Skip to main content
Top
Published in: Molecular Diagnosis & Therapy 2/2019

Open Access 01-04-2019 | Amyotrophic Lateral Sclerosis | Current Opinion

MicroRNAs and Long Non-coding RNAs in Genetic Diseases

Authors: Alessia Finotti, Enrica Fabbri, Ilaria Lampronti, Jessica Gasparello, Monica Borgatti, Roberto Gambari

Published in: Molecular Diagnosis & Therapy | Issue 2/2019

Login to get access

Abstract

Since the discovery and classification of non-coding RNAs, their roles have gained great attention. In this respect, microRNAs and long non-coding RNAs have been firmly demonstrated to be linked to regulation of gene expression and onset of human diseases, including rare genetic diseases; therefore they are suitable targets for therapeutic intervention. This issue, in the context of rare genetic diseases, is being considered by an increasing number of research groups and is of key interest to the health community. In the case of rare genetic diseases, the possibility of developing personalized therapy in precision medicine has attracted the attention of researchers and clinicians involved in developing “orphan medicinal products” and proposing these to the European Medicines Agency (EMA) and to the Food and Drug Administration (FDA) Office of Orphan Products Development (OOPD) in the United States. The major focuses of these activities are the evaluation and development of products (drugs, biologics, devices, or medical foods) considered to be promising for diagnosis and/or treatment of rare diseases or conditions, including rare genetic diseases. In an increasing number of rare genetic diseases, analysis of microRNAs and long non-coding RNAs has been proven a promising strategy. These diseases include, but are not limited to, Duchenne muscular dystrophy, cystic fibrosis, Rett syndrome, and β-thalassemia. In conclusion, a large number of approaches based on targeting microRNAs and long non-coding RNAs are expected in the field of molecular diagnosis and therapy, with a facilitated technological transfer in the case of rare genetic diseases, in virtue of the existing regulation concerning these diseases.
Literature
1.
go back to reference Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9.CrossRefPubMed Amaral PP, Dinger ME, Mercer TR, Mattick JS. The eukaryotic genome as an RNA machine. Science. 2008;319:1787–9.CrossRefPubMed
2.
go back to reference Ganapathi M, Srivastava P, Das Sutar SK, Kumar K, Dasgupta D, Pal Singh G, et al. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinform. 2005;6:126.CrossRef Ganapathi M, Srivastava P, Das Sutar SK, Kumar K, Dasgupta D, Pal Singh G, et al. Comparative analysis of chromatin landscape in regulatory regions of human housekeeping and tissue specific genes. BMC Bioinform. 2005;6:126.CrossRef
3.
go back to reference Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet. 2006;7:29–59.CrossRef Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genom Hum Genet. 2006;7:29–59.CrossRef
5.
go back to reference Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.CrossRefPubMedPubMedCentral Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11:113–27.CrossRefPubMedPubMedCentral
6.
go back to reference Barrett LW, Fletcher S, Wiltons SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69:3613–34.CrossRefPubMedPubMedCentral Barrett LW, Fletcher S, Wiltons SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci. 2012;69:3613–34.CrossRefPubMedPubMedCentral
7.
go back to reference Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2009;220:126–39.CrossRef Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2009;220:126–39.CrossRef
9.
go back to reference Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.CrossRefPubMed Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597–610.CrossRefPubMed
10.
11.
go back to reference Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.CrossRefPubMed Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.CrossRefPubMed
12.
16.
17.
20.
go back to reference Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009;21:452–60.CrossRefPubMed Chekulaeva M, Filipowicz W. Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol. 2009;21:452–60.CrossRefPubMed
21.
go back to reference Friedländer MR, Lizano E, Houben AJS, Bezdan D, Báñez-Coronel M, Kudla G. Evidence for the biogenesis of more than 1000 novel human microRNAs. Genome Biol. 2014;15:R57.CrossRefPubMedPubMedCentral Friedländer MR, Lizano E, Houben AJS, Bezdan D, Báñez-Coronel M, Kudla G. Evidence for the biogenesis of more than 1000 novel human microRNAs. Genome Biol. 2014;15:R57.CrossRefPubMedPubMedCentral
22.
go back to reference Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate-and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–15.CrossRefPubMedPubMedCentral Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate-and tissue-specific microRNAs. Proc Natl Acad Sci USA. 2015;112:E1106–15.CrossRefPubMedPubMedCentral
23.
go back to reference Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefPubMed Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefPubMed
25.
go back to reference Hu J, Kong M, Ye Y, Hong S, Cheng L, Jiang L. Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem. 2014;129:877–83.CrossRefPubMed Hu J, Kong M, Ye Y, Hong S, Cheng L, Jiang L. Serum miR-206 and other muscle-specific microRNAs as non-invasive biomarkers for Duchenne muscular dystrophy. J Neurochem. 2014;129:877–83.CrossRefPubMed
26.
go back to reference Giordani L, Sandoná M, Rotini A, Puri PL, Consalvi S, Saccone V. Muscle-specific microRNAs as biomarkers of Duchenne muscular dystrophy progression and response to therapies. Rare Dis. 2014;2:e974969.CrossRefPubMedPubMedCentral Giordani L, Sandoná M, Rotini A, Puri PL, Consalvi S, Saccone V. Muscle-specific microRNAs as biomarkers of Duchenne muscular dystrophy progression and response to therapies. Rare Dis. 2014;2:e974969.CrossRefPubMedPubMedCentral
27.
go back to reference Zaharieva IT, Calissano M, Scoto M, Preston M, Cirak S, Feng L, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS One. 2013;8:e80263.CrossRefPubMedPubMedCentral Zaharieva IT, Calissano M, Scoto M, Preston M, Cirak S, Feng L, et al. Dystromirs as serum biomarkers for monitoring the disease severity in Duchenne muscular dystrophy. PLoS One. 2013;8:e80263.CrossRefPubMedPubMedCentral
28.
go back to reference Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci. 2018;193:110–23.CrossRefPubMed Recabarren-Leiva D, Alarcón M. New insights into the gene expression associated to amyotrophic lateral sclerosis. Life Sci. 2018;193:110–23.CrossRefPubMed
29.
go back to reference Di Pietro L, Baranzini M, Berardinelli MG, Lattanzi W, Monforte M, Tasca G, et al. Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients. Sci Rep. 2017;7:9538.CrossRefPubMedPubMedCentral Di Pietro L, Baranzini M, Berardinelli MG, Lattanzi W, Monforte M, Tasca G, et al. Potential therapeutic targets for ALS: MIR206, MIR208b and MIR499 are modulated during disease progression in the skeletal muscle of patients. Sci Rep. 2017;7:9538.CrossRefPubMedPubMedCentral
30.
go back to reference Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, et al. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging. 2017;55:123–31.CrossRefPubMedPubMedCentral Waller R, Goodall EF, Milo M, Cooper-Knock J, Da Costa M, Hobson E, et al. Serum miRNAs miR-206, 143-3p and 374b-5p as potential biomarkers for amyotrophic lateral sclerosis (ALS). Neurobiol Aging. 2017;55:123–31.CrossRefPubMedPubMedCentral
31.
go back to reference Qin Y, Buermans HP, van Kester MS, van der Fits L, Out-Luiting JJ, Osanto S, et al. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome. J Investig Dermatol. 2012;132:1520–2.CrossRefPubMed Qin Y, Buermans HP, van Kester MS, van der Fits L, Out-Luiting JJ, Osanto S, et al. Deep-sequencing analysis reveals that the miR-199a2/214 cluster within DNM3os represents the vast majority of aberrantly expressed microRNAs in Sézary syndrome. J Investig Dermatol. 2012;132:1520–2.CrossRefPubMed
32.
go back to reference Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther. 2014;14:1443–54.CrossRefPubMed Finotti A, Gambari R. Recent trends for novel options in experimental biological therapy of β-thalassemia. Expert Opin Biol Ther. 2014;14:1443–54.CrossRefPubMed
33.
go back to reference Matsuzaka Y, Kishi S, Aoki Y, Komaki H, Oya Y, Takeda S, et al. Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for limb-girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy. Environ Health Prev Med. 2014;19:452–8.CrossRefPubMedPubMedCentral Matsuzaka Y, Kishi S, Aoki Y, Komaki H, Oya Y, Takeda S, et al. Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for limb-girdle muscular dystrophy, facioscapulohumeral muscular dystrophy, and Becker muscular dystrophy. Environ Health Prev Med. 2014;19:452–8.CrossRefPubMedPubMedCentral
34.
go back to reference Llano-Diez M, Ortez CI, Gay JA, Álvarez-Cabado L, Jou C, Medina J, et al. Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:15–23.CrossRefPubMed Llano-Diez M, Ortez CI, Gay JA, Álvarez-Cabado L, Jou C, Medina J, et al. Digital PCR quantification of miR-30c and miR-181a as serum biomarkers for Duchenne muscular dystrophy. Neuromuscul Disord. 2017;27:15–23.CrossRefPubMed
35.
go back to reference Anaya-Segura MA, Rangel-Villalobos H, Martínez-Cortés G, Gómez-Díaz B, Coral-Vázquez RM, Zamora-González EO, et al. Serum levels of microRNA-206 and novel mini-STR assays for carrier detection in Duchenne muscular dystrophy. Int J Mol Sci. 2016;17:E1334.CrossRefPubMed Anaya-Segura MA, Rangel-Villalobos H, Martínez-Cortés G, Gómez-Díaz B, Coral-Vázquez RM, Zamora-González EO, et al. Serum levels of microRNA-206 and novel mini-STR assays for carrier detection in Duchenne muscular dystrophy. Int J Mol Sci. 2016;17:E1334.CrossRefPubMed
36.
go back to reference Grasedieck S, Sorrentino A, Langer C, Buske C, Döhner H, Mertens D, et al. Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood. 2013;121:4977–84.CrossRefPubMed Grasedieck S, Sorrentino A, Langer C, Buske C, Döhner H, Mertens D, et al. Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood. 2013;121:4977–84.CrossRefPubMed
37.
go back to reference Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9:850–9.CrossRefPubMed Weiland M, Gao XH, Zhou L, Mi QS. Small RNAs have a large impact: circulating microRNAs as biomarkers for human diseases. RNA Biol. 2012;9:850–9.CrossRefPubMed
38.
go back to reference Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.CrossRefPubMedPubMedCentral Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.CrossRefPubMedPubMedCentral
39.
go back to reference Isin M, Ozgur E, Cetin G, Erten N, Aktan M, Gezer U, et al. Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 2014;431:255–9.CrossRefPubMed Isin M, Ozgur E, Cetin G, Erten N, Aktan M, Gezer U, et al. Investigation of circulating lncRNAs in B-cell neoplasms. Clin Chim Acta. 2014;431:255–9.CrossRefPubMed
40.
go back to reference Guo F, Yu F, Wang J, Li Y, Li Y, Li Z, et al. Expression of MALAT1 in the peripheral whole blood of patients with lung cancer. Biomed Rep. 2015;3:309–12.CrossRefPubMedPubMedCentral Guo F, Yu F, Wang J, Li Y, Li Y, Li Z, et al. Expression of MALAT1 in the peripheral whole blood of patients with lung cancer. Biomed Rep. 2015;3:309–12.CrossRefPubMedPubMedCentral
41.
go back to reference Chen D, Liu J, Zhao HY, Chen YP, Xiang Z, Jin X. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn’s disease. World J Gastroenterol. 2016;22:4716–31.CrossRefPubMedPubMedCentral Chen D, Liu J, Zhao HY, Chen YP, Xiang Z, Jin X. Plasma long noncoding RNA expression profile identified by microarray in patients with Crohn’s disease. World J Gastroenterol. 2016;22:4716–31.CrossRefPubMedPubMedCentral
42.
go back to reference Wang WT, Sun YM, Huang W, He B, Zhao YN, Chen YQ. Genome-wide long non-coding RNA analysis identified circulating lncRNAs as novel non-invasive diagnostic biomarkers for gynecological disease. Sci Rep. 2016;6:23343.CrossRefPubMedPubMedCentral Wang WT, Sun YM, Huang W, He B, Zhao YN, Chen YQ. Genome-wide long non-coding RNA analysis identified circulating lncRNAs as novel non-invasive diagnostic biomarkers for gynecological disease. Sci Rep. 2016;6:23343.CrossRefPubMedPubMedCentral
43.
go back to reference Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, et al. Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res. 2016;112:714–24.CrossRefPubMed Cai Y, Yang Y, Chen X, Wu G, Zhang X, Liu Y, et al. Circulating ‘lncRNA OTTHUMT00000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc Res. 2016;112:714–24.CrossRefPubMed
44.
go back to reference Sandhya P, Joshi K, Scaria V. Long noncoding RNAs could be potential key players in the pathophysiology of Sjögren’s syndrome. Int J Rheum Dis. 2015;18:898–905.CrossRefPubMed Sandhya P, Joshi K, Scaria V. Long noncoding RNAs could be potential key players in the pathophysiology of Sjögren’s syndrome. Int J Rheum Dis. 2015;18:898–905.CrossRefPubMed
45.
go back to reference Tong X, Gu PC, Xu SZ, Lin XJ. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 2015;79:732–7.CrossRefPubMed Tong X, Gu PC, Xu SZ, Lin XJ. Long non-coding RNA-DANCR in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis. Biosci Biotechnol Biochem. 2015;79:732–7.CrossRefPubMed
46.
47.
go back to reference Gagliardi S, Zucca S, Pandini C, Diamanti L, Bordoni M, Sproviero D, et al. Long non-coding and coding RNAs characterization in peripheral blood mononuclear cells and spinal cord from amyotrophic lateral sclerosis patients. Sci Rep. 2018;8:2378.CrossRefPubMedPubMedCentral Gagliardi S, Zucca S, Pandini C, Diamanti L, Bordoni M, Sproviero D, et al. Long non-coding and coding RNAs characterization in peripheral blood mononuclear cells and spinal cord from amyotrophic lateral sclerosis patients. Sci Rep. 2018;8:2378.CrossRefPubMedPubMedCentral
48.
go back to reference Ma J, Liu F, Du X, Ma D, Xiong L. Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major. Front Med. 2017;11:74–86.CrossRefPubMed Ma J, Liu F, Du X, Ma D, Xiong L. Changes in lncRNAs and related genes in β-thalassemia minor and β-thalassemia major. Front Med. 2017;11:74–86.CrossRefPubMed
49.
go back to reference Bayoumi AS, Aonuma T, Teoh JP, Tang YL, Kim IM. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1100–9.CrossRefPubMedPubMedCentral Bayoumi AS, Aonuma T, Teoh JP, Tang YL, Kim IM. Circular noncoding RNAs as potential therapies and circulating biomarkers for cardiovascular diseases. Acta Pharmacol Sin. 2018;39(7):1100–9.CrossRefPubMedPubMedCentral
50.
51.
go back to reference Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutics and experimental applications. Nat Rev Genet. 2009;10:578–85.CrossRefPubMed Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutics and experimental applications. Nat Rev Genet. 2009;10:578–85.CrossRefPubMed
52.
go back to reference Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, et al. miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics. 2011;3:733–45.CrossRefPubMed Fabbri E, Brognara E, Borgatti M, Lampronti I, Finotti A, Bianchi N, et al. miRNA therapeutics: delivery and biological activity of peptide nucleic acids targeting miRNAs. Epigenomics. 2011;3:733–45.CrossRefPubMed
53.
54.
go back to reference Bader AG, Lammers P. The therapeutic potential of microRNAs. Innov Pharm Technol. 2011;52–5. Bader AG, Lammers P. The therapeutic potential of microRNAs. Innov Pharm Technol. 2011;52–5.
56.
go back to reference Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311–36.CrossRefPubMedPubMedCentral Berindan-Neagoe I, Monroig Pdel C, Pasculli B, Calin GA. MicroRNAome genome: a treasure for cancer diagnosis and therapy. CA Cancer J Clin. 2014;64:311–36.CrossRefPubMedPubMedCentral
58.
go back to reference Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13:496–502.CrossRefPubMed Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Ther. 2006;13:496–502.CrossRefPubMed
59.
go back to reference Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single antimicroRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37:e24.CrossRefPubMedPubMedCentral Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z, et al. A single antimicroRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res. 2009;37:e24.CrossRefPubMedPubMedCentral
60.
go back to reference Lennox KA, Behlke MA. Chemical modification and design of antimiRNA oligonucleotides. Gene Ther. 2011;18:1111–20.CrossRefPubMed Lennox KA, Behlke MA. Chemical modification and design of antimiRNA oligonucleotides. Gene Ther. 2011;18:1111–20.CrossRefPubMed
61.
go back to reference Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43:371–8.CrossRefPubMedPubMedCentral Obad S, dos Santos CO, Petri A, Heidenblad M, Broom O, Ruse C, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet. 2011;43:371–8.CrossRefPubMedPubMedCentral
62.
go back to reference Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem. 2011;6:2192–202.CrossRefPubMed Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Modulation of the biological activity of microRNA-210 with peptide nucleic acids (PNAs). ChemMedChem. 2011;6:2192–202.CrossRefPubMed
63.
go back to reference Brognara E, Fabbri E, Bazzoli E, Montagner G, Ghimenton C, Eccher A, et al. Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol. 2014;118:19–28.CrossRefPubMed Brognara E, Fabbri E, Bazzoli E, Montagner G, Ghimenton C, Eccher A, et al. Uptake by human glioma cell lines and biological effects of a peptide-nucleic acids targeting miR-221. J Neurooncol. 2014;118:19–28.CrossRefPubMed
64.
go back to reference Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.CrossRefPubMed Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 2007;4:721–6.CrossRefPubMed
66.
go back to reference Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS One. 2012;7:e29275.CrossRefPubMedPubMedCentral Kluiver J, Gibcus JH, Hettinga C, Adema A, Richter MK, Halsema N, et al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS One. 2012;7:e29275.CrossRefPubMedPubMedCentral
67.
go back to reference Liu Y, Han Y, Zhang H, Nie L, Jiang Z, Fa P, et al. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One. 2012;7:e52280.CrossRefPubMedPubMedCentral Liu Y, Han Y, Zhang H, Nie L, Jiang Z, Fa P, et al. Synthetic miRNA-mowers targeting miR-183-96-182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS One. 2012;7:e52280.CrossRefPubMedPubMedCentral
68.
go back to reference Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol. 2011;676:43–9.CrossRefPubMed Wang Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol Biol. 2011;676:43–9.CrossRefPubMed
69.
go back to reference Murakami K, Miyagishi M. Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation to thermodynamic stability. Biomed Rep. 2014;2:509–12.CrossRefPubMedPubMedCentral Murakami K, Miyagishi M. Tiny masking locked nucleic acids effectively bind to mRNA and inhibit binding of microRNAs in relation to thermodynamic stability. Biomed Rep. 2014;2:509–12.CrossRefPubMedPubMedCentral
70.
go back to reference Askou AL, Aagaard L, Kostic C, Arsenijevic Y, Hollensen AK, Bek T, et al. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Mol Ther Methods Clin Dev. 2015;2:14064.CrossRefPubMedPubMedCentral Askou AL, Aagaard L, Kostic C, Arsenijevic Y, Hollensen AK, Bek T, et al. Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors. Mol Ther Methods Clin Dev. 2015;2:14064.CrossRefPubMedPubMedCentral
71.
73.
go back to reference Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond). 2014;127:351–65.CrossRefPubMed Kwekkeboom RF, Lei Z, Doevendans PA, Musters RJ, Sluijter JP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin Sci (Lond). 2014;127:351–65.CrossRefPubMed
74.
go back to reference Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med. 2011;3:258–65.CrossRefPubMedPubMedCentral Cacchiarelli D, Legnini I, Martone J, Cazzella V, D’Amico A, Bertini E, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol Med. 2011;3:258–65.CrossRefPubMedPubMedCentral
75.
go back to reference Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, et al. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One. 2011;6:e18388.CrossRefPubMedPubMedCentral Mizuno H, Nakamura A, Aoki Y, Ito N, Kishi S, Yamamoto K, et al. Identification of muscle-specific microRNAs in serum of muscular dystrophy animal models: promising novel blood-based markers for muscular dystrophy. PLoS One. 2011;6:e18388.CrossRefPubMedPubMedCentral
76.
go back to reference Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006;8:278–84.CrossRefPubMed Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006;8:278–84.CrossRefPubMed
77.
go back to reference Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.CrossRefPubMed Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 2006;38:228–33.CrossRefPubMed
78.
go back to reference van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2007;105:13027–32.CrossRef van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 2007;105:13027–32.CrossRef
79.
go back to reference Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007;104:17016–21.CrossRefPubMedPubMedCentral Eisenberg I, Eran A, Nishino I, Moggio M, Lamperti C, Amato AA, et al. Distinctive patterns of microRNA expression in primary muscular disorders. Proc Natl Acad Sci USA. 2007;104:17016–21.CrossRefPubMedPubMedCentral
80.
go back to reference Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23:3335–46.CrossRefPubMed Greco S, De Simone M, Colussi C, Zaccagnini G, Fasanaro P, Pescatori M, et al. Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 2009;23:3335–46.CrossRefPubMed
81.
go back to reference Yuasa K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct. 2008;33:163–9.CrossRefPubMed Yuasa K, Hagiwara Y, Ando M, Nakamura A, Takeda S, Hijikata T. MicroRNA-206 is highly expressed in newly formed muscle fibers: implications regarding potential for muscle regeneration and maturation in muscular dystrophy. Cell Struct Funct. 2008;33:163–9.CrossRefPubMed
82.
go back to reference Wang L, Zhou L, Jiang P, Lu L, Chen X, Lan H, et al. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther. 2012;20:1222–33.CrossRefPubMedPubMedCentral Wang L, Zhou L, Jiang P, Lu L, Chen X, Lan H, et al. Loss of miR-29 in myoblasts contributes to dystrophic muscle pathogenesis. Mol Ther. 2012;20:1222–33.CrossRefPubMedPubMedCentral
83.
go back to reference Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C, et al. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med. 2010;8:48.CrossRefPubMedPubMedCentral Gambardella S, Rinaldi F, Lepore SM, Viola A, Loro E, Angelini C, et al. Overexpression of microRNA-206 in the skeletal muscle from myotonic dystrophy type 1 patients. J Transl Med. 2010;8:48.CrossRefPubMedPubMedCentral
84.
go back to reference Fritegotto C, Ferrati C, Pegoraro V, Angelini C. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci. 2017;38:619–25.CrossRefPubMed Fritegotto C, Ferrati C, Pegoraro V, Angelini C. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1. Neurol Sci. 2017;38:619–25.CrossRefPubMed
85.
go back to reference Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech. 2016;9:899–909.CrossRefPubMedPubMedCentral Hervé M, Ibrahim EC. MicroRNA screening identifies a link between NOVA1 expression and a low level of IKAP in familial dysautonomia. Dis Model Mech. 2016;9:899–909.CrossRefPubMedPubMedCentral
86.
go back to reference Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326:1549–54.CrossRefPubMedPubMedCentral Williams AH, Valdez G, Moresi V, Qi X, McAnally J, Elliott JL, et al. MicroRNA-206 delays ALS progression and promotes regeneration of neuromuscular synapses in mice. Science. 2009;326:1549–54.CrossRefPubMedPubMedCentral
87.
go back to reference Paco S, Casserras T, Rodríguez MA, Jou C, Puigdelloses M, Ortez CI, et al. Transcriptome analysis of Ullrich congenital muscular dystrophy fibroblasts reveals a disease extracellular matrix signature and key molecular regulators. PLoS One. 2015;10:e0145107.CrossRefPubMedPubMedCentral Paco S, Casserras T, Rodríguez MA, Jou C, Puigdelloses M, Ortez CI, et al. Transcriptome analysis of Ullrich congenital muscular dystrophy fibroblasts reveals a disease extracellular matrix signature and key molecular regulators. PLoS One. 2015;10:e0145107.CrossRefPubMedPubMedCentral
88.
go back to reference Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J. 2011;438:25–32.CrossRefPubMed Gillen AE, Gosalia N, Leir SH, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J. 2011;438:25–32.CrossRefPubMed
89.
go back to reference Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One. 2012;7:e50837.CrossRefPubMedPubMedCentral Hassan F, Nuovo GJ, Crawford M, Boyaka PN, Kirkby S, Nana-Sinkam SP, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One. 2012;7:e50837.CrossRefPubMedPubMedCentral
90.
go back to reference Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Pro Natl Acad Sci USA. 2012;109:13362–7.CrossRef Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Pro Natl Acad Sci USA. 2012;109:13362–7.CrossRef
91.
go back to reference Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol. 2013;49:544–51.CrossRefPubMedPubMedCentral Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol. 2013;49:544–51.CrossRefPubMedPubMedCentral
92.
go back to reference Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol. 2013;190:3354–62.CrossRefPubMed Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol. 2013;190:3354–62.CrossRefPubMed
93.
go back to reference Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, et al. A peptide nucleic acid against microRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules. 2017;23:E71.CrossRefPubMed Fabbri E, Tamanini A, Jakova T, Gasparello J, Manicardi A, Corradini R, et al. A peptide nucleic acid against microRNA miR-145-5p enhances the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) in Calu-3 cells. Molecules. 2017;23:E71.CrossRefPubMed
94.
go back to reference Pierdomenico AM, Patruno S, Codagnone M, Simiele F, Mari VC, Plebani R, et al. microRNA-181b is increased in cystic fibrosis cells and impairs lipoxin A4 receptor-dependent mechanisms of inflammation resolution and antimicrobial defense. Sci Rep. 2017;7:13519.CrossRefPubMedPubMedCentral Pierdomenico AM, Patruno S, Codagnone M, Simiele F, Mari VC, Plebani R, et al. microRNA-181b is increased in cystic fibrosis cells and impairs lipoxin A4 receptor-dependent mechanisms of inflammation resolution and antimicrobial defense. Sci Rep. 2017;7:13519.CrossRefPubMedPubMedCentral
95.
go back to reference Sonneville F, Ruffin M, Coraux C, Rousselet N, Le Rouzic P, Blouquit-Laye S, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun. 2017;8:710.CrossRefPubMedPubMedCentral Sonneville F, Ruffin M, Coraux C, Rousselet N, Le Rouzic P, Blouquit-Laye S, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun. 2017;8:710.CrossRefPubMedPubMedCentral
96.
go back to reference Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol. 2014;50:1144–55.CrossRefPubMed Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, et al. Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol. 2014;50:1144–55.CrossRefPubMed
97.
go back to reference Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics. 2010;5:656–63.CrossRefPubMedPubMedCentral Urdinguio RG, Fernandez AF, Lopez-Nieva P, Rossi S, Huertas D, Kulis M, et al. Disrupted microRNA expression caused by Mecp2 loss in a mouse model of Rett syndrome. Epigenetics. 2010;5:656–63.CrossRefPubMedPubMedCentral
98.
go back to reference Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, et al. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med. 2015;47:e175.CrossRefPubMedPubMedCentral Kim JD, Lee A, Choi J, Park Y, Kang H, Chang W, et al. Epigenetic modulation as a therapeutic approach for pulmonary arterial hypertension. Exp Mol Med. 2015;47:e175.CrossRefPubMedPubMedCentral
99.
go back to reference Harafuji N, Schneiderat P, Walter MC, Chen YW. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis. 2013;8:55.CrossRefPubMedPubMedCentral Harafuji N, Schneiderat P, Walter MC, Chen YW. miR-411 is up-regulated in FSHD myoblasts and suppresses myogenic factors. Orphanet J Rare Dis. 2013;8:55.CrossRefPubMedPubMedCentral
100.
go back to reference Ballabio E, Mitchell T, van Kester MS, Taylor S, Dunlop HM, Chi J, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116:1105–13.CrossRefPubMedPubMedCentral Ballabio E, Mitchell T, van Kester MS, Taylor S, Dunlop HM, Chi J, et al. MicroRNA expression in Sezary syndrome: identification, function, and diagnostic potential. Blood. 2010;116:1105–13.CrossRefPubMedPubMedCentral
101.
go back to reference Narducci MG, Arcelli D, Picchio MC, Lazzeri C, Pagani E, Sampogna F, et al. MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome. Cell Death Dis. 2011;2:e151.CrossRefPubMedPubMedCentral Narducci MG, Arcelli D, Picchio MC, Lazzeri C, Pagani E, Sampogna F, et al. MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sézary syndrome. Cell Death Dis. 2011;2:e151.CrossRefPubMedPubMedCentral
102.
go back to reference van der Fits L, van Kester MS, Qin Y, Out-Luiting JJ, Smit F, Zoutman WH, et al. MicroRNA-21 expression in CD4 + T cells is regulated by STAT3 and is pathologically involved in Sézary syndrome. J Investig Dermatol. 2011;131:762–8.CrossRefPubMed van der Fits L, van Kester MS, Qin Y, Out-Luiting JJ, Smit F, Zoutman WH, et al. MicroRNA-21 expression in CD4 + T cells is regulated by STAT3 and is pathologically involved in Sézary syndrome. J Investig Dermatol. 2011;131:762–8.CrossRefPubMed
103.
go back to reference Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch–Nyhan disease (LND). Adv Genet. 2015;90:103–31.CrossRefPubMed Guibinga GH. MicroRNAs: tools of mechanistic insights and biological therapeutics discovery for the rare neurogenetic syndrome Lesch–Nyhan disease (LND). Adv Genet. 2015;90:103–31.CrossRefPubMed
104.
go back to reference Zuntini M, Salvatore M, Pedrini E, Parra A, Sgariglia F, Magrelli A, et al. MicroRNA profiling of multiple osteochondromas: identification of disease-specific and normal cartilage signatures. Clin Genet. 2010;78:507–16.CrossRefPubMed Zuntini M, Salvatore M, Pedrini E, Parra A, Sgariglia F, Magrelli A, et al. MicroRNA profiling of multiple osteochondromas: identification of disease-specific and normal cartilage signatures. Clin Genet. 2010;78:507–16.CrossRefPubMed
105.
go back to reference Manca S, Magrelli A, Cialfi S, Lefort K, Ambra R, Alimandi M, et al. Oxidative stress activation of miR-125b is part of the molecular switch for Hailey–Hailey disease manifestation. Exp Dermatol. 2011;20:932–7.CrossRefPubMed Manca S, Magrelli A, Cialfi S, Lefort K, Ambra R, Alimandi M, et al. Oxidative stress activation of miR-125b is part of the molecular switch for Hailey–Hailey disease manifestation. Exp Dermatol. 2011;20:932–7.CrossRefPubMed
106.
go back to reference Id Said B, Malkin D. A functional variant in miR-605 modifies the age of onset in Li-Fraumeni syndrome. Cancer Genet. 2015;208:47–51.CrossRefPubMed Id Said B, Malkin D. A functional variant in miR-605 modifies the age of onset in Li-Fraumeni syndrome. Cancer Genet. 2015;208:47–51.CrossRefPubMed
107.
go back to reference Magrelli A, Azzalin G, Salvatore M, Viganotti M, Tosto F, Colombo T, et al. Altered microRNA expression patterns in hepatoblastoma patients. Transl Oncol. 2009;2:157–63.CrossRefPubMedPubMedCentral Magrelli A, Azzalin G, Salvatore M, Viganotti M, Tosto F, Colombo T, et al. Altered microRNA expression patterns in hepatoblastoma patients. Transl Oncol. 2009;2:157–63.CrossRefPubMedPubMedCentral
108.
go back to reference Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24:167–84.CrossRefPubMed Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet. 2015;24:167–84.CrossRefPubMed
109.
go back to reference Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, et al. Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One. 2009;4:e6121.CrossRefPubMedPubMedCentral Feng J, Sun G, Yan J, Noltner K, Li W, Buzin CH, et al. Evidence for X-chromosomal schizophrenia associated with microRNA alterations. PLoS One. 2009;4:e6121.CrossRefPubMedPubMedCentral
110.
go back to reference Gasparello J, Fabbri E, Bianchi N, Breveglieri G, Zuccato C, Borgatti M, et al. BCL11A mRNA targeting by miR-210: a possible network regulating γ-globin gene expression. Int J Mol Sci. 2017;18:E2530.CrossRefPubMed Gasparello J, Fabbri E, Bianchi N, Breveglieri G, Zuccato C, Borgatti M, et al. BCL11A mRNA targeting by miR-210: a possible network regulating γ-globin gene expression. Int J Mol Sci. 2017;18:E2530.CrossRefPubMed
111.
go back to reference Siwaponanan P, Fucharoen S, Sirankapracha P, Winichagoon P, Umemura T, Svasti S. Elevated levels of miR-210 correlate with anemia in β-thalassemia/HbE patients. Int J Hematol. 2016;104:338–43.CrossRefPubMed Siwaponanan P, Fucharoen S, Sirankapracha P, Winichagoon P, Umemura T, Svasti S. Elevated levels of miR-210 correlate with anemia in β-thalassemia/HbE patients. Int J Hematol. 2016;104:338–43.CrossRefPubMed
112.
go back to reference Srinoun K, Nopparatana C, Wongchanchailert M, Fucharoen S. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1. Int J Hematol. 2017;106:638–47.CrossRefPubMed Srinoun K, Nopparatana C, Wongchanchailert M, Fucharoen S. MiR-155 enhances phagocytic activity of β-thalassemia/HbE monocytes via targeting of BACH1. Int J Hematol. 2017;106:638–47.CrossRefPubMed
113.
go back to reference Leecharoenkiat K, Tanaka Y, Harada Y, Chaichompoo P, Sarakul O, Abe Y, et al. Plasma microRNA-451 as a novel hemolytic marker for β0-thalassemia/HbE disease. Mol Med Rep. 2017;15:2495–502.CrossRefPubMedPubMedCentral Leecharoenkiat K, Tanaka Y, Harada Y, Chaichompoo P, Sarakul O, Abe Y, et al. Plasma microRNA-451 as a novel hemolytic marker for β0-thalassemia/HbE disease. Mol Med Rep. 2017;15:2495–502.CrossRefPubMedPubMedCentral
114.
go back to reference Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, et al. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013;8:e60436.CrossRefPubMedPubMedCentral Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, et al. MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One. 2013;8:e60436.CrossRefPubMedPubMedCentral
115.
go back to reference Saki N, Abroun S, Soleimani M, Kavianpour M, Shahjahani M, Mohammadi-Asl J, et al. MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J. 2016;17:583–92.PubMedPubMedCentral Saki N, Abroun S, Soleimani M, Kavianpour M, Shahjahani M, Mohammadi-Asl J, et al. MicroRNA expression in β-thalassemia and sickle cell disease: a role in the induction of fetal hemoglobin. Cell J. 2016;17:583–92.PubMedPubMedCentral
116.
go back to reference Roy P, Bhattacharya G, Lahiri A, Dasgupta UB, Banerjee D, Chandra S, et al. hsa-miR-503 is downregulated in β thalassemia major. Acta Haematol. 2012;128:187–9.CrossRefPubMed Roy P, Bhattacharya G, Lahiri A, Dasgupta UB, Banerjee D, Chandra S, et al. hsa-miR-503 is downregulated in β thalassemia major. Acta Haematol. 2012;128:187–9.CrossRefPubMed
117.
go back to reference Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol. 2015;35:728–36.CrossRefPubMedPubMedCentral Ballarino M, Cazzella V, D’Andrea D, Grassi L, Bisceglie L, Cipriano A, et al. Novel long noncoding RNAs (lncRNAs) in myogenesis: a miR-31 overlapping lncRNA transcript controls myoblast differentiation. Mol Cell Biol. 2015;35:728–36.CrossRefPubMedPubMedCentral
118.
go back to reference Twayana S, Legnini I, Cesana M, Cacchiarelli D, Morlando M, Bozzoni I. Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Biochem Soc Trans. 2013;41:844–9.CrossRefPubMed Twayana S, Legnini I, Cesana M, Cacchiarelli D, Morlando M, Bozzoni I. Biogenesis and function of non-coding RNAs in muscle differentiation and in Duchenne muscular dystrophy. Biochem Soc Trans. 2013;41:844–9.CrossRefPubMed
119.
go back to reference Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5.CrossRefPubMedPubMedCentral Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH, et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature. 2012;488(7409):111–5.CrossRefPubMedPubMedCentral
120.
go back to reference Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain. 2013;6:31.CrossRefPubMedPubMedCentral Nishimoto Y, Nakagawa S, Hirose T, Okano HJ, Takao M, Shibata S, et al. The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain. 2013;6:31.CrossRefPubMedPubMedCentral
121.
go back to reference McKiernan PJ, Molloy K, Cryan SA, McElvaney NG, Greene CM. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int J Biochem Cell Biol. 2014;52:184–91.CrossRefPubMed McKiernan PJ, Molloy K, Cryan SA, McElvaney NG, Greene CM. Long noncoding RNA are aberrantly expressed in vivo in the cystic fibrosis bronchial epithelium. Int J Biochem Cell Biol. 2014;52:184–91.CrossRefPubMed
122.
go back to reference Balloy V, Koshy R, Perra L, Corvol H, Chignard M, Guillot L, et al. Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon Pseudomonas aeruginosa infection. Front Cell Infect Microbiol. 2017;7:218.CrossRefPubMedPubMedCentral Balloy V, Koshy R, Perra L, Corvol H, Chignard M, Guillot L, et al. Bronchial epithelial cells from cystic fibrosis patients express a specific long non-coding RNA signature upon Pseudomonas aeruginosa infection. Front Cell Infect Microbiol. 2017;7:218.CrossRefPubMedPubMedCentral
123.
go back to reference Saayman SM, Ackley A, Burdach J, Clemson M, Gruenert DC, Tachikawa K, et al. Long non-coding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol Ther. 2016;24(8):1351–7.CrossRefPubMedPubMedCentral Saayman SM, Ackley A, Burdach J, Clemson M, Gruenert DC, Tachikawa K, et al. Long non-coding RNA BGas regulates the cystic fibrosis transmembrane conductance regulator. Mol Ther. 2016;24(8):1351–7.CrossRefPubMedPubMedCentral
124.
go back to reference Petazzi P, Sandoval J, Szczesna K, Jorge OC, Roa L, Sayols S, et al. G Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biol. 2013;10:1197–203.CrossRefPubMedPubMedCentral Petazzi P, Sandoval J, Szczesna K, Jorge OC, Roa L, Sayols S, et al. G Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model. RNA Biol. 2013;10:1197–203.CrossRefPubMedPubMedCentral
125.
go back to reference Sun Z, Nie X, Sun S, Dong S, Yuan C, Li Y, Xiao B, et al. Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cell Physiol Biochem. 2017;42(6):2569–81.CrossRefPubMed Sun Z, Nie X, Sun S, Dong S, Yuan C, Li Y, Xiao B, et al. Long non-coding RNA MEG3 downregulation triggers human pulmonary artery smooth muscle cell proliferation and migration via the p53 signaling pathway. Cell Physiol Biochem. 2017;42(6):2569–81.CrossRefPubMed
126.
go back to reference Chen J, Guo J, Cui X, Dai Y, Tang Z, Qu J, Raj JU, et al. The long noncoding RNA LnRPT is regulated by PDGF-BB and modulates the proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2018;58(2):181–93.CrossRefPubMed Chen J, Guo J, Cui X, Dai Y, Tang Z, Qu J, Raj JU, et al. The long noncoding RNA LnRPT is regulated by PDGF-BB and modulates the proliferation of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2018;58(2):181–93.CrossRefPubMed
127.
go back to reference Vizoso M, Esteller M. The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy. Cell Res. 2012;22(10):1413–5.CrossRefPubMedPubMedCentral Vizoso M, Esteller M. The activatory long non-coding RNA DBE-T reveals the epigenetic etiology of facioscapulohumeral muscular dystrophy. Cell Res. 2012;22(10):1413–5.CrossRefPubMedPubMedCentral
128.
go back to reference Wang W, Zhuang Q, Ji K, Wen B, Lin P, Zhao Y, et al. Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Sci Rep. 2017;7:41639.CrossRefPubMedPubMedCentral Wang W, Zhuang Q, Ji K, Wen B, Lin P, Zhao Y, et al. Identification of miRNA, lncRNA and mRNA-associated ceRNA networks and potential biomarker for MELAS with mitochondrial DNA A3243G mutation. Sci Rep. 2017;7:41639.CrossRefPubMedPubMedCentral
129.
go back to reference Morrison TA, Wilcox I, Luo HY, Farrell JJ, Kurita R, Nakamura Y, et al. A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells Mol Dis. 2018;69:1–9.CrossRefPubMed Morrison TA, Wilcox I, Luo HY, Farrell JJ, Kurita R, Nakamura Y, et al. A long noncoding RNA from the HBS1L-MYB intergenic region on chr6q23 regulates human fetal hemoglobin expression. Blood Cells Mol Dis. 2018;69:1–9.CrossRefPubMed
130.
go back to reference Lai K, Jia S, Yu S, Luo J, He Y. Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin. Oncotarget. 2017;8:49931–43.PubMedPubMedCentral Lai K, Jia S, Yu S, Luo J, He Y. Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in β-thalassemia and hereditary persistence of fetal hemoglobin. Oncotarget. 2017;8:49931–43.PubMedPubMedCentral
131.
132.
go back to reference Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids. 2014;3:e177.CrossRefPubMedPubMedCentral Li X, Li Y, Zhao L, Zhang D, Yao X, Zhang H, et al. Circulating muscle-specific miRNAs in Duchenne muscular dystrophy patients. Mol Ther Nucleic Acids. 2014;3:e177.CrossRefPubMedPubMedCentral
133.
go back to reference Hildyard JC, Wells DJ. Investigating synthetic oligonucleotide targeting of Mir31 in Duchenne muscular dystrophy. PLoS Curr 2016;8. Hildyard JC, Wells DJ. Investigating synthetic oligonucleotide targeting of Mir31 in Duchenne muscular dystrophy. PLoS Curr 2016;8.
134.
go back to reference Mishra MK, Loro E, Sengupta K, Wilton SD, Khurana TS. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS One. 2017;12:e0182676.CrossRefPubMedPubMedCentral Mishra MK, Loro E, Sengupta K, Wilton SD, Khurana TS. Functional improvement of dystrophic muscle by repression of utrophin: let-7c interaction. PLoS One. 2017;12:e0182676.CrossRefPubMedPubMedCentral
135.
go back to reference Zanotti S, Gibertini S, Curcio M, Savadori P, Pasanisi B, Morandi L, et al. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochim Biophys Acta. 2015;1852:1451–64.CrossRefPubMed Zanotti S, Gibertini S, Curcio M, Savadori P, Pasanisi B, Morandi L, et al. Opposing roles of miR-21 and miR-29 in the progression of fibrosis in Duchenne muscular dystrophy. Biochim Biophys Acta. 2015;1852:1451–64.CrossRefPubMed
136.
go back to reference Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, et al. The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One. 2012;7:e45328.CrossRefPubMedPubMedCentral Bovolenta M, Erriquez D, Valli E, Brioschi S, Scotton C, Neri M, et al. The DMD locus harbours multiple long non-coding RNAs which orchestrate and control transcription of muscle dystrophin mRNA isoforms. PLoS One. 2012;7:e45328.CrossRefPubMedPubMedCentral
137.
go back to reference Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55.CrossRefPubMed Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, et al. Amyotrophic lateral sclerosis. Lancet. 2011;377:942–55.CrossRefPubMed
138.
go back to reference Gagliardi S, Milani P, Sardone V, Pansarasa O, Cereda C. From transcriptome to noncoding RNAs: implications in ALS mechanism. Neurol Res Int. 2012;2012:278725.CrossRefPubMedPubMedCentral Gagliardi S, Milani P, Sardone V, Pansarasa O, Cereda C. From transcriptome to noncoding RNAs: implications in ALS mechanism. Neurol Res Int. 2012;2012:278725.CrossRefPubMedPubMedCentral
140.
go back to reference Randell SH, Boucher RC, University of North Carolina Virtual Lung Group. Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol. 2006;35:20–8.CrossRefPubMedPubMedCentral Randell SH, Boucher RC, University of North Carolina Virtual Lung Group. Effective mucus clearance is essential for respiratory health. Am J Respir Cell Mol Biol. 2006;35:20–8.CrossRefPubMedPubMedCentral
141.
go back to reference Wang S, Yue H, Derin RB, Guggino WB, Li M. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell. 2000;103:169–79.CrossRefPubMed Wang S, Yue H, Derin RB, Guggino WB, Li M. Accessory protein facilitated CFTR-CFTR interaction, a molecular mechanism to potentiate the chloride channel activity. Cell. 2000;103:169–79.CrossRefPubMed
142.
go back to reference Peters KW, Okiyoneda T, Balch WE, Braakman I, Brodsky JL, Guggino WB, et al. CFTR Folding Consortium: methods available for studies of CFTR folding and correction. Methods Mol Biol. 2011;742:335–53.CrossRefPubMedPubMedCentral Peters KW, Okiyoneda T, Balch WE, Braakman I, Brodsky JL, Guggino WB, et al. CFTR Folding Consortium: methods available for studies of CFTR folding and correction. Methods Mol Biol. 2011;742:335–53.CrossRefPubMedPubMedCentral
143.
go back to reference Moyer BD, Denton J, Karlson KH, Reynolds D, Wang S, Mickle JE, et al. A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Investig. 1999;104:1353–61.CrossRefPubMedPubMedCentral Moyer BD, Denton J, Karlson KH, Reynolds D, Wang S, Mickle JE, et al. A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Investig. 1999;104:1353–61.CrossRefPubMedPubMedCentral
144.
go back to reference Wang W, Xiao X, Chen X, Huo Y, Xi WJ, Lin ZF, et al. Tumor-suppressive miR-145 co-repressed by TCF4-β-catenin and PRC2 complexes forms double-negative regulation loops with its negative regulators in colorectal cancer. Int J Cancer. 2017;142:308–21.CrossRefPubMed Wang W, Xiao X, Chen X, Huo Y, Xi WJ, Lin ZF, et al. Tumor-suppressive miR-145 co-repressed by TCF4-β-catenin and PRC2 complexes forms double-negative regulation loops with its negative regulators in colorectal cancer. Int J Cancer. 2017;142:308–21.CrossRefPubMed
145.
go back to reference Paul T, Li S, Khurana S, Leleiko NS, Walsh MJ. The epigenetic signature of CFTR expression is co-ordinated via chromatin acetylation through a complex intronic element. Biochem J. 2007;408:317–426.CrossRefPubMedPubMedCentral Paul T, Li S, Khurana S, Leleiko NS, Walsh MJ. The epigenetic signature of CFTR expression is co-ordinated via chromatin acetylation through a complex intronic element. Biochem J. 2007;408:317–426.CrossRefPubMedPubMedCentral
146.
go back to reference Viart V, Bergougnoux A, Bonini J, Varilh J, Chiron R, Tabary O, et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J. 2015;45:116–28.CrossRefPubMed Viart V, Bergougnoux A, Bonini J, Varilh J, Chiron R, Tabary O, et al. Transcription factors and miRNAs that regulate fetal to adult CFTR expression change are new targets for cystic fibrosis. Eur Respir J. 2015;45:116–28.CrossRefPubMed
147.
go back to reference Vuillaumier S, Dixmeras I, Messai H, Lapoumeroulie C, Lallemand D, Gekas J, et al. Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation. Biochem J. 1997;327:651–62.CrossRefPubMedPubMedCentral Vuillaumier S, Dixmeras I, Messai H, Lapoumeroulie C, Lallemand D, Gekas J, et al. Cross-species characterization of the promoter region of the cystic fibrosis transmembrane conductance regulator gene reveals multiple levels of regulation. Biochem J. 1997;327:651–62.CrossRefPubMedPubMedCentral
148.
go back to reference Pittman N, Shue G, LeLeiko NS, Walsh MJ. Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J Biol Chem. 1995;270:28848–57.CrossRefPubMed Pittman N, Shue G, LeLeiko NS, Walsh MJ. Transcription of cystic fibrosis transmembrane conductance regulator requires a CCAAT-like element for both basal and cAMP-mediated regulation. J Biol Chem. 1995;270:28848–57.CrossRefPubMed
149.
go back to reference Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135:1286–96.CrossRefPubMed Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer. 2014;135:1286–96.CrossRefPubMed
150.
go back to reference Xiang X, Zhuang X, Ju S, Zhang S, Jiang H, Mu J, et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene. 2011;30:3440–53.CrossRefPubMedPubMedCentral Xiang X, Zhuang X, Ju S, Zhang S, Jiang H, Mu J, et al. miR-155 promotes macroscopic tumor formation yet inhibits tumor dissemination from mammary fat pads to the lung by preventing EMT. Oncogene. 2011;30:3440–53.CrossRefPubMedPubMedCentral
151.
go back to reference Montanini L, Smerieri A, Gullì M, Cirillo F, Pisi G, Sartori C, et al. miR-146a, miR-155, miR-370, and miR-708 are CFTR-dependent, predicted FOXO1 regulators and change at onset of CFRDs. J Clin Endocrinol Metab. 2016;101:4955–63.CrossRefPubMed Montanini L, Smerieri A, Gullì M, Cirillo F, Pisi G, Sartori C, et al. miR-146a, miR-155, miR-370, and miR-708 are CFTR-dependent, predicted FOXO1 regulators and change at onset of CFRDs. J Clin Endocrinol Metab. 2016;101:4955–63.CrossRefPubMed
152.
go back to reference Amato F, Seia M, Giordano S, Elce A, Zarrilli F, Castaldo G, et al. Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis? PLoS One. 2013;8:e60448.CrossRefPubMedPubMedCentral Amato F, Seia M, Giordano S, Elce A, Zarrilli F, Castaldo G, et al. Gene mutation in microRNA target sites of CFTR gene: a novel pathogenetic mechanism in cystic fibrosis? PLoS One. 2013;8:e60448.CrossRefPubMedPubMedCentral
153.
go back to reference Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One. 2011;6:e26601.CrossRefPubMedPubMedCentral Megiorni F, Cialfi S, Dominici C, Quattrucci S, Pizzuti A. Synergistic post-transcriptional regulation of the cystic fibrosis transmembrane conductance regulator (CFTR) by miR-101 and miR-494 specific binding. PLoS One. 2011;6:e26601.CrossRefPubMedPubMedCentral
154.
go back to reference Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.CrossRefPubMed Lyst MJ, Bird A. Rett syndrome: a complex disorder with simple roots. Nat Rev Genet. 2015;16:261–75.CrossRefPubMed
155.
go back to reference Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, et al. miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to Rett syndrome phenotypes. Cell Rep. 2015;12:1887–901.CrossRefPubMed Tsujimura K, Irie K, Nakashima H, Egashira Y, Fukao Y, Fujiwara M, et al. miR-199a links MeCP2 with mTOR signaling and its dysregulation leads to Rett syndrome phenotypes. Cell Rep. 2015;12:1887–901.CrossRefPubMed
156.
go back to reference Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:151–65.CrossRefPubMed Wilcox RA. Cutaneous T-cell lymphoma: 2016 update on diagnosis, risk-stratification, and management. Am J Hematol. 2016;91:151–65.CrossRefPubMed
157.
go back to reference Benoit BM, Jariwala N, O’Connor G, Oetjen LK, Whelan TM, Werth A, et al. CD164 identifies CD4 + T cells highly expressing genes associated with malignancy in Sézary syndrome: the Sézary signature genes, FCRL3, Tox, and miR-214. Arch Dermatol Res. 2017;309:11–9.CrossRefPubMed Benoit BM, Jariwala N, O’Connor G, Oetjen LK, Whelan TM, Werth A, et al. CD164 identifies CD4 + T cells highly expressing genes associated with malignancy in Sézary syndrome: the Sézary signature genes, FCRL3, Tox, and miR-214. Arch Dermatol Res. 2017;309:11–9.CrossRefPubMed
158.
go back to reference Lee CS, Ungewickell A, Bhaduri A, Qu K, Webster DE, Armstrong R, et al. Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood. 2012;120:3288–97.CrossRefPubMedPubMedCentral Lee CS, Ungewickell A, Bhaduri A, Qu K, Webster DE, Armstrong R, et al. Transcriptome sequencing in Sezary syndrome identifies Sezary cell and mycosis fungoides-associated lncRNAs and novel transcripts. Blood. 2012;120:3288–97.CrossRefPubMedPubMedCentral
159.
go back to reference Thein SL. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis. 2017;S1079–9796:30210–3. Thein SL. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol Dis. 2017;S1079–9796:30210–3.
160.
161.
162.
go back to reference Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med. 2015;6:69–85.PubMedPubMedCentral Finotti A, Breda L, Lederer CW, Bianchi N, Zuccato C, Kleanthous M, Rivella S, Gambari R. Recent trends in the gene therapy of β-thalassemia. J Blood Med. 2015;6:69–85.PubMedPubMedCentral
163.
go back to reference Breveglieri G, Bianchi N, Cosenza LC, Gamberini MR, Chiavilli F, Zuccato C, et al. An Aγ-globin G- > A gene polymorphism associated with β039 thalassemia globin gene and high fetal hemoglobin production. BMC Med Genet. 2017;18:93.CrossRefPubMedPubMedCentral Breveglieri G, Bianchi N, Cosenza LC, Gamberini MR, Chiavilli F, Zuccato C, et al. An Aγ-globin G- > A gene polymorphism associated with β039 thalassemia globin gene and high fetal hemoglobin production. BMC Med Genet. 2017;18:93.CrossRefPubMedPubMedCentral
164.
go back to reference Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, et al. Structural and functional insights on an uncharacterized Aγ-globin-gene polymorphism present in four β0-thalassemia families with high fetal hemoglobin levels. Mol Diagn Ther. 2016;20:161–73.CrossRefPubMed Bianchi N, Cosenza LC, Lampronti I, Finotti A, Breveglieri G, Zuccato C, et al. Structural and functional insights on an uncharacterized Aγ-globin-gene polymorphism present in four β0-thalassemia families with high fetal hemoglobin levels. Mol Diagn Ther. 2016;20:161–73.CrossRefPubMed
165.
go back to reference Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics. 2012;4:51–65.CrossRefPubMed Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R. Involvement of miRNA in erythroid differentiation. Epigenomics. 2012;4:51–65.CrossRefPubMed
166.
go back to reference Bianchi N, Finotti A, Ferracin M, Lampronti I, Zuccato C, Breveglieri G, et al. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. PLoS One. 2015;10:e0121567.CrossRefPubMedPubMedCentral Bianchi N, Finotti A, Ferracin M, Lampronti I, Zuccato C, Breveglieri G, et al. Increase of microRNA-210, decrease of raptor gene expression and alteration of mammalian target of rapamycin regulated proteins following mithramycin treatment of human erythroid cells. PLoS One. 2015;10:e0121567.CrossRefPubMedPubMedCentral
167.
go back to reference Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, et al. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis. 2013;51:98–103.CrossRefPubMed Sarakul O, Vattanaviboon P, Tanaka Y, Fucharoen S, Abe Y, Svasti S, et al. Enhanced erythroid cell differentiation in hypoxic condition is in part contributed by miR-210. Blood Cells Mol Dis. 2013;51:98–103.CrossRefPubMed
168.
go back to reference Bavelloni A, Poli A, Fiume R, Blalock W, Matteucci A, Ramazzotti G, et al. PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget. 2014;5:4222–31.CrossRefPubMedPubMedCentral Bavelloni A, Poli A, Fiume R, Blalock W, Matteucci A, Ramazzotti G, et al. PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells. Oncotarget. 2014;5:4222–31.CrossRefPubMedPubMedCentral
169.
go back to reference Sawant M, Colah R, Ghosh K, Nadkarni A. Does HbF induction by hydroxycarbamide work through MIR210 in sickle cell anaemia patients? Br J Haematol. 2016;173:801–3.CrossRefPubMed Sawant M, Colah R, Ghosh K, Nadkarni A. Does HbF induction by hydroxycarbamide work through MIR210 in sickle cell anaemia patients? Br J Haematol. 2016;173:801–3.CrossRefPubMed
170.
go back to reference Li Y, Liu D, Zhang X, Li Z, Ye Y, Liu Q, et al. miR-326 regulates HbF synthesis by targeting EKLF in human erythroid cells. Exp Hematol. 2018;63:33–40.CrossRefPubMed Li Y, Liu D, Zhang X, Li Z, Ye Y, Liu Q, et al. miR-326 regulates HbF synthesis by targeting EKLF in human erythroid cells. Exp Hematol. 2018;63:33–40.CrossRefPubMed
171.
go back to reference De Antonellis P, Carotenuto M, Vandenbussche J, De Vita G, Ferrucci V, Medaglia C, et al. Early targets of miR-34a in neuroblastoma. Mol Cell Proteom. 2014;13:2114–31.CrossRef De Antonellis P, Carotenuto M, Vandenbussche J, De Vita G, Ferrucci V, Medaglia C, et al. Early targets of miR-34a in neuroblastoma. Mol Cell Proteom. 2014;13:2114–31.CrossRef
172.
go back to reference Sankaran VG, Menne TF, Scepanovic D, Vergilio JA, Ji P, Kim J, et al. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci USA. 2011;108:1519–24.CrossRefPubMedPubMedCentral Sankaran VG, Menne TF, Scepanovic D, Vergilio JA, Ji P, Kim J, et al. MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci USA. 2011;108:1519–24.CrossRefPubMedPubMedCentral
173.
go back to reference Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med. 2016;5:15.CrossRefPubMedPubMedCentral Pule GD, Mowla S, Novitzky N, Wonkam A. Hydroxyurea down-regulates BCL11A, KLF-1 and MYB through miRNA-mediated actions to induce γ-globin expression: implications for new therapeutic approaches of sickle cell disease. Clin Transl Med. 2016;5:15.CrossRefPubMedPubMedCentral
174.
go back to reference Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan Y, Dong H, Wang F, Gong B, Zhu Y, Dong L, Yin H, Zhang Z, Zhao H, Wu Z, Zhang J, Zhou J, Yu J. A feedback loop consisting of microRNA 23a/27a and the β-like globin suppressors KLF3 and SP1 regulates globin gene expression. Mol Cell Biol. 2013;33:3994–4007.CrossRefPubMedPubMedCentral Ma Y, Wang B, Jiang F, Wang D, Liu H, Yan Y, Dong H, Wang F, Gong B, Zhu Y, Dong L, Yin H, Zhang Z, Zhao H, Wu Z, Zhang J, Zhou J, Yu J. A feedback loop consisting of microRNA 23a/27a and the β-like globin suppressors KLF3 and SP1 regulates globin gene expression. Mol Cell Biol. 2013;33:3994–4007.CrossRefPubMedPubMedCentral
175.
go back to reference Azzouzi I, Moest H, Winkler J, Fauchère JC, Gerber AP, Wollscheid B, Stoffel M, Schmugge M, Speer O. MicroRNA-96 directly inhibits γ-globin expression in human erythropoiesis. PLoS One. 2011;6(7):e22838.CrossRefPubMedPubMedCentral Azzouzi I, Moest H, Winkler J, Fauchère JC, Gerber AP, Wollscheid B, Stoffel M, Schmugge M, Speer O. MicroRNA-96 directly inhibits γ-globin expression in human erythropoiesis. PLoS One. 2011;6(7):e22838.CrossRefPubMedPubMedCentral
176.
go back to reference Gu S, Jin L, Zhang F, Sarnow P, Kay MA. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009;16:144–50.CrossRefPubMedPubMedCentral Gu S, Jin L, Zhang F, Sarnow P, Kay MA. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol. 2009;16:144–50.CrossRefPubMedPubMedCentral
177.
go back to reference Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell. 2005;123:1133–46.CrossRefPubMed Stark A, Brennecke J, Bushati N, Russell RB, Cohen SM. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell. 2005;123:1133–46.CrossRefPubMed
178.
go back to reference Zhang R, Su B. Small but influential: the role of microRNAs on gene regulatory network and 3′ UTR evolution. J Genet Genom. 2009;36:1–6.CrossRef Zhang R, Su B. Small but influential: the role of microRNAs on gene regulatory network and 3′ UTR evolution. J Genet Genom. 2009;36:1–6.CrossRef
180.
go back to reference Brümmer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays. 2014;36:617–26.CrossRefPubMed Brümmer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays. 2014;36:617–26.CrossRefPubMed
181.
go back to reference Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013;23:604–15.CrossRefPubMedPubMedCentral Hausser J, Syed AP, Bilen B, Zavolan M. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res. 2013;23:604–15.CrossRefPubMedPubMedCentral
182.
go back to reference Meekings KN, Williams CS, Arrowsmith JE. Orphan drug development: an economically viable strategy for biopharma R&D. Drug Discov Today. 2012;17:660–4.CrossRefPubMed Meekings KN, Williams CS, Arrowsmith JE. Orphan drug development: an economically viable strategy for biopharma R&D. Drug Discov Today. 2012;17:660–4.CrossRefPubMed
183.
go back to reference Halffner ME, Whitley J, Moses M. Two decades of orphan product development. Nat Rev Drug Discov. 2002;1:821–5.CrossRef Halffner ME, Whitley J, Moses M. Two decades of orphan product development. Nat Rev Drug Discov. 2002;1:821–5.CrossRef
184.
go back to reference Fagnan DE, Gromatzky AA, Stein RM, Fernandez JM, Lo AW. Financing drug discovery for orphan diseases. Drug Discov Today. 2014;19:533–8.CrossRefPubMed Fagnan DE, Gromatzky AA, Stein RM, Fernandez JM, Lo AW. Financing drug discovery for orphan diseases. Drug Discov Today. 2014;19:533–8.CrossRefPubMed
185.
go back to reference Uguen D, Lönngren T, Le Cam Y, Garner S, Voisin E, Incerti C, et al. Accelerating development, registration and access to medicines for rare diseases in the European Union through adaptive approaches: features and perspectives. Orphanet J Rare Dis. 2014;9:20.CrossRefPubMedPubMedCentral Uguen D, Lönngren T, Le Cam Y, Garner S, Voisin E, Incerti C, et al. Accelerating development, registration and access to medicines for rare diseases in the European Union through adaptive approaches: features and perspectives. Orphanet J Rare Dis. 2014;9:20.CrossRefPubMedPubMedCentral
186.
go back to reference Michel M, Toumi M. Access to orphan drugs in Europe: current and future issues. Expert Rev Pharmacoecon Outcomes Res. 2012;12:23–9.CrossRefPubMed Michel M, Toumi M. Access to orphan drugs in Europe: current and future issues. Expert Rev Pharmacoecon Outcomes Res. 2012;12:23–9.CrossRefPubMed
187.
go back to reference Committee for Orphan Medicinal Products and the European Medicines, Westermark K, Holm BB, Söderholm M, Llinares-Garcia J, Rivière F, et al. European regulation on orphan medicinal products: 10 years of experience and future perspectives. Nat Rev Drug Discov. 2011;10:341–9.CrossRef Committee for Orphan Medicinal Products and the European Medicines, Westermark K, Holm BB, Söderholm M, Llinares-Garcia J, Rivière F, et al. European regulation on orphan medicinal products: 10 years of experience and future perspectives. Nat Rev Drug Discov. 2011;10:341–9.CrossRef
Metadata
Title
MicroRNAs and Long Non-coding RNAs in Genetic Diseases
Authors
Alessia Finotti
Enrica Fabbri
Ilaria Lampronti
Jessica Gasparello
Monica Borgatti
Roberto Gambari
Publication date
01-04-2019
Publisher
Springer International Publishing
Published in
Molecular Diagnosis & Therapy / Issue 2/2019
Print ISSN: 1177-1062
Electronic ISSN: 1179-2000
DOI
https://doi.org/10.1007/s40291-018-0380-6

Other articles of this Issue 2/2019

Molecular Diagnosis & Therapy 2/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine