Skip to main content
Top
Published in: Drugs 10/2021

01-07-2021 | Alzheimer's Disease | Leading Article

Current Status of Clinical Trials on Tau Immunotherapies

Authors: Changyi Ji, Einar M. Sigurdsson

Published in: Drugs | Issue 10/2021

Login to get access

Abstract

Tau immunotherapies have advanced from proof-of-concept studies to over a dozen clinical trials for Alzheimer’s disease (AD) and other tauopathies. Mechanistic studies in animal and culture models have provided valuable insight into how these therapies may work but multiple pathways are likely involved. Different groups have emphasized the importance of intracellular vs extracellular antibody-mediated clearance of the tau protein and there is no consensus on which pool of tau should ideally be targeted. Likewise, various normal and disease-selective epitopes are being targeted, and the antibody isotypes either favor phagocytosis of the tau-antibody complex or are neutral in that aspect. Most of the clinical trials are in early stages, thus their efficacy is not yet known, but all have been without any major adverse effects and some have reported target engagement. A few have been discontinued. One in phase I, presumably because of a poor pharmacokinetic profile, and three in phase II for a lack of efficacy although this trial stage is not well powered for efficacy measures. In these phase II studies, trials with two antibodies in patients with progressive supranuclear palsy or other primary tauopathies were halted but are continuing in patients with AD, and one antibody trial was stopped in early-stage AD but is continuing in moderate AD. These three antibodies have been reported to only work extracellularly and tau is not increased in the cerebrospinal fluid of primary tauopathies, which may explain the failures of two of them. In the discontinued AD trial, there are some concerns about how much of extracellular tau contains the N-terminal epitope that is being targeted. In addition, extracellular tau is only a small part of total tau, compared to intracellular tau. Targeting only the former may not be sufficient for functional benefits. Given these outcomes, decision makers within the pharmaceutical companies who green light these trials should attempt to target tau not only extracellularly but also intracellularly to increase their chances of success. Hopefully, some of the ongoing trials will provide some functional benefits to the large number of patients with tauopathies.
Literature
2.
go back to reference Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394–402.PubMedCrossRef Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394–402.PubMedCrossRef
4.
go back to reference Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9.PubMedCrossRef Arriagada PV, Growdon JH, Hedley-Whyte ET, et al. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 1992;42(3 Pt 1):631–9.PubMedCrossRef
5.
go back to reference Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau prevents cognitive decline in a new tangle mouse model. J Neurosci. 2010;30(49):16559–66.PubMedPubMedCentralCrossRef
6.
7.
go back to reference Rajamohamedsait H, Rasool S, Rajamohamedsait W, et al. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci Rep. 2017;7(1):17034.PubMedPubMedCentralCrossRef Rajamohamedsait H, Rasool S, Rajamohamedsait W, et al. Prophylactic active tau immunization leads to sustained reduction in both tau and amyloid-β pathologies in 3xTg mice. Sci Rep. 2017;7(1):17034.PubMedPubMedCentralCrossRef
8.
go back to reference Wu Q, Bai Y, Li W, et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol Dis. 2021;147:105165.PubMedCrossRef Wu Q, Bai Y, Li W, et al. Increased neuronal activity in motor cortex reveals prominent calcium dyshomeostasis in tauopathy mice. Neurobiol Dis. 2021;147:105165.PubMedCrossRef
9.
go back to reference Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology. 2020;175:108104.PubMedCrossRefPubMedCentral Sandusky-Beltran LA, Sigurdsson EM. Tau immunotherapies: lessons learned, current status and future considerations. Neuropharmacology. 2020;175:108104.PubMedCrossRefPubMedCentral
10.
go back to reference Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis. 2008;15(2):157–68.PubMedPubMedCentralCrossRef Sigurdsson EM. Immunotherapy targeting pathological tau protein in Alzheimer’s disease and related tauopathies. J Alzheimers Dis. 2008;15(2):157–68.PubMedPubMedCentralCrossRef
11.
go back to reference Sigurdsson EM. Alzheimer’s therapy development: a few points to consider. Prog Mol Biol Transl Sci. 2019;168:205–17.PubMedCrossRef Sigurdsson EM. Alzheimer’s therapy development: a few points to consider. Prog Mol Biol Transl Sci. 2019;168:205–17.PubMedCrossRef
12.
go back to reference Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.CrossRefPubMed Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387–97.CrossRefPubMed
13.
go back to reference Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, et al. It’s all about tau. Prog Neurobiol. 2019;175:54–76.PubMedCrossRef Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, et al. It’s all about tau. Prog Neurobiol. 2019;175:54–76.PubMedCrossRef
14.
go back to reference Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22.PubMedCrossRef Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22.PubMedCrossRef
16.
go back to reference Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm (Vienna). 2005;112(6):813–38.CrossRef Gong CX, Liu F, Grundke-Iqbal I, et al. Post-translational modifications of tau protein in Alzheimer’s disease. J Neural Transm (Vienna). 2005;112(6):813–38.CrossRef
17.
go back to reference Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef Martin L, Latypova X, Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochem Int. 2011;58(4):458–71.PubMedCrossRef
18.
go back to reference Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83(13):4913–7.PubMedPubMedCentralCrossRef Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83(13):4913–7.PubMedPubMedCentralCrossRef
19.
go back to reference Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed Iqbal K, Liu F, Gong CX. Tau and neurodegenerative disease: the story so far. Nat Rev Neurol. 2016;12(1):15–27.CrossRefPubMed
20.
go back to reference Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.PubMedPubMedCentralCrossRef Hoover BR, Reed MN, Su J, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81.PubMedPubMedCentralCrossRef
21.
go back to reference Zempel H, Thies E, Mandelkow E, et al. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30(36):11938–50.PubMedPubMedCentralCrossRef Zempel H, Thies E, Mandelkow E, et al. Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous tau into dendrites, tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30(36):11938–50.PubMedPubMedCentralCrossRef
22.
go back to reference Xia D, Li C, Gotz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim Biophys Acta. 2015;1852(5):913–24.PubMedCrossRef Xia D, Li C, Gotz J. Pseudophosphorylation of tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein tau to dendritic spines. Biochim Biophys Acta. 2015;1852(5):913–24.PubMedCrossRef
23.
go back to reference Li C, Gotz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. Embo J. 2017;36(21):3120–38.PubMedPubMedCentralCrossRef Li C, Gotz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. Embo J. 2017;36(21):3120–38.PubMedPubMedCentralCrossRef
24.
go back to reference Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36(2):693–709.PubMedCrossRef Bright J, Hussain S, Dang V, et al. Human secreted tau increases amyloid-beta production. Neurobiol Aging. 2015;36(2):693–709.PubMedCrossRef
26.
go back to reference Yamada K, Cirrito JR, Stewart FR, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci. 2011;31(37):13110–7.PubMedPubMedCentralCrossRef Yamada K, Cirrito JR, Stewart FR, et al. In vivo microdialysis reveals age-dependent decrease of brain interstitial fluid tau levels in P301S human tau transgenic mice. J Neurosci. 2011;31(37):13110–7.PubMedPubMedCentralCrossRef
27.
go back to reference Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363:880–4.PubMedPubMedCentralCrossRef Holth JK, Fritschi SK, Wang C, et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans. Science. 2019;363:880–4.PubMedPubMedCentralCrossRef
28.
go back to reference Chai X, Dage JL, Citron M. Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis. 2012;48(3):356–66.PubMedCrossRef Chai X, Dage JL, Citron M. Constitutive secretion of tau protein by an unconventional mechanism. Neurobiol Dis. 2012;48(3):356–66.PubMedCrossRef
29.
go back to reference Han P, Serrano G, Beach TG, et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J Neuropathol Exp Neurol. 2017;76(1):44–51.PubMedPubMedCentral Han P, Serrano G, Beach TG, et al. A quantitative analysis of brain soluble tau and the tau secretion factor. J Neuropathol Exp Neurol. 2017;76(1):44–51.PubMedPubMedCentral
30.
go back to reference Barthelemy NR, Gabelle A, Hirtz C, et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J Alzheimers Dis. 2016;51(4):1033–43.PubMedCrossRef Barthelemy NR, Gabelle A, Hirtz C, et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with Lewy bodies. J Alzheimers Dis. 2016;51(4):1033–43.PubMedCrossRef
31.
go back to reference Colin M, Dujardin S, Schraen-Maschke S, et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 2020;139(1):3–25.PubMedCrossRef Colin M, Dujardin S, Schraen-Maschke S, et al. From the prion-like propagation hypothesis to therapeutic strategies of anti-tau immunotherapy. Acta Neuropathol. 2020;139(1):3–25.PubMedCrossRef
33.
go back to reference Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers. Int Rev Psychiatry. 2013;25(2):210–20.PubMedCrossRef Hales CM, Hu WT. From frontotemporal lobar degeneration pathology to frontotemporal lobar degeneration biomarkers. Int Rev Psychiatry. 2013;25(2):210–20.PubMedCrossRef
34.
go back to reference Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.PubMedCrossRef Olsson B, Lautner R, Andreasson U, et al. CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol. 2016;15(7):673–84.PubMedCrossRef
35.
go back to reference Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis. 2018;64(s1):S555–65.PubMedPubMedCentralCrossRef Sigurdsson EM. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. J Alzheimers Dis. 2018;64(s1):S555–65.PubMedPubMedCentralCrossRef
37.
go back to reference Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology. 2008;70(19 Pt 2):1827–35.PubMedCrossRef Bian H, Van Swieten JC, Leight S, et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology. 2008;70(19 Pt 2):1827–35.PubMedCrossRef
38.
go back to reference Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol. 2005;57(5):721–9.PubMedCrossRef Grossman M, Farmer J, Leight S, et al. Cerebrospinal fluid profile in frontotemporal dementia and Alzheimer’s disease. Ann Neurol. 2005;57(5):721–9.PubMedCrossRef
39.
go back to reference Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86(3):244–50.PubMedCrossRef Wagshal D, Sankaranarayanan S, Guss V, et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J Neurol Neurosurg Psychiatry. 2015;86(3):244–50.PubMedCrossRef
40.
go back to reference Congdon EE, Chukwu JE, Shamir DB, et al. Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine. 2019;42:157–73.PubMedPubMedCentralCrossRef Congdon EE, Chukwu JE, Shamir DB, et al. Tau antibody chimerization alters its charge and binding, thereby reducing its cellular uptake and efficacy. EBioMedicine. 2019;42:157–73.PubMedPubMedCentralCrossRef
41.
go back to reference Cicognola C, Brinkmalm G, Wahlgren J, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019;137(2):279–96.PubMedCrossRef Cicognola C, Brinkmalm G, Wahlgren J, et al. Novel tau fragments in cerebrospinal fluid: relation to tangle pathology and cognitive decline in Alzheimer’s disease. Acta Neuropathol. 2019;137(2):279–96.PubMedCrossRef
42.
go back to reference Meredith JE Jr, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS ONE. 2013;8(10):e76523.PubMedCrossRef Meredith JE Jr, Sankaranarayanan S, Guss V, et al. Characterization of novel CSF tau and ptau biomarkers for Alzheimer’s disease. PLoS ONE. 2013;8(10):e76523.PubMedCrossRef
44.
47.
go back to reference Gerson JE, Sengupta U, Lasagna-Reeves CA, et al. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol Commun. 2014;2:73.PubMedPubMedCentralCrossRef Gerson JE, Sengupta U, Lasagna-Reeves CA, et al. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol Commun. 2014;2:73.PubMedPubMedCentralCrossRef
48.
49.
go back to reference Goedert M, Spillantini MG. Propagation of tau aggregates. Mol. Brain. 2017;10(1):18. Goedert M, Spillantini MG. Propagation of tau aggregates. Mol. Brain. 2017;10(1):18.
51.
52.
go back to reference Falcon B, Zivanov J, Zhang W, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568(7752):420–3.PubMedPubMedCentralCrossRef Falcon B, Zivanov J, Zhang W, et al. Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature. 2019;568(7752):420–3.PubMedPubMedCentralCrossRef
53.
go back to reference Arakhamia T, Lee CE, Carlomagno Y, et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(4):633-44.e12.PubMedPubMedCentralCrossRef Arakhamia T, Lee CE, Carlomagno Y, et al. Posttranslational modifications mediate the structural diversity of tauopathy strains. Cell. 2020;180(4):633-44.e12.PubMedPubMedCentralCrossRef
54.
go back to reference Kametani F, Yoshida M, Matsubara T, et al. Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci. 2020;14:581936.PubMedPubMedCentralCrossRef Kametani F, Yoshida M, Matsubara T, et al. Comparison of common and disease-specific post-translational modifications of pathological tau associated with a wide range of tauopathies. Front Neurosci. 2020;14:581936.PubMedPubMedCentralCrossRef
56.
go back to reference Congdon EE, Lin Y, Rajamohamedsait HB, et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener. 2016;11(1):62.PubMedPubMedCentralCrossRef Congdon EE, Lin Y, Rajamohamedsait HB, et al. Affinity of tau antibodies for solubilized pathological tau species but not their immunogen or insoluble tau aggregates predicts in vivo and ex vivo efficacy. Mol Neurodegener. 2016;11(1):62.PubMedPubMedCentralCrossRef
57.
go back to reference Sebastian-Serrano A, de Diego-Garcia L, Diaz-Hernandez M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19(4):998.PubMedCentralCrossRef Sebastian-Serrano A, de Diego-Garcia L, Diaz-Hernandez M. The neurotoxic role of extracellular tau protein. Int J Mol Sci. 2018;19(4):998.PubMedCentralCrossRef
58.
go back to reference Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedPubMedCentralCrossRef Asuni AA, Boutajangout A, Quartermain D, et al. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. J Neurosci. 2007;27(34):9115–29.PubMedPubMedCentralCrossRef
59.
go back to reference Congdon EE, Gu J, Sait HB, et al. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem. 2013;288(49):35452–65.PubMedPubMedCentralCrossRef Congdon EE, Gu J, Sait HB, et al. Antibody uptake into neurons occurs primarily via clathrin-dependent Fcgamma receptor endocytosis and is a prerequisite for acute tau protein clearance. J Biol Chem. 2013;288(49):35452–65.PubMedPubMedCentralCrossRef
60.
go back to reference Gu J, Congdon EE, Sigurdsson EM. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem. 2013;288(46):33081–95.PubMedPubMedCentralCrossRef Gu J, Congdon EE, Sigurdsson EM. Two novel tau antibodies targeting the 396/404 region are primarily taken up by neurons and reduce tau protein pathology. J Biol Chem. 2013;288(46):33081–95.PubMedPubMedCentralCrossRef
61.
go back to reference Krishnamurthy PK, Deng Y, Sigurdsson EM. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry. 2011;2:59.PubMedPubMedCentralCrossRef Krishnamurthy PK, Deng Y, Sigurdsson EM. Mechanistic studies of antibody-mediated clearance of tau aggregates using an ex vivo brain slice model. Front Psychiatry. 2011;2:59.PubMedPubMedCentralCrossRef
63.
go back to reference Shamir DB, Deng Y, Sigurdsson EM. Live imaging of pathological tau protein and tau antibodies in a neuron-like cellular model. Methods Mol Biol. 2018;1779:371–9.PubMedCrossRef Shamir DB, Deng Y, Sigurdsson EM. Live imaging of pathological tau protein and tau antibodies in a neuron-like cellular model. Methods Mol Biol. 2018;1779:371–9.PubMedCrossRef
64.
go back to reference Shamir DB, Deng Y, Wu Q, et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front Neurol. 2020;11:602292.PubMedPubMedCentralCrossRef Shamir DB, Deng Y, Wu Q, et al. Dynamics of internalization and intracellular interaction of tau antibodies and human pathological tau protein in a human neuron-like model. Front Neurol. 2020;11:602292.PubMedPubMedCentralCrossRef
65.
go back to reference Shamir DB, Rosenqvist N, Rasool S, et al. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 2016;12(10):1098–107.PubMedPubMedCentralCrossRef Shamir DB, Rosenqvist N, Rasool S, et al. Internalization of tau antibody and pathological tau protein detected with a flow cytometry multiplexing approach. Alzheimers Dement. 2016;12(10):1098–107.PubMedPubMedCentralCrossRef
66.
go back to reference Wu Q, Lin Y, Gu J, et al. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35:270–8.PubMedPubMedCentralCrossRef Wu Q, Lin Y, Gu J, et al. Dynamic assessment of tau immunotherapies in the brains of live animals by two-photon imaging. EBioMedicine. 2018;35:270–8.PubMedPubMedCentralCrossRef
67.
go back to reference Collin L, Bohrmann B, Gopfert U, et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137(Pt 10):2834–46.PubMedCrossRef Collin L, Bohrmann B, Gopfert U, et al. Neuronal uptake of tau/pS422 antibody and reduced progression of tau pathology in a mouse model of Alzheimer’s disease. Brain. 2014;137(Pt 10):2834–46.PubMedCrossRef
68.
go back to reference Yanamandra K, Jiang H, Mahan TE, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2(3):278–88.PubMedPubMedCentralCrossRef Yanamandra K, Jiang H, Mahan TE, et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann Clin Transl Neurol. 2015;2(3):278–88.PubMedPubMedCentralCrossRef
69.
go back to reference Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34(12):4260–72.PubMedPubMedCentralCrossRef Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, et al. Passive immunization with tau oligomer monoclonal antibody reverses tauopathy phenotypes without affecting hyperphosphorylated neurofibrillary tangles. J Neurosci. 2014;34(12):4260–72.PubMedPubMedCentralCrossRef
70.
go back to reference d’Abramo C, Acker CM, Jimenez H, et al. Passive Immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS ONE. 2015;10(8):e0135774.PubMedPubMedCentralCrossRef d’Abramo C, Acker CM, Jimenez H, et al. Passive Immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies. PLoS ONE. 2015;10(8):e0135774.PubMedPubMedCentralCrossRef
71.
72.
go back to reference Andersson CR, Falsig J, Stavenhagen JB, et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci Rep. 2019;9(1):4658.PubMedPubMedCentralCrossRef Andersson CR, Falsig J, Stavenhagen JB, et al. Antibody-mediated clearance of tau in primary mouse microglial cultures requires Fcγ-receptor binding and functional lysosomes. Sci Rep. 2019;9(1):4658.PubMedPubMedCentralCrossRef
73.
go back to reference Funk KE, Mirbaha H, Jiang H, et al. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290(35):21652–62.PubMedPubMedCentralCrossRef Funk KE, Mirbaha H, Jiang H, et al. Distinct therapeutic mechanisms of tau antibodies: promoting microglial clearance versus blocking neuronal uptake. J Biol Chem. 2015;290(35):21652–62.PubMedPubMedCentralCrossRef
74.
go back to reference Luo W, Liu W, Hu X, et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef Luo W, Liu W, Hu X, et al. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep. 2015;5:11161.PubMedPubMedCentralCrossRef
75.
go back to reference Castillo-Carranza DL, Gerson JE, Sengupta U, et al. Specific targeting of tau oligomers in tau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl. 1):S97-111.PubMedCrossRef Castillo-Carranza DL, Gerson JE, Sengupta U, et al. Specific targeting of tau oligomers in tau mice prevents cognitive impairment and tau toxicity following injection with brain-derived tau oligomeric seeds. J Alzheimers Dis. 2014;40(Suppl. 1):S97-111.PubMedCrossRef
76.
go back to reference Chai X, Wu S, Murray TK, et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–67.PubMedPubMedCentralCrossRef Chai X, Wu S, Murray TK, et al. Passive immunization with anti-tau antibodies in two transgenic models: reduction of tau pathology and delay of disease progression. J Biol Chem. 2011;286(39):34457–67.PubMedPubMedCentralCrossRef
77.
go back to reference Dai CL, Chen X, Kazim SF, et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J Neural Transm (Vienna). 2015;122(4):607–17.CrossRef Dai CL, Chen X, Kazim SF, et al. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies. J Neural Transm (Vienna). 2015;122(4):607–17.CrossRef
79.
go back to reference Davtyan H, Chen WW, Zagorski K, et al. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine. 2017;35(16):2015–24.PubMedPubMedCentralCrossRef Davtyan H, Chen WW, Zagorski K, et al. MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine. 2017;35(16):2015–24.PubMedPubMedCentralCrossRef
80.
go back to reference Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431–6.PubMedPubMedCentralCrossRef Kondo A, Shahpasand K, Mannix R, et al. Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature. 2015;523(7561):431–6.PubMedPubMedCentralCrossRef
81.
go back to reference Nobuhara CK, DeVos SL, Commins C, et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187(6):1399–412.PubMedPubMedCentralCrossRef Nobuhara CK, DeVos SL, Commins C, et al. Tau antibody targeting pathological species blocks neuronal uptake and interneuron propagation of tau in vitro. Am J Pathol. 2017;187(6):1399–412.PubMedPubMedCentralCrossRef
82.
go back to reference Sankaranarayanan S, Barten DM, Vana L, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10(5):e0125614.PubMedPubMedCentralCrossRef Sankaranarayanan S, Barten DM, Vana L, et al. Passive immunization with phospho-tau antibodies reduces tau pathology and functional deficits in two distinct mouse tauopathy models. PLoS ONE. 2015;10(5):e0125614.PubMedPubMedCentralCrossRef
83.
go back to reference Subramanian S, Savanur G, Madhavadas S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68–71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem Biophys Res Commun. 2017;483(1):585–9.PubMedCrossRef Subramanian S, Savanur G, Madhavadas S. Passive immunization targeting the N-terminal region of phosphorylated tau (residues 68–71) improves spatial memory in okadaic acid induced tauopathy model rats. Biochem Biophys Res Commun. 2017;483(1):585–9.PubMedCrossRef
84.
go back to reference Troquier L, Caillierez R, Burnouf S, et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res. 2012;9(4):397–405.PubMedPubMedCentralCrossRef Troquier L, Caillierez R, Burnouf S, et al. Targeting phospho-Ser422 by active tau immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res. 2012;9(4):397–405.PubMedPubMedCentralCrossRef
85.
go back to reference Umeda T, Eguchi H, Kunori Y, et al. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol. 2015;2(3):241–55.PubMedPubMedCentralCrossRef Umeda T, Eguchi H, Kunori Y, et al. Passive immunotherapy of tauopathy targeting pSer413-tau: a pilot study in mice. Ann Clin Transl Neurol. 2015;2(3):241–55.PubMedPubMedCentralCrossRef
86.
87.
go back to reference Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80(2):402–14.PubMedPubMedCentralCrossRef Yanamandra K, Kfoury N, Jiang H, et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron. 2013;80(2):402–14.PubMedPubMedCentralCrossRef
88.
go back to reference Yanamandra K, Patel TK, Jiang H, et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9(386):eaal2029.PubMedPubMedCentralCrossRef Yanamandra K, Patel TK, Jiang H, et al. Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy. Sci Transl Med. 2017;9(386):eaal2029.PubMedPubMedCentralCrossRef
89.
go back to reference Modak SR, Sigurdsson EM. Antibodies targeting truncated Asp421 tau protein clear human Alzheimer’s tau and prevent its toxicity in primary neuronal and mixed cortical cultures. Soc Neurosci Abstract. 2017; p. 478.19. Modak SR, Sigurdsson EM. Antibodies targeting truncated Asp421 tau protein clear human Alzheimer’s tau and prevent its toxicity in primary neuronal and mixed cortical cultures. Soc Neurosci Abstract. 2017; p. 478.19.
90.
go back to reference Modak SR, Solesio M, Krishnaswamy S, et al. Antibodies targeting truncated tau protein reduce tau pathology in primary and mixed cortical cultures. Soc Neurosci Abstract. 2015; p. 579.14. Modak SR, Solesio M, Krishnaswamy S, et al. Antibodies targeting truncated tau protein reduce tau pathology in primary and mixed cortical cultures. Soc Neurosci Abstract. 2015; p. 579.14.
91.
go back to reference Bi M, Ittner A, Ke YD, et al. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE. 2011;6(12):e26860.PubMedPubMedCentralCrossRef Bi M, Ittner A, Ke YD, et al. Tau-targeted immunization impedes progression of neurofibrillary histopathology in aged P301L tau transgenic mice. PLoS ONE. 2011;6(12):e26860.PubMedPubMedCentralCrossRef
92.
go back to reference Ittner A, Bertz J, Suh LS, et al. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45.PubMedCrossRef Ittner A, Bertz J, Suh LS, et al. Tau-targeting passive immunization modulates aspects of pathology in tau transgenic mice. J Neurochem. 2015;132(1):135–45.PubMedCrossRef
93.
go back to reference Liu W, Zhao L, Blackman B, et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J Neurosci. 2016;36(49):12425–35.PubMedPubMedCentralCrossRef Liu W, Zhao L, Blackman B, et al. Vectored intracerebral immunization with the anti-tau monoclonal antibody PHF1 markedly reduces tau pathology in mutant tau transgenic mice. J Neurosci. 2016;36(49):12425–35.PubMedPubMedCentralCrossRef
94.
go back to reference Rosenqvist N, Asuni AA, Andersson CR, et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement (N Y). 2018;4:521–34.CrossRef Rosenqvist N, Asuni AA, Andersson CR, et al. Highly specific and selective anti-pS396-tau antibody C10.2 targets seeding-competent tau. Alzheimers Dement (N Y). 2018;4:521–34.CrossRef
95.
go back to reference Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE. 2013;8(8):e72301.PubMedPubMedCentralCrossRef Theunis C, Crespo-Biel N, Gafner V, et al. Efficacy and safety of a liposome-based vaccine against protein tau, assessed in tau.P301L mice that model tauopathy. PLoS ONE. 2013;8(8):e72301.PubMedPubMedCentralCrossRef
96.
go back to reference Agadjanyan MG, Zagorski K, Petrushina I, et al. Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener. 2017;12(1):33.PubMedPubMedCentralCrossRef Agadjanyan MG, Zagorski K, Petrushina I, et al. Humanized monoclonal antibody armanezumab specific to N-terminus of pathological tau: characterization and therapeutic potency. Mol Neurodegener. 2017;12(1):33.PubMedPubMedCentralCrossRef
97.
go back to reference Albert M, Mairet-Coello G, Danis C, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–50.PubMedPubMedCentralCrossRef Albert M, Mairet-Coello G, Danis C, et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain. 2019;142(6):1736–50.PubMedPubMedCentralCrossRef
98.
go back to reference Courade JP, Angers R, Mairet-Coello G, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136(5):729–45.PubMedPubMedCentralCrossRef Courade JP, Angers R, Mairet-Coello G, et al. Epitope determines efficacy of therapeutic anti-tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 2018;136(5):729–45.PubMedPubMedCentralCrossRef
99.
go back to reference Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44.PubMedPubMedCentralCrossRef Kontsekova E, Zilka N, Kovacech B, et al. First-in-man tau vaccine targeting structural determinants essential for pathological tau-tau interaction reduces tau oligomerisation and neurofibrillary degeneration in an Alzheimer’s disease model. Alzheimers Res Ther. 2014;6(4):44.PubMedPubMedCentralCrossRef
103.
go back to reference Andoh T, Kuraishi Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 2004;18(1):182–4.PubMedCrossRef Andoh T, Kuraishi Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 2004;18(1):182–4.PubMedCrossRef
104.
go back to reference Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, et al. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012;135(Pt 9):2826–37.PubMedCrossRef Fernandez-Vizarra P, Lopez-Franco O, Mallavia B, et al. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain. 2012;135(Pt 9):2826–37.PubMedCrossRef
105.
go back to reference Suemitsu S, Watanabe M, Yokobayashi E, et al. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience. 2010;166(3):819–31.PubMedCrossRef Suemitsu S, Watanabe M, Yokobayashi E, et al. Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection. Neuroscience. 2010;166(3):819–31.PubMedCrossRef
106.
go back to reference van der Kleij H, Charles N, Karimi K, et al. Evidence for neuronal expression of functional Fc (epsilon and gamma) receptors. J Allergy Clin Immunol. 2010;125(3):757–60.PubMedPubMedCentralCrossRef van der Kleij H, Charles N, Karimi K, et al. Evidence for neuronal expression of functional Fc (epsilon and gamma) receptors. J Allergy Clin Immunol. 2010;125(3):757–60.PubMedPubMedCentralCrossRef
107.
go back to reference Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 2016;16(6):1690–700.PubMedCrossRef Lee SH, Le Pichon CE, Adolfsson O, et al. Antibody-mediated targeting of tau in vivo does not require effector function and microglial engagement. Cell Rep. 2016;16(6):1690–700.PubMedCrossRef
108.
go back to reference Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–67.PubMedPubMedCentralCrossRef Boutajangout A, Ingadottir J, Davies P, et al. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain. J Neurochem. 2011;118(4):658–67.PubMedPubMedCentralCrossRef
109.
go back to reference d’Abramo C, Acker CM, Jimenez HT, et al. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE. 2013;8(4):e62402.PubMedPubMedCentralCrossRef d’Abramo C, Acker CM, Jimenez HT, et al. Tau passive immunotherapy in mutant P301L mice: antibody affinity versus specificity. PLoS ONE. 2013;8(4):e62402.PubMedPubMedCentralCrossRef
110.
go back to reference Jicha GA, Bowser R, Kazam IG, et al. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res. 1997;48(2):128–32.PubMedCrossRef Jicha GA, Bowser R, Kazam IG, et al. Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res. 1997;48(2):128–32.PubMedCrossRef
111.
go back to reference Krishnaswamy S, Wu Q, Lin Y, et al. In vivo imaging of tauopathy in mice. Methods Mol Biol. 2018;1779:513–26.PubMedCrossRef Krishnaswamy S, Wu Q, Lin Y, et al. In vivo imaging of tauopathy in mice. Methods Mol Biol. 2018;1779:513–26.PubMedCrossRef
112.
go back to reference Krishnaswamy S, Huang HW, Marchal IS, et al. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020;137:104770.PubMedPubMedCentralCrossRef Krishnaswamy S, Huang HW, Marchal IS, et al. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis. 2020;137:104770.PubMedPubMedCentralCrossRef
113.
go back to reference Ising C, Gallardo G, Leyns CEG, et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med. 2017;214(5):1227–38.PubMedPubMedCentralCrossRef Ising C, Gallardo G, Leyns CEG, et al. AAV-mediated expression of anti-tau scFvs decreases tau accumulation in a mouse model of tauopathy. J Exp Med. 2017;214(5):1227–38.PubMedPubMedCentralCrossRef
114.
go back to reference Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140(5):1220–30.PubMedPubMedCentralCrossRef Nisbet RM, Van der Jeugd A, Leinenga G, et al. Combined effects of scanning ultrasound and a tau-specific single chain antibody in a tau transgenic mouse model. Brain. 2017;140(5):1220–30.PubMedPubMedCentralCrossRef
115.
go back to reference Spencer B, Bruschweiler S, Sealey-Cardona M, et al. Selective targeting of 3 repeat tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 2018;136(1):69–87.PubMedPubMedCentralCrossRef Spencer B, Bruschweiler S, Sealey-Cardona M, et al. Selective targeting of 3 repeat tau with brain penetrating single chain antibodies for the treatment of neurodegenerative disorders. Acta Neuropathol. 2018;136(1):69–87.PubMedPubMedCentralCrossRef
116.
go back to reference Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82.PubMedPubMedCentralCrossRef Vitale F, Giliberto L, Ruiz S, et al. Anti-tau conformational scFv MC1 antibody efficiently reduces pathological tau species in adult JNPL3 mice. Acta Neuropathol Commun. 2018;6(1):82.PubMedPubMedCentralCrossRef
117.
118.
go back to reference Goodwin MS, Sinyavskaya O, Burg F, et al. Anti-tau scFvs targeted to the cytoplasm or secretory pathway variably modify pathology and neurodegenerative phenotypes. Mol Ther. 2021;29(2):859–72.PubMedCrossRef Goodwin MS, Sinyavskaya O, Burg F, et al. Anti-tau scFvs targeted to the cytoplasm or secretory pathway variably modify pathology and neurodegenerative phenotypes. Mol Ther. 2021;29(2):859–72.PubMedCrossRef
119.
go back to reference Dupre E, Danis C, Arrial A, et al. Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci. 2019;10(9):3997–4006.PubMedCrossRef Dupre E, Danis C, Arrial A, et al. Single domain antibody fragments as new tools for the detection of neuronal tau protein in cells and in mice studies. ACS Chem Neurosci. 2019;10(9):3997–4006.PubMedCrossRef
120.
go back to reference Li T, Vandesquille M, Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.PubMedCrossRef Li T, Vandesquille M, Koukouli F, et al. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.PubMedCrossRef
121.
go back to reference Congdon EE, Lin Y, Sigurdsson EM. Prevention of intra- and extracellular alpha-synuclein toxicity and seeding by single domain antibodies. Soc Neurosci Abstract. 2019; p. 537.07. Congdon EE, Lin Y, Sigurdsson EM. Prevention of intra- and extracellular alpha-synuclein toxicity and seeding by single domain antibodies. Soc Neurosci Abstract. 2019; p. 537.07.
122.
go back to reference Marchal IS, Huang HW, Krishnaswamy S, et al. Neuronally expressed anti-tau scFvs and sdAbs prevent tauopathy-induced phenotypes in Drosophila models. Soc Neurosci Abstract. 2019; p. 446.12. Marchal IS, Huang HW, Krishnaswamy S, et al. Neuronally expressed anti-tau scFvs and sdAbs prevent tauopathy-induced phenotypes in Drosophila models. Soc Neurosci Abstract. 2019; p. 446.12.
123.
go back to reference Sandusky-Beltran LA, Congdon EE, Modak SR, et al. Examining the impact of single domain anti-tau immunotherapies in an animal model of tauopathy. Alzheimer’s Disease & Parkinson’s disease (ADPD) Conference. In: Abstract. 2019;Symposium 14:Treatment of Tauopathies. Sandusky-Beltran LA, Congdon EE, Modak SR, et al. Examining the impact of single domain anti-tau immunotherapies in an animal model of tauopathy. Alzheimer’s Disease & Parkinson’s disease (ADPD) Conference. In: Abstract. 2019;Symposium 14:Treatment of Tauopathies.
124.
go back to reference Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–34.PubMedCrossRef Novak P, Schmidt R, Kontsekova E, et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 2017;16(2):123–34.PubMedCrossRef
125.
go back to reference Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108.PubMedPubMedCentralCrossRef Novak P, Schmidt R, Kontsekova E, et al. FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy against tau protein pathology in Alzheimer’s disease. Alzheimers Res Ther. 2018;10(1):108.PubMedPubMedCentralCrossRef
128.
go back to reference Hickman DT, Lopez-Deber MP, Ndao DM, et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem. 2011;286(16):13966–76.PubMedPubMedCentralCrossRef Hickman DT, Lopez-Deber MP, Ndao DM, et al. Sequence-independent control of peptide conformation in liposomal vaccines for targeting protein misfolding diseases. J Biol Chem. 2011;286(16):13966–76.PubMedPubMedCentralCrossRef
134.
go back to reference Czerkowicz J, Chen W, Wang Q, et al. Pan-tau antibody BIIB076 exhibits promising safety and biomarker profile in cynomolgus monkey toxicity study. Alzheimers Dement. 2017;13(7):P1271. Czerkowicz J, Chen W, Wang Q, et al. Pan-tau antibody BIIB076 exhibits promising safety and biomarker profile in cynomolgus monkey toxicity study. Alzheimers Dement. 2017;13(7):P1271.
136.
go back to reference Sopko R, Golonzhka O, Arndt J, et al. Characterization of tau binding by gosuranemab. Neurobiol Dis. 2020;146:105120.PubMedCrossRef Sopko R, Golonzhka O, Arndt J, et al. Characterization of tau binding by gosuranemab. Neurobiol Dis. 2020;146:105120.PubMedCrossRef
137.
go back to reference Qureshi IA, Tirucherai G, Ahlijanian MK, et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y). 2018;4:746–55.CrossRef Qureshi IA, Tirucherai G, Ahlijanian MK, et al. A randomized, single ascending dose study of intravenous BIIB092 in healthy participants. Alzheimers Dement (N Y). 2018;4:746–55.CrossRef
138.
go back to reference Boxer AL, Qureshi I, Ahlijanian M, et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019;18(6):549–58.PubMedCrossRef Boxer AL, Qureshi I, Ahlijanian M, et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 2019;18(6):549–58.PubMedCrossRef
143.
144.
go back to reference West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;4(4):236–41.PubMed West T, Hu Y, Verghese PB, et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J Prev Alzheimers Dis. 2017;4(4):236–41.PubMed
146.
go back to reference Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(3):182–92.PubMedCrossRef Höglinger GU, Litvan I, Mendonca N, et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 2021;20(3):182–92.PubMedCrossRef
147.
go back to reference Roberts M, Sevastou I, Imaizumi Y, et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2020;8(1):13.PubMedPubMedCentralCrossRef Roberts M, Sevastou I, Imaizumi Y, et al. Pre-clinical characterisation of E2814, a high-affinity antibody targeting the microtubule-binding repeat domain of tau for passive immunotherapy in Alzheimer’s disease. Acta Neuropathol Commun. 2020;8(1):13.PubMedPubMedCentralCrossRef
148.
go back to reference Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody e2814 at Alzheimer’s Association International Conference (AAIC) 2019. July 19, 2019 [press release]. https://www.eisai.com/news/2019/news201955.html. Accessed 19 May 2021. Eisai presents data showing quantification of tau microtubule binding region in cerebrospinal fluid and the identification of a target engagement biomarker for the new anti-tau antibody e2814 at Alzheimer’s Association International Conference (AAIC) 2019. July 19, 2019 [press release]. https://​www.​eisai.​com/​news/​2019/​news201955.​html. Accessed 19 May 2021.
149.
go back to reference Horie K, Barthélemy NR, Sato C, et al. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain. 2021;144(2):515–27.PubMedCrossRef Horie K, Barthélemy NR, Sato C, et al. CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain. 2021;144(2):515–27.PubMedCrossRef
150.
go back to reference Horie K, Takahashi E, Aoyama M, et al. Quantification of the tau microtubule binding region (Mtbr) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. In: Alzheimer's Association International Conference; July 2019: p. P4–696. Horie K, Takahashi E, Aoyama M, et al. Quantification of the tau microtubule binding region (Mtbr) in cerebrospinal fluid and subsequent validation of target engagement assay for E2814, a novel anti-tau therapeutic antibody. In: Alzheimer's Association International Conference; July 2019: p. P4–696.
152.
go back to reference Alam R, Driver D, Wu S, et al. Preclinical characterization of an antibody [Ly3303560] targeting aggregated tau. Alzheimers Dement. 2017;13(7):P592–3. Alam R, Driver D, Wu S, et al. Preclinical characterization of an antibody [Ly3303560] targeting aggregated tau. Alzheimers Dement. 2017;13(7):P592–3.
154.
go back to reference Galpern WR, Mercken M, Kolen KV, et al. P1–052: A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects. Alzheimers Dement. 2019;15(7S):252–3.CrossRef Galpern WR, Mercken M, Kolen KV, et al. P1–052: A single ascending dose study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the anti-phospho-tau antibody JNJ-63733657 in healthy subjects. Alzheimers Dement. 2019;15(7S):252–3.CrossRef
156.
go back to reference Buchanan T, De Bruyn S, Fadini T, et al. A randomised, placebo-controlled, first-inhuman study with a central Tau epitope antibody: UCB0107. In: International Congress of Parkinson’s Disease and Movement Disorders; 2019 Late-Breaking Abstracts. 2019; p. LBA3. Buchanan T, De Bruyn S, Fadini T, et al. A randomised, placebo-controlled, first-inhuman study with a central Tau epitope antibody: UCB0107. In: International Congress of Parkinson’s Disease and Movement Disorders; 2019 Late-Breaking Abstracts. 2019; p. LBA3.
157.
go back to reference Naserkhaki R, Zamanzadeh S, Baharvand H, et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem Neurosci. 2019;10(3):1214–21.PubMedCrossRef Naserkhaki R, Zamanzadeh S, Baharvand H, et al. cis pT231-tau drives neurodegeneration in bipolar disorder. ACS Chem Neurosci. 2019;10(3):1214–21.PubMedCrossRef
158.
go back to reference Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun. 2017;8(1):1000.PubMedPubMedCentralCrossRef Albayram O, Kondo A, Mannix R, et al. Cis P-tau is induced in clinical and preclinical brain injury and contributes to post-injury sequelae. Nat Commun. 2017;8(1):1000.PubMedPubMedCentralCrossRef
162.
go back to reference Kerchner GA, Ayalon G, Brunstein F, et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. 2017;13(7):P601. Kerchner GA, Ayalon G, Brunstein F, et al. A phase I study to evaluate the safety and tolerability of RO7105705 in healthy volunteers and patients with mild-to-moderate AD. Alzheimers Dement. 2017;13(7):P601.
Metadata
Title
Current Status of Clinical Trials on Tau Immunotherapies
Authors
Changyi Ji
Einar M. Sigurdsson
Publication date
01-07-2021
Publisher
Springer International Publishing
Published in
Drugs / Issue 10/2021
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.1007/s40265-021-01546-6

Other articles of this Issue 10/2021

Drugs 10/2021 Go to the issue