Skip to main content
Top
Published in: Clinical Neuroradiology 2/2015

01-10-2015 | Review Article

Quantitative Susceptibility Mapping: Concepts and Applications

Authors: J. R. Reichenbach, F. Schweser, B. Serres, A. Deistung

Published in: Clinical Neuroradiology | Special Issue 2/2015

Login to get access

Abstract

Purpose

To review the fundamental principles of susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM), and to discuss recent clinical developments.

Methods

SWI is a magnetic resonance imaging method that takes advantage of magnitude signal loss and phase information to reveal anatomic and physiologic information about tissue and venous vasculature. The method enhances image contrast qualitatively, relying on phase shifts due to differences in magnetic susceptibility between tissues. QSM, extending SWI in an elegant way, is a new sophisticated postprocessing technique that numerically solves the inverse source-effect problem to derive local tissue magnetic susceptibility (source) from the measured magnetic field distribution (effect) as it is reflected in the phase images of gradient-echo sequences.

Results

SWI has meanwhile been established in numerous clinical as well as basic biomedical applications due to its ability to highlight tissue structures and compounds that are difficult to detect by conventional magnetic resonance imaging (MRI), including iron, calcifications, small veins, blood, and bones. The field of QSM has also progressed rapidly, both in terms of optimizing the post-processing strategies and algorithms as well as in gaining ground for new clinical applications that take advantage of its quantitative nature and improved specificity to identify the magnetic signature of lesions.

Conclusions

Though magnetic susceptibility may be a major nuisance producing image artifacts in MRI, recent work has transformed it into a useful source of image contrast. Both SWI and QSM are gaining increasing acceptance in clinical practice. In particular, QSM provides new insights into tissue composition and organization due to its more direct relation to the actual physical tissue magnetic properties.
Literature
1.
go back to reference Reichenbach JR, Venkatesan R, Schillinger DJ, Kido D, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204(1):272–7.CrossRefPubMed Reichenbach JR, Venkatesan R, Schillinger DJ, Kido D, Haacke EM. Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology. 1997;204(1):272–7.CrossRefPubMed
2.
go back to reference Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8.CrossRefPubMed Haacke EM, Xu Y, Cheng YC, Reichenbach JR. Susceptibility weighted imaging (SWI). Magn Reson Med. 2004;52(3):612–8.CrossRefPubMed
3.
go back to reference Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR. Susceptibility weighted imaging at ultrahigh magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med. 2008;60(5):1155–68.CrossRefPubMed Deistung A, Rauscher A, Sedlacik J, Stadler J, Witoszynskyj S, Reichenbach JR. Susceptibility weighted imaging at ultrahigh magnetic field strengths: theoretical considerations and experimental results. Magn Reson Med. 2008;60(5):1155–68.CrossRefPubMed
4.
go back to reference Haacke EM, Reichenbach JR, editors. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. 1st ed. Hoboken: Wiley-Blackwell; 2011. 776 pp. Haacke EM, Reichenbach JR, editors. Susceptibility weighted imaging in MRI: basic concepts and clinical applications. 1st ed. Hoboken: Wiley-Blackwell; 2011. 776 pp.
5.
go back to reference Reichenbach JR. The future of susceptibility contrast for assessment of anatomy and function. Neuroimage. 2012;62(2):1311–5.CrossRefPubMed Reichenbach JR. The future of susceptibility contrast for assessment of anatomy and function. Neuroimage. 2012;62(2):1311–5.CrossRefPubMed
6.
go back to reference Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.PubMedCentralCrossRefPubMed Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.PubMedCentralCrossRefPubMed
7.
go back to reference Li L, Leigh JS. Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med. 2004;51(5):1077–82.CrossRefPubMed Li L, Leigh JS. Quantifying arbitrary magnetic susceptibility distributions with MR. Magn Reson Med. 2004;51(5):1077–82.CrossRefPubMed
8.
go back to reference Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med. 2009;61(1):196–204.CrossRefPubMed Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y. Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med. 2009;61(1):196–204.CrossRefPubMed
9.
go back to reference Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76. (Erratum in: J Magn Reson Imaging. 2011;33(6):1527–9.)PubMedCentralCrossRefPubMed Haacke EM, Tang J, Neelavalli J, Cheng YC. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76. (Erratum in: J Magn Reson Imaging. 2011;33(6):1527–9.)PubMedCentralCrossRefPubMed
10.
go back to reference Wharton S, Bowtell R. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage. 2010;53(2):515–25.CrossRefPubMed Wharton S, Bowtell R. Whole-brain susceptibility mapping at high field: a comparison of multiple- and single-orientation methods. Neuroimage. 2010;53(2):515–25.CrossRefPubMed
11.
go back to reference Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage. 2011;55(4):1645–56.PubMedCentralCrossRefPubMed Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. Neuroimage. 2011;55(4):1645–56.PubMedCentralCrossRefPubMed
12.
go back to reference Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage. 2011;54(4):2789–807.CrossRefPubMed Schweser F, Deistung A, Lehr BW, Reichenbach JR. Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage. 2011;54(4):2789–807.CrossRefPubMed
13.
go back to reference Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.CrossRefPubMed Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.CrossRefPubMed
14.
go back to reference Wang Y, Liu T. Quantitative Susceptibility Mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101.CrossRef Wang Y, Liu T. Quantitative Susceptibility Mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101.CrossRef
15.
go back to reference Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, Wick W, Nagel AM, Heiland S, Schlemmer HP, Bendszus M, Reichenbach JR, Radbruch A. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One. 2013;8(3):e57924.PubMedCentralCrossRefPubMed Deistung A, Schweser F, Wiestler B, Abello M, Roethke M, Sahm F, Wick W, Nagel AM, Heiland S, Schlemmer HP, Bendszus M, Reichenbach JR, Radbruch A. Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One. 2013;8(3):e57924.PubMedCentralCrossRefPubMed
16.
go back to reference Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, Fazekas F, Wang Y, Ropele S. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013;267(2):551–9.PubMedCentralCrossRefPubMed Langkammer C, Liu T, Khalil M, Enzinger C, Jehna M, Fuchs S, Fazekas F, Wang Y, Ropele S. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013;267(2):551–9.PubMedCentralCrossRefPubMed
17.
go back to reference Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol. 2014;49(7):498–504.PubMedCentralCrossRefPubMed Tan H, Liu T, Wu Y, Thacker J, Shenkar R, Mikati AG, Shi C, Dykstra C, Wang Y, Prasad PV, Edelman RR, Awad IA. Evaluation of iron content in human cerebral cavernous malformation using quantitative susceptibility mapping. Invest Radiol. 2014;49(7):498–504.PubMedCentralCrossRefPubMed
18.
go back to reference Blazejewska AI, Al-Radaideh AM, Wharton S, Lim SY, Bowtell RW, Constantinescu CS, Gowland PA. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 T MRI study. J Magn Reson Imaging. 2015;41(4):1065–70.CrossRefPubMed Blazejewska AI, Al-Radaideh AM, Wharton S, Lim SY, Bowtell RW, Constantinescu CS, Gowland PA. Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: a 7 T MRI study. J Magn Reson Imaging. 2015;41(4):1065–70.CrossRefPubMed
19.
go back to reference Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging. 2015;33(5):559–65.CrossRefPubMed Barbosa JH, Santos AC, Tumas V, Liu M, Zheng W, Haacke EM, Salmon CE. Quantifying brain iron deposition in patients with Parkinson’s disease using quantitative susceptibility mapping, R2 and R2*. Magn Reson Imaging. 2015;33(5):559–65.CrossRefPubMed
20.
go back to reference Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.CrossRefPubMed Schenck JF. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23(6):815–50.CrossRefPubMed
21.
go back to reference Li W, Wang N, Yu F, Han H, Cao W, Romero R, Tantiwongkosi B, Duong TQ, Liu C. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage. 2015;108:111–22.PubMedCentralCrossRefPubMed Li W, Wang N, Yu F, Han H, Cao W, Romero R, Tantiwongkosi B, Duong TQ, Liu C. A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. Neuroimage. 2015;108:111–22.PubMedCentralCrossRefPubMed
22.
go back to reference Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, Bilgic B, Fazekas F, Mainero C, Ropele S. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–30.CrossRefPubMed Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, Bilgic B, Fazekas F, Mainero C, Ropele S. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. Neuroimage. 2015;111:622–30.CrossRefPubMed
23.
go back to reference Wen Y, Wang Y, Liu T. Enhancing k-space quantitative susceptibility mapping by enforcing consistency on the cone data (CCD) with structural priors. Magn Reson Med. 2015. [Epub ahead of print]. Wen Y, Wang Y, Liu T. Enhancing k-space quantitative susceptibility mapping by enforcing consistency on the cone data (CCD) with structural priors. Magn Reson Med. 2015. [Epub ahead of print].
24.
go back to reference Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37(10):5165–78.CrossRefPubMed Schweser F, Deistung A, Lehr BW, Reichenbach JR. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Med Phys. 2010;37(10):5165–78.CrossRefPubMed
25.
go back to reference Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59.PubMedCentralCrossRefPubMed Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59.PubMedCentralCrossRefPubMed
26.
go back to reference Liu J, Xia S, Hanks RA, Wiseman NM, Peng C, Zhou S, Haacke EM, Kou Z. Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma. 2015. [Epub ahead of print]. Liu J, Xia S, Hanks RA, Wiseman NM, Peng C, Zhou S, Haacke EM, Kou Z. Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma. 2015. [Epub ahead of print].
27.
go back to reference Li W, Long J, Watts LT, Shen Q, Duong TQ. Altered magnetic susceptibility in white matter after mild traumatic brain injury. Proc Intl Soc Mag Reson Med. 2014;22:900. Li W, Long J, Watts LT, Shen Q, Duong TQ. Altered magnetic susceptibility in white matter after mild traumatic brain injury. Proc Intl Soc Mag Reson Med. 2014;22:900.
28.
go back to reference Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, Barger G, Hu J, Xu Y, Prabhakaran KP, Elangovan IR, Neelavalli J, Reichenbach JR. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006;24(1):41–51.CrossRefPubMed Sehgal V, Delproposto Z, Haddar D, Haacke EM, Sloan AE, Zamorano LJ, Barger G, Hu J, Xu Y, Prabhakaran KP, Elangovan IR, Neelavalli J, Reichenbach JR. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses. J Magn Reson Imaging. 2006;24(1):41–51.CrossRefPubMed
29.
go back to reference Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009;62(6):1510–22.PubMedCentralCrossRefPubMed Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain tissue in vivo using MRI phase data. Magn Reson Med. 2009;62(6):1510–22.PubMedCentralCrossRefPubMed
30.
go back to reference Wharton S, Schäfer A, Bowtell R. Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med. 2010;63(5):1292–304.CrossRefPubMed Wharton S, Schäfer A, Bowtell R. Susceptibility mapping in the human brain using threshold-based k-space division. Magn Reson Med. 2010;63(5):1292–304.CrossRefPubMed
31.
go back to reference Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med. 2011;66(3):777–83.CrossRefPubMed Liu T, Liu J, de Rochefort L, Spincemaille P, Khalidov I, Ledoux JR, Wang Y. Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med. 2011;66(3):777–83.CrossRefPubMed
32.
go back to reference Schweser F, Sommer K, Deistung A, Reichenbach JR. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. Neuroimage. 2012;62(3):2083–100.CrossRefPubMed Schweser F, Sommer K, Deistung A, Reichenbach JR. Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. Neuroimage. 2012;62(3):2083–100.CrossRefPubMed
33.
go back to reference de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med. 2008;60(4):1003–9.CrossRefPubMed de Rochefort L, Brown R, Prince MR, Wang Y. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med. 2008;60(4):1003–9.CrossRefPubMed
34.
go back to reference Tang J, Liu S, Neelavalli J, Cheng YCN, Buch S, Haacke EM. Improving susceptibility mapping using a threshold-based k-space/image domain iterative reconstruction approach. Magn Reson Med. 2013;69(5):1396–407.PubMedCentralCrossRefPubMed Tang J, Liu S, Neelavalli J, Cheng YCN, Buch S, Haacke EM. Improving susceptibility mapping using a threshold-based k-space/image domain iterative reconstruction approach. Magn Reson Med. 2013;69(5):1396–407.PubMedCentralCrossRefPubMed
35.
go back to reference Plyavin YA, Blum EY. Magnetic parameters of blood cells and high-gradient paramagnetic and diamagnetic phoresis. Magnetohydrodynamics. 1983;19:349–59. Plyavin YA, Blum EY. Magnetic parameters of blood cells and high-gradient paramagnetic and diamagnetic phoresis. Magnetohydrodynamics. 1983;19:349–59.
36.
go back to reference Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med. 1997;37(4):494–500.CrossRefPubMed Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med. 1997;37(4):494–500.CrossRefPubMed
Metadata
Title
Quantitative Susceptibility Mapping: Concepts and Applications
Authors
J. R. Reichenbach
F. Schweser
B. Serres
A. Deistung
Publication date
01-10-2015
Publisher
Springer Berlin Heidelberg
Published in
Clinical Neuroradiology / Issue Special Issue 2/2015
Print ISSN: 1869-1439
Electronic ISSN: 1869-1447
DOI
https://doi.org/10.1007/s00062-015-0432-9

Other articles of this Special Issue 2/2015

Clinical Neuroradiology 2/2015 Go to the issue