Skip to main content
Top
Published in: Sports Medicine 3/2020

01-03-2020 | Hypertension | Systematic Review

Running to Lower Resting Blood Pressure: A Systematic Review and Meta-analysis

Authors: Yutaka Igarashi, Yoshie Nogami

Published in: Sports Medicine | Issue 3/2020

Login to get access

Abstract

Background

According to previous epidemiological studies, there are pros and cons for the relationship between running regularly and changes in resting blood pressure (RBP), and the changes may depend on the form of exercise.

Objective

The aims of the current systematic review were to summarize the effects of running regularly on RBP and to investigate the most efficacious form of running in reducing RBP for this purpose.

Methods

The inclusion criteria were: randomized controlled trials, involving healthy adults or adults with hypertension, the exercise group only performed regular running and the control group did not exercise, and the study reported the mean resting systolic blood pressure (RSBP) and/or diastolic blood pressure (RDBP). The mean difference (MD) in RBP in each trial was defined as follows: (mean value at post-intervention in the exercise group − mean value at baseline in the exercise group) − (mean value at post-intervention in the control group − mean value at baseline in the control group) and was calculated. The weighted MD (WMD) was defined as the synthesis of all MD. A linear meta-regression analysis, exercise intensity [the percentage of maximum heart rate] (%) and total exercise time throughout the intervention (hours) were selected as explanatory variables and the MD in RBP served as the objective variable.

Results

Twenty-two trials (736 subjects) were analyzed. When trials were limited to those involving healthy subjects, the WMD in RBP decreased significantly [RSBP: − 4.2 mmHg (95% confidence intervals (95% CI) − 5.9 to − 2.4); RDBP: − 2.7 mmHg (95% CI − 4.2 to − 1.1)] and did not contain significant heterogeneity (RSBP: P = 0.67, I2 = 0.0%; DBP: P = 0.38, I2 = 7.2%). When trials were limited to those involving subjects with hypertension, the WMD in RBP decreased significantly [RSBP: − 5.6 mmHg (95% CI − 9.1 to − 2.1); RDBP: − 5.2 mmHg (95% CI − 9.0 to − 1.4)] but contained significant heterogeneity (RSBP: P = 0.01, I2 = 62.2%; DBP: P < 0.01, I2 = 87.7) and a meta-regression analysis showed that the percentage of maximum heart rate was significantly associated with the WMD in RSBP [slope: 0.56 (95% CI 0.21 to 0.92), intercept: − 48.76 (95% CI − 76.30 to − 21.22), R2 = 0.88] and RDBP [slope: 0.45 (95% CI 0.01 to 0.87), intercept: − 38.06 (95% CI − 72.30 to − 4.08), R2 = 0.41]. When trials were limited to those involving subjects with hypertension and a mean age ≥ 40 years, a meta-regression analysis showed that total exercise time throughout the intervention was significantly associated with the WMD in RDBP [slope: 0.82 (95% CI 0.54 to 1.09), intercept: − 22.90 (95% CI − 29.04 to − 16.77), R2 = 0.99].

Conclusions

Running regularly decreases RBP, but the changes in subjects with hypertension may differ depending on exercise intensity or total exercise time. Therefore, running regularly at moderate intensity and at a restrained volume is recommended to lower RBP in subjects with hypertension.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.
2.
go back to reference Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R, Prospective Studies Collaboration. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360:1903–13.
3.
go back to reference Kokubo Y. Prevention of hypertension and cardiovascular diseases: a comparison of lifestyle factors in Westerners and East Asians. Hypertension. 2014;63:655–60.PubMed Kokubo Y. Prevention of hypertension and cardiovascular diseases: a comparison of lifestyle factors in Westerners and East Asians. Hypertension. 2014;63:655–60.PubMed
4.
go back to reference Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72:1278–93.PubMedPubMedCentral Carey RM, Muntner P, Bosworth HB, Whelton PK. Prevention and control of hypertension: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72:1278–93.PubMedPubMedCentral
5.
go back to reference Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24:215–33.PubMed Dickinson HO, Mason JM, Nicolson DJ, Campbell F, Beyer FR, et al. Lifestyle interventions to reduce raised blood pressure: a systematic review of randomized controlled trials. J Hypertens. 2006;24:215–33.PubMed
6.
go back to reference Xin X, He J, Frontini MG, Ogden LG, Motsamai OI, Whelton PK. Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2001;38:1112–7.PubMed Xin X, He J, Frontini MG, Ogden LG, Motsamai OI, Whelton PK. Effects of alcohol reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension. 2001;38:1112–7.PubMed
7.
go back to reference Graudal NA, Hubeck-Graudal T, Jürgens G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (cochrane review). Am J Hypertens. 2012;25:1–15.PubMed Graudal NA, Hubeck-Graudal T, Jürgens G. Effects of low-sodium diet vs. high-sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride (cochrane review). Am J Hypertens. 2012;25:1–15.PubMed
8.
go back to reference Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Prev Med. 2015;72:34–43.PubMed Murtagh EM, Nichols L, Mohammed MA, Holder R, Nevill AM, Murphy MH. The effect of walking on risk factors for cardiovascular disease: an updated systematic review and meta-analysis of randomised control trials. Prev Med. 2015;72:34–43.PubMed
9.
go back to reference Igarashi Y, Akazawa N, Maeda S. The required step count for a reduction in blood pressure: a systematic review and meta-analysis. J Hum Hypertens. 2018;32:814–24.PubMed Igarashi Y, Akazawa N, Maeda S. The required step count for a reduction in blood pressure: a systematic review and meta-analysis. J Hum Hypertens. 2018;32:814–24.PubMed
10.
go back to reference Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med. 2018;52:769–75.PubMed Oja P, Kelly P, Murtagh EM, Murphy MH, Foster C, Titze S. Effects of frequency, intensity, duration and volume of walking interventions on CVD risk factors: a systematic review and meta-regression analysis of randomised controlled trials among inactive healthy adults. Br J Sports Med. 2018;52:769–75.PubMed
11.
go back to reference Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.PubMed Cornelissen VA, Fagard RH, Coeckelberghs E, Vanhees L. Impact of resistance training on blood pressure and other cardiovascular risk factors: a meta-analysis of randomized, controlled trials. Hypertension. 2011;58:950–8.PubMed
12.
go back to reference Igarashi Y, Nogami Y. The effect of regular aquatic exercise on blood pressure: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2018;25:190–9.PubMed Igarashi Y, Nogami Y. The effect of regular aquatic exercise on blood pressure: a meta-analysis of randomized controlled trials. Eur J Prev Cardiol. 2018;25:190–9.PubMed
13.
go back to reference Igarashi Y, Akazawa N, Maeda S. Regular aerobic exercise and blood pressure in East Asians: a meta-analysis of randomized controlled trials. Clin Exp Hypertens. 2018;40:378–89.PubMed Igarashi Y, Akazawa N, Maeda S. Regular aerobic exercise and blood pressure in East Asians: a meta-analysis of randomized controlled trials. Clin Exp Hypertens. 2018;40:378–89.PubMed
14.
go back to reference Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.PubMed Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.PubMed
15.
go back to reference Manfredini F, Malagoni AM, Mandini S, Boari B, Felisatti M, et al. Sport therapy for hypertension: why, how, and how much? Angiology. 2009;60:207–16.PubMed Manfredini F, Malagoni AM, Mandini S, Boari B, Felisatti M, et al. Sport therapy for hypertension: why, how, and how much? Angiology. 2009;60:207–16.PubMed
16.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.PubMed Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81.PubMed
17.
go back to reference Stamatakis E, Chaudhury M. Temporal trends in adults’ sports participation patterns in England between 1997 and 2006: the Health Survey for England. Br J Sports Med. 2008;42:901–8.PubMed Stamatakis E, Chaudhury M. Temporal trends in adults’ sports participation patterns in England between 1997 and 2006: the Health Survey for England. Br J Sports Med. 2008;42:901–8.PubMed
19.
go back to reference Williams PT, Thompson PD. Walking versus running for hypertension, cholesterol, and diabetes mellitus risk reduction. Arterioscler Thromb Vasc Biol. 2013;33:1085–91.PubMedPubMedCentral Williams PT, Thompson PD. Walking versus running for hypertension, cholesterol, and diabetes mellitus risk reduction. Arterioscler Thromb Vasc Biol. 2013;33:1085–91.PubMedPubMedCentral
20.
go back to reference Pressler A, Suchy C, Friedrichs T, Dallinger S, Grabs V, et al. Running multiple marathons is not a risk factor for premature subclinical vascular impairment. Eur J Prev Cardiol. 2017;24:1328–35.PubMed Pressler A, Suchy C, Friedrichs T, Dallinger S, Grabs V, et al. Running multiple marathons is not a risk factor for premature subclinical vascular impairment. Eur J Prev Cardiol. 2017;24:1328–35.PubMed
22.
go back to reference Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol. 2015;65:411–9.PubMed Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol. 2015;65:411–9.PubMed
23.
go back to reference Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64:472–81.PubMedPubMedCentral Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64:472–81.PubMedPubMedCentral
24.
go back to reference Kikuchi H, Inoue S, Lee IM, Odagiri Y, Sawada N, et al. Impact of moderate-intensity and vigorous-intensity physical activity on mortality. Med Sci Sports Exerc. 2018;50:715–21.PubMed Kikuchi H, Inoue S, Lee IM, Odagiri Y, Sawada N, et al. Impact of moderate-intensity and vigorous-intensity physical activity on mortality. Med Sci Sports Exerc. 2018;50:715–21.PubMed
25.
go back to reference Lavie CJ, Lee DC, Sui X, Arena R, O’Keefe JH, et al. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clin Proc. 2015;90:1541–52.PubMed Lavie CJ, Lee DC, Sui X, Arena R, O’Keefe JH, et al. Effects of running on chronic diseases and cardiovascular and all-cause mortality. Mayo Clin Proc. 2015;90:1541–52.PubMed
26.
go back to reference Lee DC, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a key lifestyle medicine for longevity. Prog Cardiovasc Dis. 2017;60:45–55.PubMed Lee DC, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a key lifestyle medicine for longevity. Prog Cardiovasc Dis. 2017;60:45–55.PubMed
27.
go back to reference Hespanhol Junior LC, Pillay JD, van Mechelen W, Verhagen E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med. 2015;45:1455–68.PubMedPubMedCentral Hespanhol Junior LC, Pillay JD, van Mechelen W, Verhagen E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med. 2015;45:1455–68.PubMedPubMedCentral
28.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;349:g7647.
32.
go back to reference DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.PubMed DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7:177–88.PubMed
33.
go back to reference Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45:769–73.PubMed Follmann D, Elliott P, Suh I, Cutler J. Variance imputation for overviews of clinical trials with continuous response. J Clin Epidemiol. 1992;45:769–73.PubMed
34.
35.
go back to reference Londeree BR, Ames SA. Trend analysis of the % VO2 max-HR regression. Med Sci Sports. 1976;8:123–5.PubMed Londeree BR, Ames SA. Trend analysis of the % VO2 max-HR regression. Med Sci Sports. 1976;8:123–5.PubMed
36.
37.
go back to reference Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedPubMedCentral Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–34.PubMedPubMedCentral
38.
go back to reference Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.PubMed Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56:455–63.PubMed
39.
go back to reference Mathur DN, Toriola AL. Twelve weeks jogging effects on selected cardiovascular risk factors in untrained healthy males. J Sports Med Phys Fitness. 1984;24:259–62.PubMed Mathur DN, Toriola AL. Twelve weeks jogging effects on selected cardiovascular risk factors in untrained healthy males. J Sports Med Phys Fitness. 1984;24:259–62.PubMed
40.
go back to reference Duncan JJ, Farr JE, Upton SJ, Hagan RD, Oglesby ME, Blair SN. The effects of aerobic exercise on plasma catecholamines and blood pressure in patients with mild essential hypertension. JAMA. 1985;254(18):2609–13.PubMed Duncan JJ, Farr JE, Upton SJ, Hagan RD, Oglesby ME, Blair SN. The effects of aerobic exercise on plasma catecholamines and blood pressure in patients with mild essential hypertension. JAMA. 1985;254(18):2609–13.PubMed
41.
go back to reference Suter E, Marti B, Tschopp A, Wanner HU, Wenk C, Gutzwiller F. Effects of self-monitored jogging on physical fitness, blood pressure and serum lipids: a controlled study in sedentary middle-aged men. Int J Sports Med. 1990;11:425–32.PubMed Suter E, Marti B, Tschopp A, Wanner HU, Wenk C, Gutzwiller F. Effects of self-monitored jogging on physical fitness, blood pressure and serum lipids: a controlled study in sedentary middle-aged men. Int J Sports Med. 1990;11:425–32.PubMed
42.
go back to reference Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension Results of a randomized controlled trial. JAMA. 1991;266:2098–104.PubMed Blumenthal JA, Siegel WC, Appelbaum M. Failure of exercise to reduce blood pressure in patients with mild hypertension Results of a randomized controlled trial. JAMA. 1991;266:2098–104.PubMed
43.
go back to reference Albright CL, King AC, Taylor CB, Haskell WL. Effect of a six-month aerobic exercise training program on cardiovascular responsivity in healthy middle-aged adults. J Psychosom Res. 1992;36:25–36.PubMed Albright CL, King AC, Taylor CB, Haskell WL. Effect of a six-month aerobic exercise training program on cardiovascular responsivity in healthy middle-aged adults. J Psychosom Res. 1992;36:25–36.PubMed
44.
go back to reference Rogers MW, Probst MM, Gruber JJ, Berger R, Boone JB Jr. Differential effects of exercise training intensity on blood pressure and cardiovascular responses to stress in borderline hypertensive humans. J Hypertens. 1996;14:1369–75.PubMed Rogers MW, Probst MM, Gruber JJ, Berger R, Boone JB Jr. Differential effects of exercise training intensity on blood pressure and cardiovascular responses to stress in borderline hypertensive humans. J Hypertens. 1996;14:1369–75.PubMed
45.
go back to reference Tsai JC, Chang WY, Kao CC, Lu MS, Chen YJ, Chan P. Beneficial effect on blood pressure and lipid profile by programmed exercise training in Taiwanese patients with mild hypertension. Clin Exp Hypertens. 2002;24:315–24.PubMed Tsai JC, Chang WY, Kao CC, Lu MS, Chen YJ, Chan P. Beneficial effect on blood pressure and lipid profile by programmed exercise training in Taiwanese patients with mild hypertension. Clin Exp Hypertens. 2002;24:315–24.PubMed
46.
go back to reference Tsai JC, Liu JC, Kao CC, Tomlinson B, Kao PF, et al. Beneficial effects on blood pressure and lipid profile of programmed exercise training in subjects with white coat hypertension. Am J Hypertens. 2002;15:571–6.PubMed Tsai JC, Liu JC, Kao CC, Tomlinson B, Kao PF, et al. Beneficial effects on blood pressure and lipid profile of programmed exercise training in subjects with white coat hypertension. Am J Hypertens. 2002;15:571–6.PubMed
47.
go back to reference Tsai JC, Yang HY, Wang WH, Hsieh MH, Chen PT, et al. The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension. Clin Exp Hypertens. 2004;26:255–65.PubMed Tsai JC, Yang HY, Wang WH, Hsieh MH, Chen PT, et al. The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension. Clin Exp Hypertens. 2004;26:255–65.PubMed
48.
go back to reference Krustrup P, Nielsen JJ, Krustrup BR, Christensen JF, Pedersen H, et al. Recreational soccer is an effective health-promoting activity for untrained men. Br J Sports Med. 2009;43:825–31.PubMed Krustrup P, Nielsen JJ, Krustrup BR, Christensen JF, Pedersen H, et al. Recreational soccer is an effective health-promoting activity for untrained men. Br J Sports Med. 2009;43:825–31.PubMed
49.
go back to reference Knoepfli-Lenzin C, Sennhauser C, Toigo M, Boutellier U, Bangsbo J, et al. Effects of a 12-week intervention period with football and running for habitually active men with mild hypertension. Scand J Med Sci Sports. 2010;20:72–9.PubMed Knoepfli-Lenzin C, Sennhauser C, Toigo M, Boutellier U, Bangsbo J, et al. Effects of a 12-week intervention period with football and running for habitually active men with mild hypertension. Scand J Med Sci Sports. 2010;20:72–9.PubMed
50.
go back to reference Krustrup P, Hansen PR, Andersen LJ, Jakobsen MD, Sundstrup E, et al. Long-term musculoskeletal and cardiac health effects of recreational football and running for premenopausal women. Scand J Med Sci Sports. 2010;20(Suppl 1):58–71.PubMed Krustrup P, Hansen PR, Andersen LJ, Jakobsen MD, Sundstrup E, et al. Long-term musculoskeletal and cardiac health effects of recreational football and running for premenopausal women. Scand J Med Sci Sports. 2010;20(Suppl 1):58–71.PubMed
51.
go back to reference Amin-Shokravi F, Rajabi R, Ziaee N. Exercise effects on risk of cardiovascular disease among Iranian women. Asian J Sports Med. 2011;2:37–43.PubMedPubMedCentral Amin-Shokravi F, Rajabi R, Ziaee N. Exercise effects on risk of cardiovascular disease among Iranian women. Asian J Sports Med. 2011;2:37–43.PubMedPubMedCentral
52.
go back to reference Beck DT, Martin JS, Casey DP, Braith RW. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens. 2013;26:1093–102.PubMedPubMedCentral Beck DT, Martin JS, Casey DP, Braith RW. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects. Am J Hypertens. 2013;26:1093–102.PubMedPubMedCentral
53.
go back to reference Foulds HJ, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE. Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol. 2014;114:1563–71.PubMed Foulds HJ, Bredin SS, Charlesworth SA, Ivey AC, Warburton DE. Exercise volume and intensity: a dose-response relationship with health benefits. Eur J Appl Physiol. 2014;114:1563–71.PubMed
54.
55.
go back to reference Patterson S, Pattison J, Legg H, Gibson AM, Brown N. The impact of badminton on health markers in untrained females. J Sports Sci. 2017;35:1098–106.PubMed Patterson S, Pattison J, Legg H, Gibson AM, Brown N. The impact of badminton on health markers in untrained females. J Sports Sci. 2017;35:1098–106.PubMed
56.
go back to reference Jamnik VK, Warburton DE, Makarski J, McKenzie DC, Shephard RJ, et al. Enhancing the effectiveness of clearance for physical activity participation: background and overall process. Appl Physiol Nutr Metab. 2011;36(Suppl 1):S3–13.PubMed Jamnik VK, Warburton DE, Makarski J, McKenzie DC, Shephard RJ, et al. Enhancing the effectiveness of clearance for physical activity participation: background and overall process. Appl Physiol Nutr Metab. 2011;36(Suppl 1):S3–13.PubMed
57.
go back to reference Boutcher YN, Boutcher SH. Exercise intensity and hypertension: what’s new? J Hum Hypertens. 2017;31:157–64.PubMed Boutcher YN, Boutcher SH. Exercise intensity and hypertension: what’s new? J Hum Hypertens. 2017;31:157–64.PubMed
58.
go back to reference Annuk M, Zilmer M, Fellström B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl. 2003;63:S50–3. Annuk M, Zilmer M, Fellström B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: impact on cardiovascular disease. Kidney Int Suppl. 2003;63:S50–3.
59.
go back to reference Korsager LM, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina (Kaunas). 2016;52:19–27. Korsager LM, Matchkov VV. Hypertension and physical exercise: The role of oxidative stress. Medicina (Kaunas). 2016;52:19–27.
60.
go back to reference Sachdev S, Davies KJ. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. 2008;44:215–23.PubMed Sachdev S, Davies KJ. Production, detection, and adaptive responses to free radicals in exercise. Free Radic Biol Med. 2008;44:215–23.PubMed
61.
go back to reference Arakawa K. Antihypertensive mechanism of exercise. J Hypertens. 1993;11:223–9.PubMed Arakawa K. Antihypertensive mechanism of exercise. J Hypertens. 1993;11:223–9.PubMed
Metadata
Title
Running to Lower Resting Blood Pressure: A Systematic Review and Meta-analysis
Authors
Yutaka Igarashi
Yoshie Nogami
Publication date
01-03-2020
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 3/2020
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-019-01209-3

Other articles of this Issue 3/2020

Sports Medicine 3/2020 Go to the issue