Skip to main content
Top
Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2012

01-12-2012 | Original article

Gene analysis of signal transduction factors and transcription factors in periodontal ligament cells following application of dynamic strain

Authors: B. Deschner, B. Rath, A. Jäger, J. Deschner, B. Denecke, S. Memmert, W. Götz

Published in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Issue 6/2012

Login to get access

Abstract

Objective

Orthodontic treatment is usually associated with the application of forces to teeth and periodontium. Instrumental in transmitting these forces are the cells of the periodontal ligament (PDL). In the present study, we used an established strain model to investigate the potential role of biophysical stimulation in modulating the gene expression pattern of these PDL cells.

Materials and methods

PDL cells derived from non-carious and periodontally healthy teeth of six patients were grown on culture plates coated with collagen type I. Upon completion of culture, dynamic strain was applied to the cells for 24 h, using 3% of tensile force and a frequency of 0.05 Hz. This loading protocol for biomechanical stimulation was followed by extracting the RNA from the cells and using a RT2 PCR array® for analysis.

Results

Compared to non-stimulated control cells, this analysis revealed the induction of several factors (e.g., RELA, IRF1, MAX, MYC, CDKN1B, BCL2, BCL2A1) known to influence tissue homeostasis by contributing essentially to cell proliferation, cell differentiation, and the inhibition of apoptosis.

Conclusion

This study demonstrates that the biomechanical stimulation of PDL cells is an important factor in periodontal tissue homeostasis.
Literature
1.
go back to reference Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:6–621CrossRef Basdra EK, Komposch G (1997) Osteoblast-like properties of human periodontal ligament cells: an in vitro analysis. Eur J Orthod 19:6–621CrossRef
2.
go back to reference Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676PubMedCrossRef Bellido T, Borba VZ, Roberson P, Manolagas SC (1997) Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138:3666–3676PubMedCrossRef
3.
go back to reference Berg JM, Tymoczko JL, Stryer L (2002) Chapter 15. Signal-transduction pathways: an introduction to information metabolism biochemistry, 5th edn. W. H. Freeman, New York Berg JM, Tymoczko JL, Stryer L (2002) Chapter 15. Signal-transduction pathways: an introduction to information metabolism biochemistry, 5th edn. W. H. Freeman, New York
4.
go back to reference Carnes DL, Maeder CL, Graves DT (1997) Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 68:701–707PubMedCrossRef Carnes DL, Maeder CL, Graves DT (1997) Cells with osteoblastic phenotypes can be explanted from human gingiva and periodontal ligament. J Periodontol 68:701–707PubMedCrossRef
5.
go back to reference Choi MH, Noh WC, Park JW et al (2011) Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro. J Periodontal Implant Sci 41:167–175PubMedCrossRef Choi MH, Noh WC, Park JW et al (2011) Gene expression pattern during osteogenic differentiation of human periodontal ligament cells in vitro. J Periodontal Implant Sci 41:167–175PubMedCrossRef
6.
go back to reference Davidovitch Z (1991) Tooth movement. Crit Rev Oral Biol Med 2:411–450PubMed Davidovitch Z (1991) Tooth movement. Crit Rev Oral Biol Med 2:411–450PubMed
7.
go back to reference Araujo RM de, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42:22 Araujo RM de, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42:22
8.
go back to reference Deschner J, Rath-Deschner B, Reimann S et al (2007) Regulatory effects of biophysical strain on rat TMJ discs. Ann Anat 189:326–328PubMedCrossRef Deschner J, Rath-Deschner B, Reimann S et al (2007) Regulatory effects of biophysical strain on rat TMJ discs. Ann Anat 189:326–328PubMedCrossRef
9.
go back to reference Farré D, Roset R, Huerta M et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31(13):3651–3653PubMedCrossRef Farré D, Roset R, Huerta M et al (2003) Identification of patterns in biological sequences at the ALGGEN server: PROMO and MALGEN. Nucleic Acids Res 31(13):3651–3653PubMedCrossRef
10.
go back to reference Hong SY, Jeon YM, Lee HJ et al (2010) Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 335:263–272PubMedCrossRef Hong SY, Jeon YM, Lee HJ et al (2010) Activation of RhoA and FAK induces ERK-mediated osteopontin expression in mechanical force-subjected periodontal ligament fibroblasts. Mol Cell Biochem 335:263–272PubMedCrossRef
11.
12.
go back to reference Jeon YM, Kook SH, Son YO et al (2009) Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fribroblasts. Mol Cell Biochem 320:45–52PubMedCrossRef Jeon YM, Kook SH, Son YO et al (2009) Role of MAPK in mechanical force-induced up-regulation of type I collagen and osteopontin in human gingival fribroblasts. Mol Cell Biochem 320:45–52PubMedCrossRef
13.
go back to reference Kook SH, Jang YS, Lee JC (2011) Involvement of JNK-AP-1 and ERK-NF-? B signaling in tension-stimulated expression of Type I collagen and MMP-1 in human periodontal ligament fibroblasts. J Appl Physiol 111:75–83CrossRef Kook SH, Jang YS, Lee JC (2011) Involvement of JNK-AP-1 and ERK-NF-? B signaling in tension-stimulated expression of Type I collagen and MMP-1 in human periodontal ligament fibroblasts. J Appl Physiol 111:75–83CrossRef
14.
go back to reference Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Denofac Orthop 129:496–e1 Krishnan V, Davidovitch Z (2006) Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod Denofac Orthop 129:496–e1
15.
16.
go back to reference Leon ER, Iwasaki K, Komaki M et al (2007) Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells. J Periodontal Res 42:527–535PubMedCrossRef Leon ER, Iwasaki K, Komaki M et al (2007) Osteogenic effect of interleukin-11 and synergism with ascorbic acid in human periodontal ligament cells. J Periodontal Res 42:527–535PubMedCrossRef
17.
go back to reference Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129:458–468PubMedCrossRef Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129:458–468PubMedCrossRef
18.
go back to reference Matsuda N, Yokoyama K, Takeshita S, Watanabe M (1998) Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol 43(12):987–997PubMedCrossRef Matsuda N, Yokoyama K, Takeshita S, Watanabe M (1998) Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro. Arch Oral Biol 43(12):987–997PubMedCrossRef
19.
go back to reference McCabe LR, Banerjee C, Kundu R et al (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137:4398–4408PubMedCrossRef McCabe LR, Banerjee C, Kundu R et al (1996) Developmental expression and activities of specific fos and jun proteins are functionally related to osteoblast maturation: role of Fra-2 and Jun D during differentiation. Endocrinology 137:4398–4408PubMedCrossRef
20.
go back to reference Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240PubMedCrossRef Meikle MC (2006) The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur J Orthod 28:221–240PubMedCrossRef
21.
go back to reference Messeguer X, Escudero R, Farré D et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. 18(2):333–334 Messeguer X, Escudero R, Farré D et al (2002) PROMO: detection of known transcription regulatory elements using species-tailored searches. 18(2):333–334
22.
go back to reference Monnouchi S, Maeda H, Fujii S et al (2011) The roles of angiotensin II in stretched periodontal ligament cells. J Dent Res 90(2):181–185PubMedCrossRef Monnouchi S, Maeda H, Fujii S et al (2011) The roles of angiotensin II in stretched periodontal ligament cells. J Dent Res 90(2):181–185PubMedCrossRef
23.
go back to reference Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth obility: formulation of a non-linear constitutive law fort he periodontal ligament. Dental Materials 20:623–629PubMedCrossRef Natali AN, Pavan PG, Scarpa C (2004) Numerical analysis of tooth obility: formulation of a non-linear constitutive law fort he periodontal ligament. Dental Materials 20:623–629PubMedCrossRef
24.
go back to reference Nokhbehsaim M, Deschner B, Winter J et al (2010) Contribution of orthodontic load to inflammation-mediated periodontal destruction. J Orofac Orthop 71:390–402PubMedCrossRef Nokhbehsaim M, Deschner B, Winter J et al (2010) Contribution of orthodontic load to inflammation-mediated periodontal destruction. J Orofac Orthop 71:390–402PubMedCrossRef
25.
go back to reference Pavasant P, Yongchaitrakul T (2011) Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000(56):4–165 Pavasant P, Yongchaitrakul T (2011) Role of mechanical stress on the function of periodontal ligament cells. Periodontol 2000(56):4–165
26.
go back to reference Pavlidis D, Bourauel C, Rahimi A et al (2009) Proliferation and differentiation of periodontal ligament cells following short-term tooth movement in the rat using different regimens of loading. Eur J Orthod 31:565–571PubMedCrossRef Pavlidis D, Bourauel C, Rahimi A et al (2009) Proliferation and differentiation of periodontal ligament cells following short-term tooth movement in the rat using different regimens of loading. Eur J Orthod 31:565–571PubMedCrossRef
27.
go back to reference Pearson G, Robinson F (2001) Mitogen-Activated Protein (MAP) Kinase pathways: regulation and physiological functions. Endocr Rev 22:3–183CrossRef Pearson G, Robinson F (2001) Mitogen-Activated Protein (MAP) Kinase pathways: regulation and physiological functions. Endocr Rev 22:3–183CrossRef
28.
go back to reference Piek E, Sleumer LS, Someren EP van et al (2010) Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 46:613–627PubMedCrossRef Piek E, Sleumer LS, Someren EP van et al (2010) Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 46:613–627PubMedCrossRef
29.
go back to reference Premaraj S, Souza I, Premaraj T (2011) Mechanical loading activates β-catenin signaling in periodontal ligament cells. Angle Orthod 81:592–599PubMedCrossRef Premaraj S, Souza I, Premaraj T (2011) Mechanical loading activates β-catenin signaling in periodontal ligament cells. Angle Orthod 81:592–599PubMedCrossRef
30.
go back to reference Rath-Deschner B, Deschner J, Reimann S et al (2009) Regulatory effects of biomechanical strain on the insulin-like growth factor system in human periodontal cells. J Biomech 42:2584–2589PubMedCrossRef Rath-Deschner B, Deschner J, Reimann S et al (2009) Regulatory effects of biomechanical strain on the insulin-like growth factor system in human periodontal cells. J Biomech 42:2584–2589PubMedCrossRef
31.
go back to reference Reimold AM, Grusby MJ, Kosaras B et al (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265PubMedCrossRef Reimold AM, Grusby MJ, Kosaras B et al (1996) Chondrodysplasia and neurological abnormalities in ATF-2-deficient mice. Nature 379:262–265PubMedCrossRef
32.
go back to reference Ritter N, Mussig E, Steinberg T et al (2007) Elevated expression of genes assigned to NF-kappaB and apoptotic pathways in human periodontal ligament fibroblasts following mechanical stretch. Cell Tissue Res 328(3):537–548PubMedCrossRef Ritter N, Mussig E, Steinberg T et al (2007) Elevated expression of genes assigned to NF-kappaB and apoptotic pathways in human periodontal ligament fibroblasts following mechanical stretch. Cell Tissue Res 328(3):537–548PubMedCrossRef
33.
go back to reference Seger R, Krebs E (1995) The MAPK signaling cascade. FASEB J 9:726–735PubMed Seger R, Krebs E (1995) The MAPK signaling cascade. FASEB J 9:726–735PubMed
34.
go back to reference Tsuji K, Uno K, Zhang GX, Tamura M (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94–103PubMedCrossRef Tsuji K, Uno K, Zhang GX, Tamura M (2004) Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab 22(2):94–103PubMedCrossRef
35.
go back to reference Wescott DC, Pinkerton MN, Gaffey BJ et al (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86:1212–1216PubMedCrossRef Wescott DC, Pinkerton MN, Gaffey BJ et al (2007) Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 86:1212–1216PubMedCrossRef
36.
go back to reference Xu C, Hao Y, Wei B et al (2011) Apoptotic gene expression by human periodontal ligament cells following cyclic stretch. J Periodontal Res 46:742–748PubMedCrossRef Xu C, Hao Y, Wei B et al (2011) Apoptotic gene expression by human periodontal ligament cells following cyclic stretch. J Periodontal Res 46:742–748PubMedCrossRef
37.
go back to reference Yamashiro K, Myokai F, Hiratsuka K et al (2007) Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 39:910–921PubMedCrossRef Yamashiro K, Myokai F, Hiratsuka K et al (2007) Oligonucleotide array analysis of cyclic tension-responsive genes in human periodontal ligament fibroblasts. Int J Biochem Cell Biol 39:910–921PubMedCrossRef
38.
go back to reference Yang YQ, Li XT, Rabie AB et al (2006) Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro. Front Biosci 11:776–781PubMedCrossRef Yang YQ, Li XT, Rabie AB et al (2006) Human periodontal ligament cells express osteoblastic phenotypes under intermittent force loading in vitro. Front Biosci 11:776–781PubMedCrossRef
39.
go back to reference Zainal Ariffin SH et al (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11:1788–1803CrossRef Zainal Ariffin SH et al (2011) Cellular and molecular changes in orthodontic tooth movement. Sci World J 11:1788–1803CrossRef
40.
go back to reference Zambuzzi WF, Bruni-Cardoso A, Granjeiro JM et al (2009) On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem 108:134–144PubMedCrossRef Zambuzzi WF, Bruni-Cardoso A, Granjeiro JM et al (2009) On the road to understanding of the osteoblast adhesion: cytoskeleton organization is rearranged by distinct signaling pathways. J Cell Biochem 108:134–144PubMedCrossRef
41.
go back to reference Zhu J, Zhang X, Wang C et al (2008) Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9:2322–2332PubMedCrossRef Zhu J, Zhang X, Wang C et al (2008) Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int J Mol Sci 9:2322–2332PubMedCrossRef
42.
go back to reference Ziegler N, Alonso A, Steinberg T et al (2010) Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol 11:10PubMedCrossRef Ziegler N, Alonso A, Steinberg T et al (2010) Mechano-transduction in periodontal ligament cells identifies activated states of MAP-kinases p42/44 and p38-stress kinase as a mechanism for MMP-13 expression. BMC Cell Biol 11:10PubMedCrossRef
Metadata
Title
Gene analysis of signal transduction factors and transcription factors in periodontal ligament cells following application of dynamic strain
Authors
B. Deschner
B. Rath
A. Jäger
J. Deschner
B. Denecke
S. Memmert
W. Götz
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Issue 6/2012
Print ISSN: 1434-5293
Electronic ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-012-0104-1

Other articles of this Issue 6/2012

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 6/2012 Go to the issue

Informationen

DGKFO-Seiten