Skip to main content
Top
Published in: Drugs & Aging 10/2016

01-10-2016 | Review Article

Antibody-Based Drugs and Approaches Against Amyloid-β Species for Alzheimer’s Disease Immunotherapy

Authors: Jing Liu, Bin Yang, Jun Ke, Wenjia Li, Wen-Chen Suen

Published in: Drugs & Aging | Issue 10/2016

Login to get access

Abstract

Alzheimer’s disease (AD), one of the most devastating diseases for the older population, has become a major healthcare burden in the increasingly aging society worldwide. Currently, there are still only symptomatic treatments available on the market, just to slow down disease progression. In the past decades, extensive research focusing on the development of immunotherapy using monoclonal antibodies (mAbs) as potential “disease-modifying drugs” has shown promise in inhibiting or clearing the formation of toxic amyloid-β (Aβ) species, the suspected causative agents of AD. As a result, these potential life-saving drugs can break the amyloid cascade, cease neurodegeneration, and prevent further reduction in cognitive and physical function. In this review, we first describe the polymorphisms of Aβ species, comprising three different pools, including monomers, soluble oligomers, and insoluble fibrils, with each pool encompassing multiple structures of Aβ aggregation. A comprehensive review on their toxicities follows in relation to the characterized epitopes of anti-Aβ mAb candidates under development. We then present the outcomes of these mAbs in clinical or pre-clinical trials and conclude by providing a summary of other novel and promising antibody-based immunotherapeutic approaches that deserve more attention for the effective treatment of AD in the future.
Literature
1.
go back to reference Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2007;3:186–91.CrossRef Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc. 2007;3:186–91.CrossRef
2.
go back to reference Alzheimer’s disease—global drug forecast and market analysis to 2023. GlobalData PharmaPoint. Reference code: GDHC010EPIDR. Publication data: May 2015. Alzheimer’s disease—global drug forecast and market analysis to 2023. GlobalData PharmaPoint. Reference code: GDHC010EPIDR. Publication data: May 2015.
3.
go back to reference Geldmacher DS. Treatment guidelines for Alzheimer’s disease: redefining perceptions in primary care. Prim Care Companion J Clin Psychiatry. 2007;9:113–21.PubMedPubMedCentralCrossRef Geldmacher DS. Treatment guidelines for Alzheimer’s disease: redefining perceptions in primary care. Prim Care Companion J Clin Psychiatry. 2007;9:113–21.PubMedPubMedCentralCrossRef
4.
go back to reference Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. Neuroscience. 2013;251:51–65.PubMedCrossRef Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. Neuroscience. 2013;251:51–65.PubMedCrossRef
5.
go back to reference Hane F, Tran G, Attwood SJ, Leonenko Z. Cu(2+) affects amyloid-beta (1–42) aggregation by increasing peptide-peptide binding forces. PLoS One. 2013;8:e59005.PubMedPubMedCentralCrossRef Hane F, Tran G, Attwood SJ, Leonenko Z. Cu(2+) affects amyloid-beta (1–42) aggregation by increasing peptide-peptide binding forces. PLoS One. 2013;8:e59005.PubMedPubMedCentralCrossRef
7.
go back to reference Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9:448–52.PubMedCrossRef Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med. 2003;9:448–52.PubMedCrossRef
8.
go back to reference Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis. 2013;33(Suppl 1):S67–78. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimer’s Dis. 2013;33(Suppl 1):S67–78.
9.
go back to reference Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther. 2014;6:42.PubMedPubMedCentralCrossRef Goure WF, Krafft GA, Jerecic J, Hefti F. Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res Ther. 2014;6:42.PubMedPubMedCentralCrossRef
11.
go back to reference Hamley IW. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev. 2012;112:5147–92.PubMedCrossRef Hamley IW. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem Rev. 2012;112:5147–92.PubMedCrossRef
12.
go back to reference Dong X, Chen W, Mousseau N, Derreumaux P. Energy landscapes of the monomer and dimer of the Alzheimer’s peptide Abeta(1–28). J Chem Phys. 2008;128:125108.PubMedCrossRef Dong X, Chen W, Mousseau N, Derreumaux P. Energy landscapes of the monomer and dimer of the Alzheimer’s peptide Abeta(1–28). J Chem Phys. 2008;128:125108.PubMedCrossRef
13.
go back to reference Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem. 1992;267:546–54.PubMed Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem. 1992;267:546–54.PubMed
14.
go back to reference Jang S, Shin S. Computational study on the structural diversity of amyloid beta peptide (abeta(10–35)) oligomers. J Phys Chem B. 2008;112:3479–84.PubMedCrossRef Jang S, Shin S. Computational study on the structural diversity of amyloid beta peptide (abeta(10–35)) oligomers. J Phys Chem B. 2008;112:3479–84.PubMedCrossRef
15.
go back to reference Miller Y, Ma B, Nussinov R. Polymorphism of Alzheimer’s Abeta17–42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J. 2009;97:1168–77.PubMedPubMedCentralCrossRef Miller Y, Ma B, Nussinov R. Polymorphism of Alzheimer’s Abeta17–42 (p3) oligomers: the importance of the turn location and its conformation. Biophys J. 2009;97:1168–77.PubMedPubMedCentralCrossRef
16.
go back to reference Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, et al. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999;274:12619–25.PubMedCrossRef Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, et al. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999;274:12619–25.PubMedCrossRef
17.
go back to reference Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev. 2010;110:4820–38.PubMedPubMedCentralCrossRef Miller Y, Ma B, Nussinov R. Polymorphism in Alzheimer Abeta amyloid organization reflects conformational selection in a rugged energy landscape. Chem Rev. 2010;110:4820–38.PubMedPubMedCentralCrossRef
18.
go back to reference Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci. 1998;95:6448–53.PubMedPubMedCentralCrossRef Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, et al. Diffusible, nonfibrillar ligands derived from Abeta1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci. 1998;95:6448–53.PubMedPubMedCentralCrossRef
19.
go back to reference Zhang Y, Lyubchenko YL. The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data. Biophys J. 2014;107:2903–10.PubMedPubMedCentralCrossRef Zhang Y, Lyubchenko YL. The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data. Biophys J. 2014;107:2903–10.PubMedPubMedCentralCrossRef
20.
go back to reference Spencer RK, Li H, Nowick JS. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Abeta(17–36). J Am Chem Soc. 2014;136:5595–8.PubMedPubMedCentralCrossRef Spencer RK, Li H, Nowick JS. X-ray crystallographic structures of trimers and higher-order oligomeric assemblies of a peptide derived from Abeta(17–36). J Am Chem Soc. 2014;136:5595–8.PubMedPubMedCentralCrossRef
21.
22.
go back to reference Barrera Guisasola EE, Gutierrez LJ, Andujar SA, Angelina E, Rodriguez AM, Enriz RD. Pentameric models as alternative molecular targets for the design of new antiaggregant agents. Curr Protein Pept Sci. 2016;17:156–68.PubMedCrossRef Barrera Guisasola EE, Gutierrez LJ, Andujar SA, Angelina E, Rodriguez AM, Enriz RD. Pentameric models as alternative molecular targets for the design of new antiaggregant agents. Curr Protein Pept Sci. 2016;17:156–68.PubMedCrossRef
23.
24.
go back to reference Strodel B, Lee JW, Whittleston CS, Wales DJ. Transmembrane structures for Alzheimer’s Abeta(1–42) oligomers. J Am Chem Soc. 2010;132:13300–12.PubMedCrossRef Strodel B, Lee JW, Whittleston CS, Wales DJ. Transmembrane structures for Alzheimer’s Abeta(1–42) oligomers. J Am Chem Soc. 2010;132:13300–12.PubMedCrossRef
25.
go back to reference Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT. Abeta(39–42) modulates Abeta oligomerization but not fibril formation. Biochemistry. 2012;51:108–17.PubMedCrossRef Gessel MM, Wu C, Li H, Bitan G, Shea JE, Bowers MT. Abeta(39–42) modulates Abeta oligomerization but not fibril formation. Biochemistry. 2012;51:108–17.PubMedCrossRef
26.
go back to reference Sherman MA, Lesne SE. Detecting abeta*56 oligomers in brain tissues. Methods Mol Biol. 2011;670:45–56.PubMedCrossRef Sherman MA, Lesne SE. Detecting abeta*56 oligomers in brain tissues. Methods Mol Biol. 2011;670:45–56.PubMedCrossRef
27.
go back to reference Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95:834–47.PubMedCrossRef Barghorn S, Nimmrich V, Striebinger A, Krantz C, Keller P, Janson B, et al. Globular amyloid beta-peptide oligomer—a homogenous and stable neuropathological protein in Alzheimer’s disease. J Neurochem. 2005;95:834–47.PubMedCrossRef
28.
go back to reference Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry. 2006;45:15157–67.PubMedCrossRef Hepler RW, Grimm KM, Nahas DD, Breese R, Dodson EC, Acton P, et al. Solution state characterization of amyloid beta-derived diffusible ligands. Biochemistry. 2006;45:15157–67.PubMedCrossRef
29.
go back to reference Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003;26:267–98.PubMedCrossRef Caughey B, Lansbury PT. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci. 2003;26:267–98.PubMedCrossRef
30.
go back to reference Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci. 2003;100:6370–5.PubMedPubMedCentralCrossRef Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci. 2003;100:6370–5.PubMedPubMedCentralCrossRef
31.
go back to reference Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999;274:25945–52.PubMedCrossRef Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, et al. Amyloid beta-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem. 1999;274:25945–52.PubMedCrossRef
32.
go back to reference Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 2008;451:720–4.PubMedPubMedCentralCrossRef Meyer-Luehmann M, Spires-Jones TL, Prada C, Garcia-Alloza M, de Calignon A, Rozkalne A, et al. Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer’s disease. Nature. 2008;451:720–4.PubMedPubMedCentralCrossRef
34.
go back to reference Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci. 2008;28:4231–7.PubMedPubMedCentralCrossRef Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, et al. Amyloid beta protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci. 2008;28:4231–7.PubMedPubMedCentralCrossRef
35.
go back to reference Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, et al. Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 2008;27:224–33.PubMedCrossRef Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, et al. Lipids revert inert Abeta amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J. 2008;27:224–33.PubMedCrossRef
36.
go back to reference Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27:796–807.PubMedCrossRef Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci. 2007;27:796–807.PubMedCrossRef
37.
go back to reference Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 2002;418:291.PubMedCrossRef Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr. Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature. 2002;418:291.PubMedCrossRef
38.
39.
go back to reference Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015;589:1897–903.PubMedCrossRef Morozova OA, Gupta S, Colby DW. Prefibrillar huntingtin oligomers isolated from HD brain potently seed amyloid formation. FEBS Lett. 2015;589:1897–903.PubMedCrossRef
41.
go back to reference Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA. Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007;321:823–9.PubMedCrossRef Lee HG, Zhu X, Castellani RJ, Nunomura A, Perry G, Smith MA. Amyloid-beta in Alzheimer disease: the null versus the alternate hypotheses. J Pharmacol Exp Ther. 2007;321:823–9.PubMedCrossRef
42.
go back to reference Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:156–67.PubMedCrossRef Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2010;9:156–67.PubMedCrossRef
44.
go back to reference Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef Kuperstein I, Broersen K, Benilova I, Rozenski J, Jonckheere W, Debulpaep M, et al. Neurotoxicity of Alzheimer’s disease Abeta peptides is induced by small changes in the Abeta42 to Abeta40 ratio. EMBO J. 2010;29:3408–20.PubMedPubMedCentralCrossRef
45.
go back to reference Morrone CD, Liu M, Black SE, McLaurin J. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Abeta clearance mechanisms. Front Aging Neurosci. 2015;7:64.PubMedPubMedCentralCrossRef Morrone CD, Liu M, Black SE, McLaurin J. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Abeta clearance mechanisms. Front Aging Neurosci. 2015;7:64.PubMedPubMedCentralCrossRef
47.
go back to reference Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem. 2008;104:859–74.PubMedCrossRef Lichtlen P, Mohajeri MH. Antibody-based approaches in Alzheimer’s research: safety, pharmacokinetics, metabolism, and analytical tools. J Neurochem. 2008;104:859–74.PubMedCrossRef
48.
go back to reference Robert R, Lefranc MP, Ghochikyan A, Agadjanyan MG, Cribbs DH, Van Nostrand WE, et al. Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid beta peptide. Mol Immunol. 2010;48:59–72.PubMedPubMedCentralCrossRef Robert R, Lefranc MP, Ghochikyan A, Agadjanyan MG, Cribbs DH, Van Nostrand WE, et al. Restricted V gene usage and VH/VL pairing of mouse humoral response against the N-terminal immunodominant epitope of the amyloid beta peptide. Mol Immunol. 2010;48:59–72.PubMedPubMedCentralCrossRef
49.
50.
go back to reference Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.PubMedCrossRef Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, et al. Peripherally administered antibodies against amyloid beta-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med. 2000;6:916–9.PubMedCrossRef
51.
go back to reference Sil S, Ghosh A, Ghosh T. Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: an experimental study with mannitol. Brain Res. 2016;1646:278–86.PubMedCrossRef Sil S, Ghosh A, Ghosh T. Impairment of blood brain barrier is related with the neuroinflammation induced peripheral immune status in intracerebroventricular colchicine injected rats: an experimental study with mannitol. Brain Res. 2016;1646:278–86.PubMedCrossRef
53.
go back to reference Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci. 2005;25:629–36.PubMedCrossRef Racke MM, Boone LI, Hepburn DL, Parsadainian M, Bryan MT, Ness DK, et al. Exacerbation of cerebral amyloid angiopathy-associated microhemorrhage in amyloid precursor protein transgenic mice by immunotherapy is dependent on antibody recognition of deposited forms of amyloid beta. J Neurosci. 2005;25:629–36.PubMedCrossRef
54.
go back to reference DiFrancesco JC, Longoni M, Piazza F. Anti-Abeta autoantibodies in amyloid related imaging abnormalities (ARIA): candidate biomarker for immunotherapy in Alzheimer’s disease and cerebral amyloid angiopathy. Front Neurol. 2015;6:207.PubMedPubMedCentralCrossRef DiFrancesco JC, Longoni M, Piazza F. Anti-Abeta autoantibodies in amyloid related imaging abnormalities (ARIA): candidate biomarker for immunotherapy in Alzheimer’s disease and cerebral amyloid angiopathy. Front Neurol. 2015;6:207.PubMedPubMedCentralCrossRef
55.
go back to reference Miles LA, Crespi GA, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep. 2013;3:1302.PubMedPubMedCentral Miles LA, Crespi GA, Doughty L, Parker MW. Bapineuzumab captures the N-terminus of the Alzheimer’s disease amyloid-beta peptide in a helical conformation. Sci Rep. 2013;3:1302.PubMedPubMedCentral
58.
go back to reference Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid beta clearance in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:33.PubMedPubMedCentralCrossRef Wildsmith KR, Holley M, Savage JC, Skerrett R, Landreth GE. Evidence for impaired amyloid beta clearance in Alzheimer’s disease. Alzheimers Res Ther. 2013;5:33.PubMedPubMedCentralCrossRef
59.
go back to reference Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8:18.PubMedPubMedCentralCrossRef Vandenberghe R, Rinne JO, Boada M, Katayama S, Scheltens P, Vellas B, et al. Bapineuzumab for mild to moderate Alzheimer’s disease in two global, randomized, phase 3 trials. Alzheimers Res Ther. 2016;8:18.PubMedPubMedCentralCrossRef
61.
go back to reference Delnomdedieu M, Duvvuri S, Li DJ, Atassi N, Lu M, Brashear HR, et al. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res Ther. 2016;8:12.PubMedPubMedCentralCrossRef Delnomdedieu M, Duvvuri S, Li DJ, Atassi N, Lu M, Brashear HR, et al. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimers Res Ther. 2016;8:12.PubMedPubMedCentralCrossRef
62.
go back to reference Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing. 2013;10:18.PubMedPubMedCentralCrossRef Moreth J, Mavoungou C, Schindowski K. Passive anti-amyloid immunotherapy in Alzheimer’s disease: what are the most promising targets? Immun Ageing. 2013;10:18.PubMedPubMedCentralCrossRef
63.
go back to reference Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X, et al. Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther. 2014;6:19.PubMedPubMedCentralCrossRef Leyhe T, Andreasen N, Simeoni M, Reich A, von Arnim CA, Tong X, et al. Modulation of beta-amyloid by a single dose of GSK933776 in patients with mild Alzheimer’s disease: a phase I study. Alzheimers Res Ther. 2014;6:19.PubMedPubMedCentralCrossRef
64.
go back to reference Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm. 2015;95:158–72.PubMedCrossRef Volz C, Pauly D. Antibody therapies and their challenges in the treatment of age-related macular degeneration. Eur J Pharm Biopharm. 2015;95:158–72.PubMedCrossRef
65.
go back to reference DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci. 2001;98:8850–5.PubMedPubMedCentralCrossRef DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci. 2001;98:8850–5.PubMedPubMedCentralCrossRef
66.
go back to reference Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol. 2014;76:185–205.PubMedPubMedCentralCrossRef Karran E, Hardy J. A critique of the drug discovery and phase 3 clinical programs targeting the amyloid hypothesis for Alzheimer disease. Ann Neurol. 2014;76:185–205.PubMedPubMedCentralCrossRef
67.
go back to reference Lundkvist J, Halldin MM, Sandin J, Nordvall G, Forsell P, Svensson S, et al. The battle of Alzheimer’s Disease—the beginning of the future unleashing the potential of academic discoveries. Front Pharmacol. 2014;5:102.PubMedPubMedCentralCrossRef Lundkvist J, Halldin MM, Sandin J, Nordvall G, Forsell P, Svensson S, et al. The battle of Alzheimer’s Disease—the beginning of the future unleashing the potential of academic discoveries. Front Pharmacol. 2014;5:102.PubMedPubMedCentralCrossRef
68.
go back to reference Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21.PubMedCrossRef Doody RS, Thomas RG, Farlow M, Iwatsubo T, Vellas B, Joffe S, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370:311–21.PubMedCrossRef
69.
go back to reference Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement J Alzheimer’s Assoc. 2016;12:110–20.CrossRef Siemers ER, Sundell KL, Carlson C, Case M, Sethuraman G, Liu-Seifert H, et al. Phase 3 solanezumab trials: secondary outcomes in mild Alzheimer’s disease patients. Alzheimer’s Dement J Alzheimer’s Assoc. 2016;12:110–20.CrossRef
70.
go back to reference Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J, et al. Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5340–6.PubMedCrossRef Wilcock DM, Alamed J, Gottschall PE, Grimm J, Rosenthal A, Pons J, et al. Deglycosylated anti-amyloid-beta antibodies eliminate cognitive deficits and reduce parenchymal amyloid with minimal vascular consequences in aged amyloid precursor protein transgenic mice. J Neurosci. 2006;26:5340–6.PubMedCrossRef
71.
go back to reference Miyoshi I, Fujimoto Y, Yamada M, Abe S, Zhao Q, Cronenberger C, et al. Safety and pharmacokinetics of PF-04360365 following a single-dose intravenous infusion in Japanese subjects with mild-to-moderate Alzheimer’s disease: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation study. Int J Clin Pharmacol Ther. 2013;51:911–23.PubMedCrossRef Miyoshi I, Fujimoto Y, Yamada M, Abe S, Zhao Q, Cronenberger C, et al. Safety and pharmacokinetics of PF-04360365 following a single-dose intravenous infusion in Japanese subjects with mild-to-moderate Alzheimer’s disease: a multicenter, randomized, double-blind, placebo-controlled, dose-escalation study. Int J Clin Pharmacol Ther. 2013;51:911–23.PubMedCrossRef
72.
go back to reference Bogstedt A, Groves M, Tan K, Narwal R, McFarlane M, Hoglund K. Development of immunoassays for the quantitative assessment of amyloid-beta in the presence of therapeutic antibody: application to pre-clinical studies. J Alzheimer’s Dis. 2015;46:1091–101.CrossRef Bogstedt A, Groves M, Tan K, Narwal R, McFarlane M, Hoglund K. Development of immunoassays for the quantitative assessment of amyloid-beta in the presence of therapeutic antibody: application to pre-clinical studies. J Alzheimer’s Dis. 2015;46:1091–101.CrossRef
73.
go back to reference Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimer’s Dis. 2012;28:49–69. Bohrmann B, Baumann K, Benz J, Gerber F, Huber W, Knoflach F, et al. Gantenerumab: a novel human anti-Abeta antibody demonstrates sustained cerebral amyloid-beta binding and elicits cell-mediated removal of human amyloid-beta. J Alzheimer’s Dis. 2012;28:49–69.
74.
go back to reference Shughrue PJ, Acton PJ, Breese RS, Zhao WQ, Chen-Dodson E, Hepler RW, et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol Aging. 2010;31:189–202.PubMedCrossRef Shughrue PJ, Acton PJ, Breese RS, Zhao WQ, Chen-Dodson E, Hepler RW, et al. Anti-ADDL antibodies differentially block oligomer binding to hippocampal neurons. Neurobiol Aging. 2010;31:189–202.PubMedCrossRef
75.
go back to reference Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, et al. Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem. 2007;100:23–35.PubMedCrossRef Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, et al. Monoclonal antibodies that target pathological assemblies of Abeta. J Neurochem. 2007;100:23–35.PubMedCrossRef
76.
go back to reference Kayed R, Canto I, Breydo L, Rasool S, Lukacsovich T, Wu J, et al. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Abeta oligomers. Mol Neurodegener. 2010;5:57.PubMedPubMedCentralCrossRef Kayed R, Canto I, Breydo L, Rasool S, Lukacsovich T, Wu J, et al. Conformation dependent monoclonal antibodies distinguish different replicating strains or conformers of prefibrillar Abeta oligomers. Mol Neurodegener. 2010;5:57.PubMedPubMedCentralCrossRef
77.
go back to reference Sarsoza F, Saing T, Kayed R, Dahlin R, Dick M, Broadwater-Hollifield C, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol. 2009;118:505–17.PubMedPubMedCentralCrossRef Sarsoza F, Saing T, Kayed R, Dahlin R, Dick M, Broadwater-Hollifield C, et al. A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol. 2009;118:505–17.PubMedPubMedCentralCrossRef
78.
go back to reference Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.PubMedCrossRef Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 2003;300:486–9.PubMedCrossRef
79.
go back to reference Morgado I, Wieligmann K, Bereza M, Ronicke R, Meinhardt K, Annamalai K, et al. Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc Natl Acad Sci. 2012;109:12503–8.PubMedPubMedCentralCrossRef Morgado I, Wieligmann K, Bereza M, Ronicke R, Meinhardt K, Annamalai K, et al. Molecular basis of beta-amyloid oligomer recognition with a conformational antibody fragment. Proc Natl Acad Sci. 2012;109:12503–8.PubMedPubMedCentralCrossRef
80.
go back to reference Perchiacca JM, Ladiwala AR, Bhattacharya M, Tessier PM. Structure-based design of conformation- and sequence-specific antibodies against amyloid beta. Proc Natl Acad Sci. 2012;109:84–9.PubMedCrossRef Perchiacca JM, Ladiwala AR, Bhattacharya M, Tessier PM. Structure-based design of conformation- and sequence-specific antibodies against amyloid beta. Proc Natl Acad Sci. 2012;109:84–9.PubMedCrossRef
81.
go back to reference Westwood M, Lawson ADG. Opportunities for conformation-selective antibodies in amyloid-related diseases. Antibodies 2015;4:170–96.CrossRef Westwood M, Lawson ADG. Opportunities for conformation-selective antibodies in amyloid-related diseases. Antibodies 2015;4:170–96.CrossRef
82.
go back to reference Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2006;2:99–119. Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, Necula M, et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener. 2006;2:99–119.
83.
go back to reference Larson ME, Lesne SE. Soluble Abeta oligomer production and toxicity. J Neurochem. 2012;120(Suppl 1):125–39.PubMedCrossRef Larson ME, Lesne SE. Soluble Abeta oligomer production and toxicity. J Neurochem. 2012;120(Suppl 1):125–39.PubMedCrossRef
84.
go back to reference Barghorn S, Striebinger A, Giaisi S, Koehler A, Ebert U, Hillen H. Abeta-oligomer selective antibody A-887755 exhibits a favorable profile for Alzheimer’s disease immunotherapy compared to Abeta-peptide unselective antibodies. Alzheimer’s Dementia. 2009;5:424.CrossRef Barghorn S, Striebinger A, Giaisi S, Koehler A, Ebert U, Hillen H. Abeta-oligomer selective antibody A-887755 exhibits a favorable profile for Alzheimer’s disease immunotherapy compared to Abeta-peptide unselective antibodies. Alzheimer’s Dementia. 2009;5:424.CrossRef
85.
go back to reference Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012;32:9677–89.PubMedCrossRef Adolfsson O, Pihlgren M, Toni N, Varisco Y, Buccarello AL, Antoniello K, et al. An effector-reduced anti-beta-amyloid (Abeta) antibody with unique abeta binding properties promotes neuroprotection and glial engulfment of Abeta. J Neurosci. 2012;32:9677–89.PubMedCrossRef
86.
go back to reference Cummings J. Cho W, Ward M, Friesenhahn M, Brunstein F, Honigberg L, et al. A randomized, double-blind, placebo-controlled phase 2 study to evaluate the efficacy and safety of crenezumab in patients with mild to moderate Alzheimer’s disease. In: Alzheimer’s association international conference 2014, Copenhagen, Presentation number: O4-11-062014. Cummings J. Cho W, Ward M, Friesenhahn M, Brunstein F, Honigberg L, et al. A randomized, double-blind, placebo-controlled phase 2 study to evaluate the efficacy and safety of crenezumab in patients with mild to moderate Alzheimer’s disease. In: Alzheimer’s association international conference 2014, Copenhagen, Presentation number: O4-11-062014.
87.
go back to reference Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, et al. A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76:908–20.PubMedCrossRef Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, et al. A plaque-specific antibody clears existing beta-amyloid plaques in Alzheimer’s disease mice. Neuron. 2012;76:908–20.PubMedCrossRef
88.
go back to reference Sehlin D, Englund H, Simu B, Karlsson M, Ingelsson M, Nikolajeff F, et al. Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One. 2012;7:e32014.PubMedPubMedCentralCrossRef Sehlin D, Englund H, Simu B, Karlsson M, Ingelsson M, Nikolajeff F, et al. Large aggregates are the major soluble Abeta species in AD brain fractionated with density gradient ultracentrifugation. PLoS One. 2012;7:e32014.PubMedPubMedCentralCrossRef
89.
go back to reference Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, et al. Perspectives on future Alzheimer therapies: amyloid-beta protofibrils—a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther. 2014;6:16.PubMedPubMedCentralCrossRef Lannfelt L, Moller C, Basun H, Osswald G, Sehlin D, Satlin A, et al. Perspectives on future Alzheimer therapies: amyloid-beta protofibrils—a new target for immunotherapy with BAN2401 in Alzheimer’s disease. Alzheimers Res Ther. 2014;6:16.PubMedPubMedCentralCrossRef
90.
go back to reference Tucker S, Moller C, Tegerstedt K, Lord A, Laudon H, Sjodahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimer’s Disease. 2015;43:575–88. Tucker S, Moller C, Tegerstedt K, Lord A, Laudon H, Sjodahl J, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-beta protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimer’s Disease. 2015;43:575–88.
91.
go back to reference Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, et al. Safety and tolerability of BAN2401 - a clinical study in Alzheimer’s disease with a protofibril selective Abeta antibody. Alzheimers Res Ther. 2016;8:14.PubMedPubMedCentralCrossRef Logovinsky V, Satlin A, Lai R, Swanson C, Kaplow J, Osswald G, et al. Safety and tolerability of BAN2401 - a clinical study in Alzheimer’s disease with a protofibril selective Abeta antibody. Alzheimers Res Ther. 2016;8:14.PubMedPubMedCentralCrossRef
92.
go back to reference Nerelius C, Laudon H, Sigvrdson J. Improved Aβ protofibril binding antibodies. WIPO Patent Application WO/2016/005466. International Publication Data, 14 Jan 2016. Nerelius C, Laudon H, Sigvrdson J. Improved Aβ protofibril binding antibodies. WIPO Patent Application WO/2016/005466. International Publication Data, 14 Jan 2016.
93.
go back to reference Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.PubMedCrossRef Bruhns P, Iannascoli B, England P, Mancardi DA, Fernandez N, Jorieux S, et al. Specificity and affinity of human Fcgamma receptors and their polymorphic variants for human IgG subclasses. Blood. 2009;113:3716–25.PubMedCrossRef
94.
go back to reference Hillen H, Barghorn S, Striebinger A, Labkovsky B, Muller R, Nimmrich V, et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci. 2010;30:10369–79.PubMedCrossRef Hillen H, Barghorn S, Striebinger A, Labkovsky B, Muller R, Nimmrich V, et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci. 2010;30:10369–79.PubMedCrossRef
95.
go back to reference Krafft GA, Hefti F, Goure WF, Jerecic J, Iverson K. ACU-193: A drug candidate antibody that selectively targets soluble Abeta oligomers. Alzheimer’s Dementia. 2013;9:326.CrossRef Krafft GA, Hefti F, Goure WF, Jerecic J, Iverson K. ACU-193: A drug candidate antibody that selectively targets soluble Abeta oligomers. Alzheimer’s Dementia. 2013;9:326.CrossRef
97.
go back to reference Thierry B, Paul HW, Thomas E, Kenneth R, Joseph A, Fang Q, et al. A method of reducing brain amyloid plaques using anti-Aβ antibodies. WIPO Patent Application WO/2014/089500. International Publication Data, 12 June 2014. Thierry B, Paul HW, Thomas E, Kenneth R, Joseph A, Fang Q, et al. A method of reducing brain amyloid plaques using anti-Aβ antibodies. WIPO Patent Application WO/2014/089500. International Publication Data, 12 June 2014.
98.
go back to reference Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6.PubMedCrossRef Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6.PubMedCrossRef
99.
go back to reference Biogen Presents New Data from Phase 1B Study of Investigational Alzheimer’s Disease Treatment Aducanumab (BIIB037) at Alzheimer’s Association International Conference® 2015. Available 22 July 2015. Biogen Presents New Data from Phase 1B Study of Investigational Alzheimer’s Disease Treatment Aducanumab (BIIB037) at Alzheimer’s Association International Conference® 2015. Available 22 July 2015.
101.
go back to reference Jia Q, Deng Y, Qing H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond beta-amyloid: insights from clinical trials. BioMed Res Int. 2014;2014:837157.PubMedPubMedCentral Jia Q, Deng Y, Qing H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond beta-amyloid: insights from clinical trials. BioMed Res Int. 2014;2014:837157.PubMedPubMedCentral
102.
go back to reference Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol. 2014;34(Suppl 1):S74–9.PubMedCrossRef Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol. 2014;34(Suppl 1):S74–9.PubMedCrossRef
103.
104.
go back to reference da Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA, et al. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2011;10:251–70.PubMedCrossRef da Rocha MD, Viegas FP, Campos HC, Nicastro PC, Fossaluzza PC, Fraga CA, et al. The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol Disord Drug Targets. 2011;10:251–70.PubMedCrossRef
105.
go back to reference Dias KS, Viegas C Jr. Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol. 2014;12:239–55.PubMedPubMedCentralCrossRef Dias KS, Viegas C Jr. Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol. 2014;12:239–55.PubMedPubMedCentralCrossRef
106.
go back to reference Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.
107.
go back to reference Gadkar K, Yadav DB, Zuchero JY, Couch JA, Kanodia J, Kenrick MK, et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur J Pharm Biopharm. 2016;101:53–61.PubMedCrossRef Gadkar K, Yadav DB, Zuchero JY, Couch JA, Kanodia J, Kenrick MK, et al. Mathematical PKPD and safety model of bispecific TfR/BACE1 antibodies for the optimization of antibody uptake in brain. Eur J Pharm Biopharm. 2016;101:53–61.PubMedCrossRef
108.
go back to reference Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther. 2005;12:394–401.PubMedCrossRef Miller TW, Messer A. Intrabody applications in neurological disorders: progress and future prospects. Mol Ther. 2005;12:394–401.PubMedCrossRef
109.
go back to reference de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact. 2015;14:125.PubMedPubMedCentralCrossRef de Marco A. Recombinant antibody production evolves into multiple options aimed at yielding reagents suitable for application-specific needs. Microb Cell Fact. 2015;14:125.PubMedPubMedCentralCrossRef
110.
go back to reference LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G. The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995;9:21–30.PubMedCrossRef LaFerla FM, Tinkle BT, Bieberich CJ, Haudenschild CC, Jay G. The Alzheimer’s A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet. 1995;9:21–30.PubMedCrossRef
111.
go back to reference Paganetti P, Calanca V, Galli C, Stefani M, Molinari M. beta-site specific intrabodies to decrease and prevent generation of Alzheimer’s Abeta peptide. J Cell Biol. 2005;168:863–8.PubMedPubMedCentralCrossRef Paganetti P, Calanca V, Galli C, Stefani M, Molinari M. beta-site specific intrabodies to decrease and prevent generation of Alzheimer’s Abeta peptide. J Cell Biol. 2005;168:863–8.PubMedPubMedCentralCrossRef
112.
go back to reference Moran N. Mouse platforms jostle for slice of humanized antibody market. Nat Biotechnol. 2013;31:267–8.PubMedCrossRef Moran N. Mouse platforms jostle for slice of humanized antibody market. Nat Biotechnol. 2013;31:267–8.PubMedCrossRef
Metadata
Title
Antibody-Based Drugs and Approaches Against Amyloid-β Species for Alzheimer’s Disease Immunotherapy
Authors
Jing Liu
Bin Yang
Jun Ke
Wenjia Li
Wen-Chen Suen
Publication date
01-10-2016
Publisher
Springer International Publishing
Published in
Drugs & Aging / Issue 10/2016
Print ISSN: 1170-229X
Electronic ISSN: 1179-1969
DOI
https://doi.org/10.1007/s40266-016-0406-x

Other articles of this Issue 10/2016

Drugs & Aging 10/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.