moinuddin S et al (2014) Toward adaptive radiotherapy for head and neck patients: feasibility study on CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys 41:031703CrossRefPubMed
25.
go back to reference Fortunati V, Verhaart R, Angeloni F et al (2014) Feasibility of multimodal deformable registration for head and neck tumor treatment planning. Int J Radiat Oncol Biol Phys 90:85–93CrossRefPubMed Fortunati V, Verhaart R, Angeloni F et al (2014) Feasibility of multimodal deformable registration for head and neck tumor treatment planning. Int J Radiat Oncol Biol Phys 90:85–93CrossRefPubMed
26.
go back to reference Brock K (2010) Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys 76:583–596CrossRefPubMed Brock K (2010) Results of a multi-institution deformable registration accuracy study (MIDRAS). Int J Radiat Oncol Biol Phys 76:583–596CrossRefPubMed
27.
go back to reference Mencarelli A, van Kranen S, Hamming-Vrieze O et al (2014) Deformable image registration for adaptive radiation therapy of head and neck cancer: accuracy and precision in the presence of tumor changes. Int J Radiat Oncol Biol Phys 90:680–687CrossRefPubMed Mencarelli A, van Kranen S, Hamming-Vrieze O et al (2014) Deformable image registration for adaptive radiation therapy of head and neck cancer: accuracy and precision in the presence of tumor changes. Int J Radiat Oncol Biol Phys 90:680–687CrossRefPubMed
28.
go back to reference Lagendijk L, Raaymakers B, Raaijmakers AJ et al (2008) MRI/linac integration. Radiother Oncol 86:25–29CrossRefPubMed Lagendijk L, Raaymakers B, Raaijmakers AJ et al (2008) MRI/linac integration. Radiother Oncol 86:25–29CrossRefPubMed
29.
go back to reference Poludniowski G, Evans P, Kavanagh A et al (2011) Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panel detector. Phys Med Biol 56:1837–1851CrossRefPubMed Poludniowski G, Evans P, Kavanagh A et al (2011) Removal and effects of scatter-glare in cone-beam CT with an amorphous-silicon flat-panel detector. Phys Med Biol 56:1837–1851CrossRefPubMed
30.
go back to reference Lee Y, Bollet M, Charles-Edwards G et al (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66:203–216CrossRefPubMed Lee Y, Bollet M, Charles-Edwards G et al (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66:203–216CrossRefPubMed
31.
go back to reference Barker J, Garden A, Ang KK et al (2004) Quantification of volumetric and geometric changes occuring during fractionated radiotherapy for head and neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59:960–970CrossRefPubMed Barker J, Garden A, Ang KK et al (2004) Quantification of volumetric and geometric changes occuring during fractionated radiotherapy for head and neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59:960–970CrossRefPubMed
32.
go back to reference Marzi S, Pinnaro P, D’Alessio D et al (2012) Anatomical and dose changes of gross tumour volume and parotid glands for head and neck cancer patients during intensity-modulated radiotherapy: effect on the probability of xerostomia incidence. Clin Oncol (R Coll Radiol) 24:e54–e62CrossRef Marzi S, Pinnaro P, D’Alessio D et al (2012) Anatomical and dose changes of gross tumour volume and parotid glands for head and neck cancer patients during intensity-modulated radiotherapy: effect on the probability of xerostomia incidence. Clin Oncol (R Coll Radiol) 24:e54–e62CrossRef
Metadata
Title
Comparison of CT number calibration techniques for CBCT-based dose calculation
Authors
Dr. Alex Dunlop, PhD
Dualta McQuaid, PhD
Simeon Nill, PhD
Julia Murray, FRCR
Gavin Poludniowski, PhD
Vibeke N. Hansen, PhD
Shreerang Bhide, FRCR
Christopher Nutting, FRCR
Kevin Harrington, FRCR
Kate Newbold, FRCR
Uwe Oelfke, PhD
Publication date
01-12-2015
Publisher
Springer Berlin Heidelberg
Published in
Strahlentherapie und Onkologie / Issue 12/2015
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-015-0890-7

Other articles of this Issue 12/2015

Strahlentherapie und Onkologie 12/2015 Go to the issue