Skip to main content
Top
Published in: Inflammation Research 1/2021

01-01-2021 | Acute Respiratory Distress-Syndrome | Original Research Paper

PIM1 inhibition attenuated endotoxin-induced acute lung injury through modulating ELK3/ICAM1 axis on pulmonary microvascular endothelial cells

Authors: Yumeng Cao, Xia Chen, Yuqi Liu, Xingyi Zhang, Yun Zou, Jinbao Li

Published in: Inflammation Research | Issue 1/2021

Login to get access

Abstract

Objective

The dysfunction of pulmonary microvascular endothelial cells (PMVECs) is one of the critical characteristics of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) induced by severe infection. PIM1 is a constitutively active serine/threonine kinase that is involved in multiple biological processes. However, the underlying correlation between PIM1 and PMVECs injury remains unclear. The main purpose of this study was to reveal roles of PIM1 and explore the potential mechanisms during the development of endotoxin-induced ALI induced by intraperitoneal LPS administration.

Materials and methods

PIM1 level in the lung tissues of endotoxin-induced ALI mice or plasma derived from cardiopulmonary bypass (CPB)-induced ALI patients were measured. The protective roles of PIM1 specific inhibitor SMI-4a on endotoxin-induced lung injuries were evaluated through histological, permeability, neutrophil infiltration and survival assessment. The relationship between PIM1 and ELK3/ICAM-1 axis was validated in vivo and vitro. The correlation between plasma PIM1 and indicative vascular endothelium injury biomarkers (PaO2/FiO2 ratio, Ang-II, E-selectin and PAI-1) levels derived from CPB-induced ALI patient were analyzed.

Results

PIM1 expression in the lung tissues was increased in the mice of endotoxin-induced ALI. The PIM1 specific inhibitor SMI-4a administration relieved the severity of endotoxin-induced ALI. More importantly, PIM1 modulates ICAM1 expression through regulating transcription factor ELK3 expression in vitro. Eventually, plasma PIM1 level was positively correlated with Ang-II and PAI-1 levels but negatively correlated with SpO2/FiO2 ratio among CPB induced ALI patients.

Conclusion

Our results indicated that PIM1 inhibition carried a protective role against endotoxin-induced ALI by modulating the ELK3/ICAM1 axis on PMVECs. PIM1 may be a potential therapeutic target for endotoxin-induced ALI.
Appendix
Available only for authorised users
Literature
6.
go back to reference Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med. 1982;3(1):35–56.PubMed Bachofen M, Weibel ER. Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med. 1982;3(1):35–56.PubMed
17.
go back to reference Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991;10(3):655–64.PubMedPubMedCentralCrossRef Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991;10(3):655–64.PubMedPubMedCentralCrossRef
Metadata
Title
PIM1 inhibition attenuated endotoxin-induced acute lung injury through modulating ELK3/ICAM1 axis on pulmonary microvascular endothelial cells
Authors
Yumeng Cao
Xia Chen
Yuqi Liu
Xingyi Zhang
Yun Zou
Jinbao Li
Publication date
01-01-2021
Publisher
Springer International Publishing
Published in
Inflammation Research / Issue 1/2021
Print ISSN: 1023-3830
Electronic ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-020-01420-3

Other articles of this Issue 1/2021

Inflammation Research 1/2021 Go to the issue