Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 2/2014

01-03-2014 | Original article

Locating the center of resistance in individual teeth via two- and three-dimensional radiographic data

Authors: M.E. Geiger, B.G. Lapatki

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 2/2014

Login to get access

Abstract

Objectives

The preferred reference point to describe the force–moment system exerted upon a tooth is its center of resistance (CR). Morphological data on the dentoalveolar complex can be used to locate this point either three-dimensionally (3D) with the finite element (FE) method, or two-dimensionally (2D) with a mathematical method calculating the centroid of the projected dental root. This study aimed to compare and appraise these two methods with regard to their accuracy and time requirements.

Methods

Three radiological datasets with permanent teeth were included. Each single 3D dataset was used in each of these patients to derive both a 3D and 2D morphological model of the upper right central incisor. CR levels were evaluated in percent, indicating the relative height as measured from the (averaged levels of the mesial and distal) bony ridge margin to the tooth’s apex.

Results

Mean CR levels of 42.8% for distalization and 56.5% for lingual movement were obtained from the 3D FE simulations of initial tooth movement. The 2D mathematical model yielded a mean CR level of 44.5%. Compared to this mathematical approach, the 3D FE simulations were around 15 times more time-consuming, with an interactive requirement of around 15 h.

Conclusion

Because they contain so much more morphological information, 3D FE simulations should offer superior predictability. In addition, they are the only method offering detailed CR identification for specific directions of tooth movement. Before this method can be used in clinical practice, however, there is still a major need to reduce time requirements via further automation of process steps and to investigate how it should be applied to different tooth types.
Literature
2.
go back to reference Bourauel C, Keilig L, Rahimi A et al (2007) Computer-aided analysis of the biomechanics of tooth movements. Int J Comput Dent 10:25–40PubMed Bourauel C, Keilig L, Rahimi A et al (2007) Computer-aided analysis of the biomechanics of tooth movements. Int J Comput Dent 10:25–40PubMed
3.
go back to reference Burstone CJ (1962) The biomechanics of tooth movement. In: Kraus BS, Riedel RA (eds) Vistas in orthodontics. Lea & Febiger, Philadelphia, pp 197–213 Burstone CJ (1962) The biomechanics of tooth movement. In: Kraus BS, Riedel RA (eds) Vistas in orthodontics. Lea & Febiger, Philadelphia, pp 197–213
4.
go back to reference Burstone CJ, Pryputniewicz RJ (1980) Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 77:396–409PubMedCrossRef Burstone CJ, Pryputniewicz RJ (1980) Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 77:396–409PubMedCrossRef
5.
go back to reference Burstone CJ, Pryputniewicz R, Weeks R (1981) Centers of resistance of the human mandibular molars. J Dent Res 60:515 Burstone CJ, Pryputniewicz R, Weeks R (1981) Centers of resistance of the human mandibular molars. J Dent Res 60:515
6.
go back to reference Cattaneo PM, Dalstra M, Melsen B (2008) Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens. Am J Orthod Dentofacial Orthop 133:681–689PubMedCrossRef Cattaneo PM, Dalstra M, Melsen B (2008) Moment-to-force ratio, center of rotation, and force level: a finite element study predicting their interdependency for simulated orthodontic loading regimens. Am J Orthod Dentofacial Orthop 133:681–689PubMedCrossRef
7.
go back to reference Dermaut L, Kleutghen J, De Clerk H (1986) Experimental determination of the center of resistance of the upper molar in amacerated, dry human skull submitted to horizontal headgear traction. Am J Orthod Dentofacial Orthop 90:29–36PubMedCrossRef Dermaut L, Kleutghen J, De Clerk H (1986) Experimental determination of the center of resistance of the upper molar in amacerated, dry human skull submitted to horizontal headgear traction. Am J Orthod Dentofacial Orthop 90:29–36PubMedCrossRef
8.
go back to reference Dorow C (2004) Numerische Simulation und experimentelle Untersuchung zur Zahnbewegung. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr biol hum, Medizinische Fakultät der Universität Ulm Dorow C (2004) Numerische Simulation und experimentelle Untersuchung zur Zahnbewegung. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr biol hum, Medizinische Fakultät der Universität Ulm
9.
go back to reference Dorow C, Sander FG (2005) Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop 66:208–218PubMedCrossRef Dorow C, Sander FG (2005) Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop 66:208–218PubMedCrossRef
10.
go back to reference Fukagawa H, Motegi E, Fuma A et al (2010) Tooth inclination in elderly with many remaining teeth observed by 3-D imaging. Bull Tokyo Dent Coll 51:69–76PubMedCrossRef Fukagawa H, Motegi E, Fuma A et al (2010) Tooth inclination in elderly with many remaining teeth observed by 3-D imaging. Bull Tokyo Dent Coll 51:69–76PubMedCrossRef
11.
go back to reference Geiger M (2013) Finite element-based force/moment-driven simulation of orthodontic tooth movement. Comput Methods Biomech Biomed Engin 16:639–647PubMedCrossRef Geiger M (2013) Finite element-based force/moment-driven simulation of orthodontic tooth movement. Comput Methods Biomech Biomed Engin 16:639–647PubMedCrossRef
12.
go back to reference Geramy A (2000) Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). Am J Orthod Dentofacial Orthop 117:399–405PubMedCrossRef Geramy A (2000) Alveolar bone resorption and the center of resistance modification (3-D analysis by means of the finite element method). Am J Orthod Dentofacial Orthop 117:399–405PubMedCrossRef
13.
go back to reference Göz G, Rahn BA (1992) Die Bedeutung des Widerstandszentrums für die Biologie der Zahnbewegung. Fortschr Kieferorthop 53:137–141PubMedCrossRef Göz G, Rahn BA (1992) Die Bedeutung des Widerstandszentrums für die Biologie der Zahnbewegung. Fortschr Kieferorthop 53:137–141PubMedCrossRef
14.
go back to reference Hocevar RA (1981) Understanding, planning, and managing tooth movement: orthodontic force system theory. Am J Orthod 80:457–477PubMedCrossRef Hocevar RA (1981) Understanding, planning, and managing tooth movement: orthodontic force system theory. Am J Orthod 80:457–477PubMedCrossRef
15.
go back to reference Hohmann A, Kober C, Radtke T et al (2008) On the feasibility of using the finite element approach for the characterization of the dental periodontal ligament in vivo. J Med Biomech 23:26–30 Hohmann A, Kober C, Radtke T et al (2008) On the feasibility of using the finite element approach for the characterization of the dental periodontal ligament in vivo. J Med Biomech 23:26–30
16.
go back to reference Hohmann A (2009) Finite-Elemente-Simulationen und Experimente zur Modellierung des menschlichen Parodontalligaments. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr. biol. hum., Medizinische Fakultät der Universität Ulm Hohmann A (2009) Finite-Elemente-Simulationen und Experimente zur Modellierung des menschlichen Parodontalligaments. Dissertation zur Erlangung des Doktorgrades der Humanbiologie, Dr. biol. hum., Medizinische Fakultät der Universität Ulm
17.
go back to reference Jones ML, Hickman J, Middleton J et al (2001) A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod 28:29–38PubMedCrossRef Jones ML, Hickman J, Middleton J et al (2001) A validated finite element method study of orthodontic tooth movement in the human subject. J Orthod 28:29–38PubMedCrossRef
18.
go back to reference Lapatki BG, Paul O (2007) Smart brackets for 3D-force-moment measurements in orthodontic research and therapy—developmental status and prospects. J Orofac Orthop 68:377–396PubMedCrossRef Lapatki BG, Paul O (2007) Smart brackets for 3D-force-moment measurements in orthodontic research and therapy—developmental status and prospects. J Orofac Orthop 68:377–396PubMedCrossRef
19.
go back to reference Meyer BN, Chen J, Katona TR (2010) Does the center of resistance depend on the direction of tooth movement. Am J Orthod Dentofacial Orthop 137:354–361PubMedCrossRef Meyer BN, Chen J, Katona TR (2010) Does the center of resistance depend on the direction of tooth movement. Am J Orthod Dentofacial Orthop 137:354–361PubMedCrossRef
20.
go back to reference Osipenko MA, Nyashin MY, Nyashin YI (1999) Center of resistance and center of rotation of a tooth: the definitions, conditions of existence, properties. Russ J Biomech 1:5–15 Osipenko MA, Nyashin MY, Nyashin YI (1999) Center of resistance and center of rotation of a tooth: the definitions, conditions of existence, properties. Russ J Biomech 1:5–15
21.
go back to reference Pedersen E, Andersen K, Gjessing P (1990) Electronic determination of centres of rotation produced by orthodontic force systems. Eur J Orthod 12:272–280PubMedCrossRef Pedersen E, Andersen K, Gjessing P (1990) Electronic determination of centres of rotation produced by orthodontic force systems. Eur J Orthod 12:272–280PubMedCrossRef
22.
go back to reference Rues S, Panchaphongsaphak B, Gieschke P et al (2011) An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. J Biomech 44:1892–1900PubMedCrossRef Rues S, Panchaphongsaphak B, Gieschke P et al (2011) An analysis of the measurement principle of smart brackets for 3D force and moment monitoring in orthodontics. J Biomech 44:1892–1900PubMedCrossRef
23.
go back to reference Sia S, Koga Y, Yoshida N (2007) Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study. Angle Orthod 77:999–1003PubMedCrossRef Sia S, Koga Y, Yoshida N (2007) Determining the center of resistance of maxillary anterior teeth subjected to retraction forces in sliding mechanics. An in vivo study. Angle Orthod 77:999–1003PubMedCrossRef
24.
go back to reference Sia S, Shibazaki T, Koga Y et al (2009) Experimental determination of optimal force system required for control of anterior tooth movement in sliding mechanics. Am J Orthod Dentofacial Orthop 135:36–41PubMedCrossRef Sia S, Shibazaki T, Koga Y et al (2009) Experimental determination of optimal force system required for control of anterior tooth movement in sliding mechanics. Am J Orthod Dentofacial Orthop 135:36–41PubMedCrossRef
25.
go back to reference Tanne K, Koenig HA, Burstone CJ (1988) Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthop 94:426–431PubMedCrossRef Tanne K, Koenig HA, Burstone CJ (1988) Moment to force ratios and the center of rotation. Am J Orthod Dentofacial Orthop 94:426–431PubMedCrossRef
26.
go back to reference Vanden Bulcke MM, Burstone CJ, Sachdeva RCL et al (1987) Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 91:375–384CrossRef Vanden Bulcke MM, Burstone CJ, Sachdeva RCL et al (1987) Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 91:375–384CrossRef
27.
go back to reference Vanden Bulcke MM, Dermaut LR, Sachdeva CL et al (1986) The center of resistance of anterior teeth during intrusion using the laser reflection technique and holographic interferometry. Am J Orthod Dentofacial Orthop 90:211–220CrossRef Vanden Bulcke MM, Dermaut LR, Sachdeva CL et al (1986) The center of resistance of anterior teeth during intrusion using the laser reflection technique and holographic interferometry. Am J Orthod Dentofacial Orthop 90:211–220CrossRef
28.
go back to reference Viceconti M, Olsen S, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech 20:451–454CrossRef Viceconti M, Olsen S, Burton K (2005) Extracting clinically relevant data from finite element simulations. Clin Biomech 20:451–454CrossRef
29.
go back to reference Vollmer D, Bourauel C, Maier K et al (1999) Determination of the centre of resistance in an upper human canine and idealized tooth model. Eur J Orthod 21:633–648PubMedCrossRef Vollmer D, Bourauel C, Maier K et al (1999) Determination of the centre of resistance in an upper human canine and idealized tooth model. Eur J Orthod 21:633–648PubMedCrossRef
30.
go back to reference Yoshida N, Koga Y, Kobayashi K et al (2000) A new method for qualitative and quantitative evaluation of tooth displacement under the application of orthodontic forces using magnetic sensors. Med Eng Phys 22:293–300PubMedCrossRef Yoshida N, Koga Y, Kobayashi K et al (2000) A new method for qualitative and quantitative evaluation of tooth displacement under the application of orthodontic forces using magnetic sensors. Med Eng Phys 22:293–300PubMedCrossRef
Metadata
Title
Locating the center of resistance in individual teeth via two- and three-dimensional radiographic data
Authors
M.E. Geiger
B.G. Lapatki
Publication date
01-03-2014
Publisher
Springer Berlin Heidelberg
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 2/2014
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-013-0198-0

Other articles of this Issue 2/2014

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 2/2014 Go to the issue

Informationen

Mitteilungsseiten