Skip to main content
Top
Published in: Journal of Endocrinological Investigation 2/2018

01-02-2018 | Original Article

Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents

Authors: Z. A. Sadeghabadi, M. Nourbakhsh, M. Alaee, B. Larijani, M. Razzaghy-Azar

Published in: Journal of Endocrinological Investigation | Issue 2/2018

Login to get access

Abstract

Purpose

The peroxisome proliferator-activated receptor γ (PPARγ) is highly expressed in adipose tissue and functions as transcriptional regulator of metabolism and adipocyte differentiation. Angiopoietin-like protein 4 (ANGPTL4), a central player in various aspects of energy homoeostasis, is induced by PPARγ. The aim of this study was to evaluate ANGPTL4 plasma levels and PPARγ gene expression in peripheral blood mononuclear cells (PBMCs) of children and adolescents with obesity and their association with metabolic parameters.

Methods

Seventy children and adolescents (35 obese and 35 age- and gender-matched control subjects), were selected. PBMCs were separated and their total RNA was extracted. After cDNA synthesis, PPARG gene expression was analyzed by real-time PCR. Relative differences in gene expression were calculated by ΔCt method using β-actin as a normalizer. Serum ANGPTL4 and insulin were measured using ELISA, and insulin resistance (IR) was calculated by the homeostatic model assessment of insulin resistance (HOMA-IR). Fasting plasma glucose (FPG), triglyceride, total cholesterol, LDL-C and HDL-C were also measured.

Results

The expression of the PPARG gene as well as the plasma ANGPTL4 levels were significantly diminished in obese subjects as compared to control ones. However, they were not significantly different in obese children with IR compared to obese children without IR or in those with or without metabolic syndrome. A significant positive correlation was found between PPARγ and ANGPTL4 (r = 0.364, p = 0.002). PPARγ expression levels were also significantly correlated with FPG (r = −0.35, p = 0.003).

Conclusion

PPARγ is decreased in childhood obesity and may be responsible for diminished ANGPTL4 levels.
Literature
1.
go back to reference Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5(s1):4–85CrossRefPubMed Lobstein T, Baur L, Uauy R (2004) Obesity in children and young people: a crisis in public health. Obes Rev 5(s1):4–85CrossRefPubMed
2.
go back to reference De Onis M, Blössner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92(5):1257–1264CrossRefPubMed De Onis M, Blössner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92(5):1257–1264CrossRefPubMed
3.
go back to reference Sookoian S, Pirola CJ (2011) Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 13(2):149–157CrossRefPubMed Sookoian S, Pirola CJ (2011) Metabolic syndrome: from the genetics to the pathophysiology. Curr Hypertens Rep 13(2):149–157CrossRefPubMed
4.
go back to reference Harris M (2013) The metabolic syndrome. Aust Fam Phys 42:524–527 Harris M (2013) The metabolic syndrome. Aust Fam Phys 42:524–527
5.
go back to reference Lara-Castro C, Fu Y, Chung BH, Garvey WT (2007) Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. Curr Opin Lipidol 18(3):263–270CrossRefPubMed Lara-Castro C, Fu Y, Chung BH, Garvey WT (2007) Adiponectin and the metabolic syndrome: mechanisms mediating risk for metabolic and cardiovascular disease. Curr Opin Lipidol 18(3):263–270CrossRefPubMed
7.
go back to reference Lowell BB (1999) An essential regulator of adipogenesis and modulator of fat cell function: PPAR [gamma]. Cell 99(3):239–242CrossRefPubMed Lowell BB (1999) An essential regulator of adipogenesis and modulator of fat cell function: PPAR [gamma]. Cell 99(3):239–242CrossRefPubMed
8.
go back to reference Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87(6):2784–2791. doi:10.1210/jcem.87.6.8567 CrossRefPubMed Miyazaki Y, Mahankali A, Matsuda M, Mahankali S, Hardies J, Cusi K, Mandarino LJ, DeFronzo RA (2002) Effect of pioglitazone on abdominal fat distribution and insulin sensitivity in type 2 diabetic patients. J Clin Endocrinol Metab 87(6):2784–2791. doi:10.​1210/​jcem.​87.​6.​8567 CrossRefPubMed
9.
go back to reference Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339(14):953–959CrossRefPubMed Ristow M, Müller-Wieland D, Pfeiffer A, Krone W, Kahn CR (1998) Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 339(14):953–959CrossRefPubMed
10.
go back to reference Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45(12):1661–1669CrossRefPubMed Saltiel AR, Olefsky JM (1996) Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 45(12):1661–1669CrossRefPubMed
11.
go back to reference Barroso I, Gurnell M, Crowley V, Agostini M, Schwabe J, Soos M, Maslen GL, Williams T, Lewis H, Schafer A (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883PubMed Barroso I, Gurnell M, Crowley V, Agostini M, Schwabe J, Soos M, Maslen GL, Williams T, Lewis H, Schafer A (1999) Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883PubMed
12.
go back to reference Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW (1998) Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study 1. J Clin Endocrinol Metab 83(9):3169–3176PubMed Fonseca VA, Valiquett TR, Huang SM, Ghazzi MN, Whitcomb RW (1998) Troglitazone monotherapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, controlled study 1. J Clin Endocrinol Metab 83(9):3169–3176PubMed
13.
go back to reference Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R, Christ ER (2007) Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes/Metab Res Rev 23(5):392–399CrossRef Chappuis B, Braun M, Stettler C, Allemann S, Diem P, Lumb PJ, Wierzbicki AS, James R, Christ ER (2007) Differential effect of pioglitazone (PGZ) and rosiglitazone (RGZ) on postprandial glucose and lipid metabolism in patients with type 2 diabetes mellitus: a prospective, randomized crossover study. Diabetes/Metab Res Rev 23(5):392–399CrossRef
14.
go back to reference Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28(7):1547–1554CrossRefPubMed Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ (2005) A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 28(7):1547–1554CrossRefPubMed
16.
go back to reference Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86CrossRefPubMed Jiang C, Ting AT, Seed B (1998) PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature 391(6662):82–86CrossRefPubMed
17.
go back to reference Kadomatsu T, Tabata M, Oike Y (2011) Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 278(4):559–564CrossRefPubMed Kadomatsu T, Tabata M, Oike Y (2011) Angiopoietin-like proteins: emerging targets for treatment of obesity and related metabolic diseases. FEBS J 278(4):559–564CrossRefPubMed
18.
go back to reference Kim I, Moon S-O, Koh KN, Kim H, Uhm C-S, Kwak HJ, Kim N-G, Koh GY (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274(37):26523–26528CrossRefPubMed Kim I, Moon S-O, Koh KN, Kim H, Uhm C-S, Kwak HJ, Kim N-G, Koh GY (1999) Molecular cloning, expression, and characterization of angiopoietin-related protein angiopoietin-related protein induces endothelial cell sprouting. J Biol Chem 274(37):26523–26528CrossRefPubMed
19.
go back to reference Injune K, Hwan-Gyu K, Hyun K, Hong-Hee K, Park SK, Chang-Sub U, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346(3):603–610CrossRef Injune K, Hwan-Gyu K, Hyun K, Hong-Hee K, Park SK, Chang-Sub U, Lee ZH, Koh GY (2000) Hepatic expression, synthesis and secretion of a novel fibrinogen/angiopoietin-related protein that prevents endothelial-cell apoptosis. Biochem J 346(3):603–610CrossRef
20.
go back to reference Gerber M, Boettner A, Seidel B, Lammert A, Bar J, Schuster E, Thiery J, Kiess W, Kratzsch J (2005) Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J Clin Endocrinol Metab 90(8):4503–4509. doi:10.1210/jc.2005-0437 CrossRefPubMed Gerber M, Boettner A, Seidel B, Lammert A, Bar J, Schuster E, Thiery J, Kiess W, Kratzsch J (2005) Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. J Clin Endocrinol Metab 90(8):4503–4509. doi:10.​1210/​jc.​2005-0437 CrossRefPubMed
21.
go back to reference Oike Y, Akao M, Kubota Y, Suda T (2005) Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11(10):473–479CrossRefPubMed Oike Y, Akao M, Kubota Y, Suda T (2005) Angiopoietin-like proteins: potential new targets for metabolic syndrome therapy. Trends Mol Med 11(10):473–479CrossRefPubMed
22.
go back to reference Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20(14):5343–5349CrossRefPubMedPubMedCentral Yoon JC, Chickering TW, Rosen ED, Dussault B, Qin Y, Soukas A, Friedman JM, Holmes WE, Spiegelman BM (2000) Peroxisome proliferator-activated receptor γ target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol Cell Biol 20(14):5343–5349CrossRefPubMedPubMedCentral
23.
go back to reference Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772CrossRefPubMed Yoshida K, Shimizugawa T, Ono M, Furukawa H (2002) Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase. J Lipid Res 43(11):1770–1772CrossRefPubMed
24.
go back to reference Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Müller M, Kersten S (2009) Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) but not PPARα serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 29(23):6257–6267CrossRefPubMedPubMedCentral Sanderson LM, Degenhardt T, Koppen A, Kalkhoven E, Desvergne B, Müller M, Kersten S (2009) Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) but not PPARα serves as a plasma free fatty acid sensor in liver. Mol Cell Biol 29(23):6257–6267CrossRefPubMedPubMedCentral
25.
go back to reference Kim H-K, Youn B-S, Shin M-S, Namkoong C, Park KH, Baik JH, Kim JB, Park J-Y, K-u Lee, Kim Y-B (2010) Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59(11):2772–2780CrossRefPubMedPubMedCentral Kim H-K, Youn B-S, Shin M-S, Namkoong C, Park KH, Baik JH, Kim JB, Park J-Y, K-u Lee, Kim Y-B (2010) Hypothalamic Angptl4/Fiaf is a novel regulator of food intake and body weight. Diabetes 59(11):2772–2780CrossRefPubMedPubMedCentral
26.
go back to reference Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, Lam CRI, Boukamp P, Pan JY, Tan SH (2011) Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 −: H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19(3):401–415CrossRefPubMed Zhu P, Tan MJ, Huang R-L, Tan CK, Chong HC, Pal M, Lam CRI, Boukamp P, Pan JY, Tan SH (2011) Angiopoietin-like 4 protein elevates the prosurvival intracellular O2 : H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell 19(3):401–415CrossRefPubMed
27.
go back to reference Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci 103(49):18721–18726CrossRefPubMedPubMedCentral Galaup A, Cazes A, Le Jan S, Philippe J, Connault E, Le Coz E, Mekid H, Mir LM, Opolon P, Corvol P (2006) Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness. Proc Natl Acad Sci 103(49):18721–18726CrossRefPubMedPubMedCentral
28.
go back to reference Padua D, Zhang XH-F, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J (2008) TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77CrossRefPubMedPubMedCentral Padua D, Zhang XH-F, Wang Q, Nadal C, Gerald WL, Gomis RR, Massagué J (2008) TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133(1):66–77CrossRefPubMedPubMedCentral
29.
go back to reference Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, S-i Matsumoto, Sugano S, Tanihara H, Masuho Y, Suda T (2003) Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Can Res 63(20):6651–6657 Ito Y, Oike Y, Yasunaga K, Hamada K, Miyata K, S-i Matsumoto, Sugano S, Tanihara H, Masuho Y, Suda T (2003) Inhibition of angiogenesis and vascular leakiness by angiopoietin-related protein 4. Can Res 63(20):6651–6657
30.
go back to reference Le Jan S, Amy C, Cazes A, Monnot C, Lamandé N, Favier J, Philippe J, Sibony M, Gasc J-M, Corvol P (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162(5):1521–1528CrossRefPubMedPubMedCentral Le Jan S, Amy C, Cazes A, Monnot C, Lamandé N, Favier J, Philippe J, Sibony M, Gasc J-M, Corvol P (2003) Angiopoietin-like 4 is a proangiogenic factor produced during ischemia and in conventional renal cell carcinoma. Am J Pathol 162(5):1521–1528CrossRefPubMedPubMedCentral
31.
go back to reference Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang R-L, Sze SK, Tang MBY (2010) Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem 285(43):32999–33009CrossRefPubMedPubMedCentral Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang R-L, Sze SK, Tang MBY (2010) Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem 285(43):32999–33009CrossRefPubMedPubMedCentral
32.
go back to reference Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12(6):580–592CrossRefPubMedPubMedCentral Lichtenstein L, Mattijssen F, de Wit NJ, Georgiadi A, Hooiveld GJ, van der Meer R, He Y, Qi L, Köster A, Tamsma JT (2010) Angptl4 protects against severe proinflammatory effects of saturated fat by inhibiting fatty acid uptake into mesenteric lymph node macrophages. Cell Metab 12(6):580–592CrossRefPubMedPubMedCentral
33.
go back to reference Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122CrossRefPubMed Clement LC, Avila-Casado C, Macé C, Soria E, Bakker WW, Kersten S, Chugh SS (2011) Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 17(1):117–122CrossRefPubMed
34.
go back to reference Kersten S (2009) Angiopoietin-like proteins and lipid metabolism. In: Cellular lipid metabolism. Springer, Heidelberg, Germany pp 237–249 Kersten S (2009) Angiopoietin-like proteins and lipid metabolism. In: Cellular lipid metabolism. Springer, Heidelberg, Germany pp 237–249
35.
go back to reference Lichtenstein L, Kersten S (2010) Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1801(4):415–420 Lichtenstein L, Kersten S (2010) Modulation of plasma TG lipolysis by Angiopoietin-like proteins and GPIHBP1. Biochimica et Biophysica Acta (BBA)-Mol Cell Biol Lipids 1801(4):415–420
36.
go back to reference Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HFJ, Hesselink MK, Schrauwen P, Müller M (2009) Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol 29(6):969–974. doi:10.1161/atvbaha.108.182147 CrossRefPubMed Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HFJ, Hesselink MK, Schrauwen P, Müller M (2009) Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol 29(6):969–974. doi:10.​1161/​atvbaha.​108.​182147 CrossRefPubMed
37.
go back to reference Wang Z, Han B, Zhang Z, Pan J, Xia H (2010) Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers 15(1):39–46CrossRefPubMed Wang Z, Han B, Zhang Z, Pan J, Xia H (2010) Expression of angiopoietin-like 4 and tenascin C but not cathepsin C mRNA predicts prognosis of oral tongue squamous cell carcinoma. Biomarkers 15(1):39–46CrossRefPubMed
40.
go back to reference Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):e500–e503. doi:10.1542/peds.2004-1921 CrossRefPubMed Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C (2005) Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 115(4):e500–e503. doi:10.​1542/​peds.​2004-1921 CrossRefPubMed
42.
go back to reference Oliver P, Reynés B, Caimari A, Palou A (2013) Peripheral blood mononuclear cells: a potential source of homeostatic imbalance markers associated with obesity development. Pflügers Arch Eur J Physiol 465(4):459–468. doi:10.1007/s00424-013-1246-8 CrossRef Oliver P, Reynés B, Caimari A, Palou A (2013) Peripheral blood mononuclear cells: a potential source of homeostatic imbalance markers associated with obesity development. Pflügers Arch Eur J Physiol 465(4):459–468. doi:10.​1007/​s00424-013-1246-8 CrossRef
45.
go back to reference Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234CrossRefPubMed Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234CrossRefPubMed
46.
go back to reference Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20(3):284–287CrossRefPubMed Deeb SS, Fajas L, Nemoto M, Pihlajamäki J, Mykkänen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J (1998) A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 20(3):284–287CrossRefPubMed
47.
go back to reference Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disorders 27(2):147–161. doi:10.1038/sj.ijo.802223 CrossRef Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int J Obes Relat Metab Disorders 27(2):147–161. doi:10.​1038/​sj.​ijo.​802223 CrossRef
48.
go back to reference Vidal-Puig A, Jimenez-Liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Investig 97(11):2553–2561CrossRefPubMedPubMedCentral Vidal-Puig A, Jimenez-Liñan M, Lowell BB, Hamann A, Hu E, Spiegelman B, Flier JS, Moller DE (1996) Regulation of PPAR gamma gene expression by nutrition and obesity in rodents. J Clin Investig 97(11):2553–2561CrossRefPubMedPubMedCentral
50.
go back to reference Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275(37):28488–28493CrossRefPubMed Kersten S, Mandard S, Tan NS, Escher P, Metzger D, Chambon P, Gonzalez FJ, Desvergne B, Wahli W (2000) Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. J Biol Chem 275(37):28488–28493CrossRefPubMed
51.
go back to reference Wiesner G, Morash BA, Ur E, Wilkinson M (2004) Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol 180(3):R1–R6CrossRefPubMed Wiesner G, Morash BA, Ur E, Wilkinson M (2004) Food restriction regulates adipose-specific cytokines in pituitary gland but not in hypothalamus. J Endocrinol 180(3):R1–R6CrossRefPubMed
52.
go back to reference Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, Voshol PJ, Müller M, Rensen PC, Kersten S (2007) Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL-and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 27(11):2420–2427CrossRefPubMed Lichtenstein L, Berbée JF, van Dijk SJ, van Dijk KW, Bensadoun A, Kema IP, Voshol PJ, Müller M, Rensen PC, Kersten S (2007) Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL-and HL-dependent hepatic cholesterol uptake. Arterioscler Thromb Vasc Biol 27(11):2420–2427CrossRefPubMed
53.
go back to reference Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW (2012) Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 61(5):652–660CrossRefPubMed Ruge T, Sukonina V, Kroupa O, Makoveichuk E, Lundgren M, Svensson MK, Olivecrona G, Eriksson JW (2012) Effects of hyperinsulinemia on lipoprotein lipase, angiopoietin-like protein 4, and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 in subjects with and without type 2 diabetes mellitus. Metabolism 61(5):652–660CrossRefPubMed
54.
go back to reference Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietiläinen KH (2011) Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 52(8):1575–1582. doi:10.1194/jlr.P015867 CrossRefPubMedPubMedCentral Robciuc MR, Naukkarinen J, Ortega-Alonso A, Tyynismaa H, Raivio T, Rissanen A, Kaprio J, Ehnholm C, Jauhiainen M, Pietiläinen KH (2011) Serum angiopoietin-like 4 protein levels and expression in adipose tissue are inversely correlated with obesity in monozygotic twins. J Lipid Res 52(8):1575–1582. doi:10.​1194/​jlr.​P015867 CrossRefPubMedPubMedCentral
Metadata
Title
Peroxisome proliferator-activated receptor gamma expression in peripheral blood mononuclear cells and angiopoietin-like protein 4 levels in obese children and adolescents
Authors
Z. A. Sadeghabadi
M. Nourbakhsh
M. Alaee
B. Larijani
M. Razzaghy-Azar
Publication date
01-02-2018
Publisher
Springer International Publishing
Published in
Journal of Endocrinological Investigation / Issue 2/2018
Electronic ISSN: 1720-8386
DOI
https://doi.org/10.1007/s40618-017-0730-y

Other articles of this Issue 2/2018

Journal of Endocrinological Investigation 2/2018 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine