Skip to main content
Top
Published in: Strahlentherapie und Onkologie 4/2012

01-04-2012 | Original article

Radiation treatment parameters for re-irradiation of malignant glioma

Authors: M. Niyazi, M. Söhn, S.B. Schwarz, P. Lang, C. Belka, U. Ganswindt

Published in: Strahlentherapie und Onkologie | Issue 4/2012

Login to get access

Abstract

Background and purpose

Most patients with malignant glioma ultimately fail locally or loco-regionally after the first treatment, with re-irradiation being a reasonable treatment option. However, only limited data are presently available allowing for a precise selection of patients suitable for re-treatment with regard to safety and efficacy.

Material and methods

Using the department database, 39 patients with a second course of radiation were identified. Doses to gross tumor volume (GTV), planning target volume (PTV), and relevant organs at risk (OARs; brainstem, optic chiasm, optic nerves, brain) were retrospectively analyzed and correlated to outcome parameters. Relevant treatment parameters including Dmax, Dmin, Dmean, and volume (ml) were obtained. Equivalent uniform dose (EUD) values were calculated for the tumor and OARs. To address the issue of radiation necrosis/leukoencephalopathy posttherapeutic MRI images were routinely examined every 3 months.

Results

Median follow-up was 147 days. The time interval between first and second irradiation was regularly greater than 6 months. Median EUDs to the OARs were 11.9 Gy (range 0.7–27.4 Gy) to the optic chiasm, 17.6 Gy (range 0.7–43.0 Gy) to the brainstem, 4.9/2.1 Gy (range 0.3–24.5 Gy) to the right/left optic nerve, and 29.4 Gy (range 25.2–32.5 Gy) to the brain. No correlation between treated volume and survival was observed. Cold spots and dose did not correlate with survival. Re-irradiated volumes were treated with on average lower doses if they were larger and vice versa.

Conclusion

In general, re-irradiation is a safe and feasible re-treatment option. No relevant toxicity was observed after re-irradiation in our patient cohort during follow-up. In this regard, this analysis provides baseline data for the selection of putative patients. EUD values are derived and may serve as reference for further studies, including intensity-modulated radiotherapy (IMRT) protocols.
Literature
1.
go back to reference Bashir R, Hochberg F, Oot R (1988) Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23:27–30PubMedCrossRef Bashir R, Hochberg F, Oot R (1988) Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 23:27–30PubMedCrossRef
2.
go back to reference Jansen EP, Dewit LG, Herk M van, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156PubMedCrossRef Jansen EP, Dewit LG, Herk M van, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156PubMedCrossRef
3.
go back to reference Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409PubMedCrossRef Wallner KE, Galicich JH, Krol G et al (1989) Patterns of failure following treatment for glioblastoma multiforme and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409PubMedCrossRef
4.
go back to reference Grabenbauer GG (2010) Long-term survival of patients with glioblastoma multiforme treated with chemoradiation: correlation with MGMT promoter methylation status. Strahlenther Onkol 186:185–187 Grabenbauer GG (2010) Long-term survival of patients with glioblastoma multiforme treated with chemoradiation: correlation with MGMT promoter methylation status. Strahlenther Onkol 186:185–187
5.
go back to reference Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRef Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRef
6.
go back to reference Ernst-Stecken A, Ganslandt O, Lambrecht U et al (2007) Survival and quality of life after hypofractionated stereotactic radiotherapy for recurrent malignant glioma. J Neurooncol 81:287–294PubMedCrossRef Ernst-Stecken A, Ganslandt O, Lambrecht U et al (2007) Survival and quality of life after hypofractionated stereotactic radiotherapy for recurrent malignant glioma. J Neurooncol 81:287–294PubMedCrossRef
7.
go back to reference Henke G, Paulsen F, Steinbach JP et al (2009) Hypofractionated reirradiation for recurrent malignant glioma. Strahlenther Onkol 185:113–119PubMedCrossRef Henke G, Paulsen F, Steinbach JP et al (2009) Hypofractionated reirradiation for recurrent malignant glioma. Strahlenther Onkol 185:113–119PubMedCrossRef
8.
go back to reference Vordermark D, Kolbl O, Ruprecht K et al (2005) Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer 5:55PubMedCrossRef Vordermark D, Kolbl O, Ruprecht K et al (2005) Hypofractionated stereotactic re-irradiation: treatment option in recurrent malignant glioma. BMC Cancer 5:55PubMedCrossRef
9.
go back to reference Niyazi M, Siefert A, Schwarz SB et al (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol Niyazi M, Siefert A, Schwarz SB et al (2011) Therapeutic options for recurrent malignant glioma. Radiother Oncol
10.
go back to reference Bauman GS, Sneed PK, Wara WM et al (1996) Reirradiation of primary CNS tumors. Int J Radiat Oncol Biol Phys 36:433–441PubMedCrossRef Bauman GS, Sneed PK, Wara WM et al (1996) Reirradiation of primary CNS tumors. Int J Radiat Oncol Biol Phys 36:433–441PubMedCrossRef
11.
go back to reference Rimmer YL, Burnet NG (2002) Is it worth reirradiating primary brain tumours? Cambridge Experience. Br J Cancer 86:55-S Rimmer YL, Burnet NG (2002) Is it worth reirradiating primary brain tumours? Cambridge Experience. Br J Cancer 86:55-S
12.
go back to reference Combs SE, Gutwein S, Thilmann C et al (2005) Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 74:167–171PubMedCrossRef Combs SE, Gutwein S, Thilmann C et al (2005) Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 74:167–171PubMedCrossRef
13.
go back to reference Niyazi M, Ganswindt U, Schwarz SB et al (2010) Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys Niyazi M, Ganswindt U, Schwarz SB et al (2010) Irradiation and bevacizumab in high-grade glioma retreatment settings. Int J Radiat Oncol Biol Phys
14.
go back to reference Combs SE, Widmer V, Thilmann C et al (2005) Stereotactic radiosurgery (SRS) – treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173PubMedCrossRef Combs SE, Widmer V, Thilmann C et al (2005) Stereotactic radiosurgery (SRS) – treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104:2168–2173PubMedCrossRef
15.
go back to reference Biswas T, Okunieff P, Schell MC et al (2009) Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol 4:11PubMedCrossRef Biswas T, Okunieff P, Schell MC et al (2009) Stereotactic radiosurgery for glioblastoma: retrospective analysis. Radiat Oncol 4:11PubMedCrossRef
16.
go back to reference Fuller CD, Choi M, Forthuber B et al (2007) Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme. Radiat Oncol 2:26PubMedCrossRef Fuller CD, Choi M, Forthuber B et al (2007) Standard fractionation intensity modulated radiation therapy (IMRT) of primary and recurrent glioblastoma multiforme. Radiat Oncol 2:26PubMedCrossRef
17.
go back to reference Ang KK, Price RE, Stephens LC et al (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464PubMedCrossRef Ang KK, Price RE, Stephens LC et al (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464PubMedCrossRef
18.
go back to reference Combs SE, Debus J, Schulz-Ertner D (2007) Radiotherapeutic alternatives for previously irradiated recurrent gliomas. BMC Cancer 7:167PubMedCrossRef Combs SE, Debus J, Schulz-Ertner D (2007) Radiotherapeutic alternatives for previously irradiated recurrent gliomas. BMC Cancer 7:167PubMedCrossRef
19.
go back to reference Fokas E, Wacker U, Gross MW et al (2009) Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol 185:235–240PubMedCrossRef Fokas E, Wacker U, Gross MW et al (2009) Hypofractionated stereotactic reirradiation of recurrent glioblastomas: a beneficial treatment option after high-dose radiotherapy? Strahlenther Onkol 185:235–240PubMedCrossRef
20.
go back to reference Leitzen C, Schild HH, Bungart B et al (2010) Prediction of clinical course of glioblastomas by MRI during radiotherapy. Strahlenther Onkol 186:681–686PubMedCrossRef Leitzen C, Schild HH, Bungart B et al (2010) Prediction of clinical course of glioblastomas by MRI during radiotherapy. Strahlenther Onkol 186:681–686PubMedCrossRef
21.
go back to reference Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869PubMedCrossRef Combs SE, Thilmann C, Edler L et al (2005) Efficacy of fractionated stereotactic reirradiation in recurrent gliomas: long-term results in 172 patients treated in a single institution. J Clin Oncol 23:8863–8869PubMedCrossRef
22.
go back to reference Jones LC, Hoban PW (2000) Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys Med Biol 45:159–170PubMedCrossRef Jones LC, Hoban PW (2000) Treatment plan comparison using equivalent uniform biologically effective dose (EUBED). Phys Med Biol 45:159–170PubMedCrossRef
23.
go back to reference Alber M (2000) A concept for the optimization of radiotherapy. Dissertation. Universität Tübingen Alber M (2000) A concept for the optimization of radiotherapy. Dissertation. Universität Tübingen
24.
go back to reference Alber M, Belka C (2006) A normal tissue dose response model of dynamic repair processes. Phys Med Biol 51:153–172PubMedCrossRef Alber M, Belka C (2006) A normal tissue dose response model of dynamic repair processes. Phys Med Biol 51:153–172PubMedCrossRef
25.
go back to reference Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedCrossRef Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedCrossRef
26.
go back to reference Wu QW, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52:224–235PubMedCrossRef Wu QW, Mohan R, Niemierko A, Schmidt-Ullrich R (2002) Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. Int J Radiat Oncol Biol Phys 52:224–235PubMedCrossRef
27.
go back to reference Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedCrossRef Niemierko A (1997) Reporting and analyzing dose distributions: a concept of equivalent uniform dose. Med Phys 24:103–110PubMedCrossRef
28.
go back to reference Soehn M, Yan D, Liang J et al (2007) Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys 67:1066–1073CrossRef Soehn M, Yan D, Liang J et al (2007) Incidence of late rectal bleeding in high-dose conformal radiotherapy of prostate cancer using equivalent uniform dose-based and dose-volume-based normal tissue complication probability models. Int J Radiat Oncol Biol Phys 67:1066–1073CrossRef
29.
go back to reference Gay HA, Niemierko A (2007) A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med 23:115–125PubMedCrossRef Gay HA, Niemierko A (2007) A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Phys Med 23:115–125PubMedCrossRef
30.
go back to reference Kehwar TS (2005) Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther 1:168–179PubMedCrossRef Kehwar TS (2005) Analytical approach to estimate normal tissue complication probability using best fit of normal tissue tolerance doses into the NTCP equation of the linear quadratic model. J Cancer Res Ther 1:168–179PubMedCrossRef
31.
go back to reference Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360PubMedCrossRef Mayer R, Sminia P (2008) Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360PubMedCrossRef
32.
go back to reference Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:20–27CrossRef Lawrence YR, Li XA, el Naqa I et al (2010) Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys 76:20–27CrossRef
33.
go back to reference Mayo C, Martel MK, Marks LB et al (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76:28–35CrossRef Mayo C, Martel MK, Marks LB et al (2010) Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 76:28–35CrossRef
34.
go back to reference Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:36–41CrossRef Mayo C, Yorke E, Merchant TE (2010) Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys 76:36–41CrossRef
35.
go back to reference Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMed Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMed
36.
go back to reference Dolezel M, Odrazka K, Vaculikova M et al (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 186:197–202PubMedCrossRef Dolezel M, Odrazka K, Vaculikova M et al (2010) Dose escalation in prostate radiotherapy up to 82 Gy using simultaneous integrated boost: direct comparison of acute and late toxicity with 3D-CRT 74 Gy and IMRT 78 Gy. Strahlenther Onkol 186:197–202PubMedCrossRef
37.
go back to reference Peponi E, Glanzmann C, Kunz G et al (2010) Simultaneous integrated boost intensity-modulated radiotherapy (SIBIMRT) in nasopharyngeal cancer. Strahlenther Onkol 186:135–142PubMedCrossRef Peponi E, Glanzmann C, Kunz G et al (2010) Simultaneous integrated boost intensity-modulated radiotherapy (SIBIMRT) in nasopharyngeal cancer. Strahlenther Onkol 186:135–142PubMedCrossRef
38.
go back to reference Marsh JC, Gielda BT, Herskovic AM et al (2010) Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: a dosimetric study using helical tomotherapy. J Med Imaging Radiat Oncol 54:375–382PubMedCrossRef Marsh JC, Gielda BT, Herskovic AM et al (2010) Sparing of the hippocampus and limbic circuit during whole brain radiation therapy: a dosimetric study using helical tomotherapy. J Med Imaging Radiat Oncol 54:375–382PubMedCrossRef
39.
go back to reference Marsh JC, Godbole RH, Herskovic AM et al (2010) Sparing of the neural stem cell compartment during whole-brain radiation therapy: a dosimetric study using helical tomotherapy. Int J Radiat Oncol Biol Phys 78:946–954PubMedCrossRef Marsh JC, Godbole RH, Herskovic AM et al (2010) Sparing of the neural stem cell compartment during whole-brain radiation therapy: a dosimetric study using helical tomotherapy. Int J Radiat Oncol Biol Phys 78:946–954PubMedCrossRef
Metadata
Title
Radiation treatment parameters for re-irradiation of malignant glioma
Authors
M. Niyazi
M. Söhn
S.B. Schwarz
P. Lang
C. Belka
U. Ganswindt
Publication date
01-04-2012
Publisher
Springer-Verlag
Published in
Strahlentherapie und Onkologie / Issue 4/2012
Print ISSN: 0179-7158
Electronic ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-011-0055-2

Other articles of this Issue 4/2012

Strahlentherapie und Onkologie 4/2012 Go to the issue

Mitteilungen der Fachgesellschaften

Mitteilungen