Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2015

01-11-2015 | Original article

Optical 3D scans for orthodontic diagnostics performed on full-arch impressions

Completeness of surface structure representation

Authors: A.B. Vogel, F. Kilic, F. Schmidt, S. Rübel, B.G. Lapatki

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 6/2015

Login to get access

Abstract

Objective

The purpose of this work was to evaluate the completeness of surface structure representation offered by full-arch impression scans in different situations of tooth (mal)alignment and whether this completeness could be improved by performing rescans on the same impressions reduced sequentially to different levels of gingival height and by adding extra single scans to the number of single scans recommended by the manufacturer.

Methods

Three pairs of full-arch resin models were used as reference, characterized either by normal occlusion, by anterior diastematic protrusion (and edentulous spaces in the lower posterior segments), or by anterior crowding. An alginate impression of each arch was taken and digitized with a structured-light scanner, followed by three rescans with the impression cut back to 10, 5, and 1 mm of gingival height. Both the initial scan and the rescans were performed both with 19 basic single scans and with 10 extra single scans. Each impression scan was analyzed for quantitative completeness relative to its homologous direct scan of the original resin model. In addition, the topography of voids in the resultant digital model was assessed by visual inspection.

Results

Compared to the homologous reference scans of the original resin models, completeness of the original impression scans—in the absence of both gingival cutback and extra single scans—was 97.23 ± 0.066 % in the maxilla or 95.72 ± 0.070 % in the mandible with normal occlusion, 91.11 ± 0.132 % or 96.07 ± 0.109 % in the arches with anterior diastematic protrusion, and 98.24 ± 0.085 % or 93.39 ± 0.146 % in those with anterior crowding. Gingival cutback and extra single scans were found to improve these values up to 100.35 ± 0.066 % or 99.53 ± 0.070 % in the arches with normal occlusion, 91.77 ± 0.132 % or 97.95 ± 0.109 % in those with anterior diastematic protrusion, and 98.59 ± 0.085 % or 98.96 ± 0.146 % in those with anterior crowding.

Conclusion

In strictly quantitative terms, the impression scans did capture relatively large percentages of the total surface. However, the topographic examinations revealed that regions essential for orthodontic model analysis were missing. The malocclusion models were particularly affected. Thus, impression scans performed with structured-light scanners cannot replace scans of positive casts for diagnostic use in orthodontics.
Literature
1.
go back to reference Bauer N (ed) (2007) Handbuch zur industriellen Bildverarbeitung. Qualitätssicherung in der Praxis. Vision. Fraunhofer-IRB-Verl. Stuttgart Bauer N (ed) (2007) Handbuch zur industriellen Bildverarbeitung. Qualitätssicherung in der Praxis. Vision. Fraunhofer-IRB-Verl. Stuttgart
2.
go back to reference Bell A, Ayoub AF, Siebert P (2003) Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30:219–223CrossRefPubMed Bell A, Ayoub AF, Siebert P (2003) Assessment of the accuracy of a three-dimensional imaging system for archiving dental study models. J Orthod 30:219–223CrossRefPubMed
3.
go back to reference Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRef Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256CrossRef
4.
go back to reference Bootvong K, Liu Z, McGrath C et al (2010) Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 32:589–595CrossRefPubMed Bootvong K, Liu Z, McGrath C et al (2010) Virtual model analysis as an alternative approach to plaster model analysis: reliability and validity. Eur J Orthod 32:589–595CrossRefPubMed
5.
go back to reference Breuckmann B (1993) Topometrische 3D-Meßtechnik. In: Breuckmann B (ed) Bildverarbeitung und optische Messtechnik in der industriellen Praxis. Grundlagen der 3D-Messtechnik, Farbbildanalyse, Holografie und Interferometrie mit zahlreichen praktischen Applikationen. Franzis, München, pp 124–152 Breuckmann B (1993) Topometrische 3D-Meßtechnik. In: Breuckmann B (ed) Bildverarbeitung und optische Messtechnik in der industriellen Praxis. Grundlagen der 3D-Messtechnik, Farbbildanalyse, Holografie und Interferometrie mit zahlreichen praktischen Applikationen. Franzis, München, pp 124–152
6.
go back to reference Breuckmann GmbH d-STATION – Breuckmann GmbH – topometrische 3d Scanner. http://www.aicon3d.de/fileadmin/user_upload/produkte/en/breuckmann_Scanner/d-STATION/pdf/2013-12-Produktbr-d-Station-EN-WEB.pdf. Zugegriffen: 22. Okt. 2014 Breuckmann GmbH d-STATION – Breuckmann GmbH – topometrische 3d Scanner. http://​www.​aicon3d.​de/​fileadmin/​user_​upload/​produkte/​en/​breuckmann_​Scanner/​d-STATION/​pdf/​2013-12-Produktbr-d-Station-EN-WEB.​pdf.​ Zugegriffen: 22. Okt. 2014
7.
go back to reference Bronstein IN, Semendjajew KA (2008) Taschenbuch der Mathematik Frankfurt am Main. Deutsch, pp 989–999 Bronstein IN, Semendjajew KA (2008) Taschenbuch der Mathematik Frankfurt am Main. Deutsch, pp 989–999
8.
go back to reference DeLong R, Heinzen M, Hodges J et al (2003) Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 82:438–442CrossRefPubMed DeLong R, Heinzen M, Hodges J et al (2003) Accuracy of a system for creating 3D computer models of dental arches. J Dent Res 82:438–442CrossRefPubMed
9.
go back to reference Gracco A, Buranello M, Cozzani M et al (2007) Digital and plaster models: a comparison of measurements and times. Prog Orthod 8:252–259PubMed Gracco A, Buranello M, Cozzani M et al (2007) Digital and plaster models: a comparison of measurements and times. Prog Orthod 8:252–259PubMed
10.
go back to reference Gühring J (2002) 3D-Erfassung und Objektrekonstruktion mittels Streifenprojektion München, Germany. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C.H. Beck Gühring J (2002) 3D-Erfassung und Objektrekonstruktion mittels Streifenprojektion München, Germany. Verlag der Bayerischen Akademie der Wissenschaften in Kommission beim Verlag C.H. Beck
11.
go back to reference Hajeer MY, Millett DT, Ayoub AF et al (2004) Current products and practices: applications of 3D imaging in orthodontics: part II. J Orthod 31:154–162CrossRefPubMed Hajeer MY, Millett DT, Ayoub AF et al (2004) Current products and practices: applications of 3D imaging in orthodontics: part II. J Orthod 31:154–162CrossRefPubMed
12.
go back to reference Joffe L (2004) Current Products and Practices OrthoCADTM: digital models for a digital era. J Orthod 31:344–347CrossRefPubMed Joffe L (2004) Current Products and Practices OrthoCADTM: digital models for a digital era. J Orthod 31:344–347CrossRefPubMed
13.
go back to reference Leifert MF, Leifert MM, Efstratiadis SS et al (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136:16.e1CrossRefPubMed Leifert MF, Leifert MM, Efstratiadis SS et al (2009) Comparison of space analysis evaluations with digital models and plaster dental casts. Am J Orthod Dentofacial Orthop 136:16.e1CrossRefPubMed
14.
go back to reference Meyer SID (2010) Retrospektive methodische Studie zum Vergleich von digitaler und manueller Modellanalyse in der Kieferorthopädie. Med Dent Diss, WWU Münster Meyer SID (2010) Retrospektive methodische Studie zum Vergleich von digitaler und manueller Modellanalyse in der Kieferorthopädie. Med Dent Diss, WWU Münster
15.
go back to reference Mullen SR, Martin CA, Ngan P et al (2007) Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofacial Orthop 132:346–352CrossRefPubMed Mullen SR, Martin CA, Ngan P et al (2007) Accuracy of space analysis with emodels and plaster models. Am J Orthod Dentofacial Orthop 132:346–352CrossRefPubMed
16.
go back to reference Naidu D, Scott J, Ong D et al (2009) Validity, reliability and reproducibility of three methods used to measure tooth widths for Bolton analyses. Aust Orthod J 25:97–103PubMed Naidu D, Scott J, Ong D et al (2009) Validity, reliability and reproducibility of three methods used to measure tooth widths for Bolton analyses. Aust Orthod J 25:97–103PubMed
17.
go back to reference Peters M, DeLong R, Pintado M et al (1999) Comparison of two measurement techniques for clinical wear. J Dent 27:479–485CrossRefPubMed Peters M, DeLong R, Pintado M et al (1999) Comparison of two measurement techniques for clinical wear. J Dent 27:479–485CrossRefPubMed
18.
go back to reference Radeke J, Wense C von der, Lapatki BG (2014) Comparison of orthodontic measurements on dental plaster casts and 3D scans. J Orofac Orthop 75:264–274CrossRefPubMed Radeke J, Wense C von der, Lapatki BG (2014) Comparison of orthodontic measurements on dental plaster casts and 3D scans. J Orofac Orthop 75:264–274CrossRefPubMed
19.
go back to reference Rees DJ (1953) A method of assessing the proportional relation of apical bases and contact diameters of the teeth. Am J Orthod Dentofacial Orthop 39:695–707CrossRef Rees DJ (1953) A method of assessing the proportional relation of apical bases and contact diameters of the teeth. Am J Orthod Dentofacial Orthop 39:695–707CrossRef
20.
go back to reference Rheude B, Sadowsky PL, Ferriera A et al (2005) An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod 75:300–304PubMed Rheude B, Sadowsky PL, Ferriera A et al (2005) An evaluation of the use of digital study models in orthodontic diagnosis and treatment planning. Angle Orthod 75:300–304PubMed
21.
go back to reference Santoro M, Galkin S, Teredesai M et al (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124:101–105CrossRefPubMed Santoro M, Galkin S, Teredesai M et al (2003) Comparison of measurements made on digital and plaster models. Am J Orthod Dentofacial Orthop 124:101–105CrossRefPubMed
22.
go back to reference Sjögren AP, Lindgren JE, Huggare JÅ (2010) Orthodontic study cast analysis—reproducibility of recordings and agreement between conventional and 3D virtual measurements. J Digit Imaging 23:482–492PubMedCentralCrossRefPubMed Sjögren AP, Lindgren JE, Huggare JÅ (2010) Orthodontic study cast analysis—reproducibility of recordings and agreement between conventional and 3D virtual measurements. J Digit Imaging 23:482–492PubMedCentralCrossRefPubMed
23.
go back to reference Steinhäuser-Andresen S, Detterbeck A, Funk C et al (2011) Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology. J Orofac Orthop 72:111–124CrossRefPubMed Steinhäuser-Andresen S, Detterbeck A, Funk C et al (2011) Pilot study on accuracy and dimensional stability of impression materials using industrial CT technology. J Orofac Orthop 72:111–124CrossRefPubMed
24.
go back to reference Torassian G, Kau CH, English JD et al (2010) Digital models vs plaster models using alginate and alginate substitute materials. Angle Orthod 80:662–669CrossRef Torassian G, Kau CH, English JD et al (2010) Digital models vs plaster models using alginate and alginate substitute materials. Angle Orthod 80:662–669CrossRef
25.
go back to reference Veenema AC, Katsaros C, Boxum SC et al (2009) Index of complexity, outcome and need scored on plaster and digital models. Eur J Orthod 31:281–286CrossRefPubMed Veenema AC, Katsaros C, Boxum SC et al (2009) Index of complexity, outcome and need scored on plaster and digital models. Eur J Orthod 31:281–286CrossRefPubMed
26.
go back to reference Vogel AB, Kilic F, Schmidt F et al (2014) Dimensionsgenauigkeit digitaler Kiefermodelle erstellt aus Abformungs- bzw. Gipsmodellscans bei praxisorientiertem Studiendesign. J Orofac Orthop (accepted for publication) Vogel AB, Kilic F, Schmidt F et al (2014) Dimensionsgenauigkeit digitaler Kiefermodelle erstellt aus Abformungs- bzw. Gipsmodellscans bei praxisorientiertem Studiendesign. J Orofac Orthop (accepted for publication)
27.
go back to reference Whetten JL, Williamson PC, Heo G et al (2006) Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 130:485–491CrossRefPubMed Whetten JL, Williamson PC, Heo G et al (2006) Variations in orthodontic treatment planning decisions of Class II patients between virtual 3-dimensional models and traditional plaster study models. Am J Orthod Dentofacial Orthop 130:485–491CrossRefPubMed
28.
go back to reference Zilberman O, Huggare JAV, Konstantinos APA (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 73:301–306PubMed Zilberman O, Huggare JAV, Konstantinos APA (2003) Evaluation of the validity of tooth size and arch width measurements using conventional and three-dimensional virtual orthodontic models. Angle Orthod 73:301–306PubMed
Metadata
Title
Optical 3D scans for orthodontic diagnostics performed on full-arch impressions
Completeness of surface structure representation
Authors
A.B. Vogel
F. Kilic
F. Schmidt
S. Rübel
B.G. Lapatki
Publication date
01-11-2015
Publisher
Springer Berlin Heidelberg
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 6/2015
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-015-0309-1

Other articles of this Issue 6/2015

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2015 Go to the issue