Skip to main content
Top
Published in: Neurology and Therapy 2/2019

Open Access 01-12-2019 | Attention Deficit Hyperactivity Disorder | Review

Deep Learning and Neurology: A Systematic Review

Authors: Aly Al-Amyn Valliani, Daniel Ranti, Eric Karl Oermann

Published in: Neurology and Therapy | Issue 2/2019

Login to get access

Abstract

Deciphering the massive volume of complex electronic data that has been compiled by hospital systems over the past decades has the potential to revolutionize modern medicine, as well as present significant challenges. Deep learning is uniquely suited to address these challenges, and recent advances in techniques and hardware have poised the field of medical machine learning for transformational growth. The clinical neurosciences are particularly well positioned to benefit from these advances given the subtle presentation of symptoms typical of neurologic disease. Here we review the various domains in which deep learning algorithms have already provided impetus for change—areas such as medical image analysis for the improved diagnosis of Alzheimer’s disease and the early detection of acute neurologic events; medical image segmentation for quantitative evaluation of neuroanatomy and vasculature; connectome mapping for the diagnosis of Alzheimer’s, autism spectrum disorder, and attention deficit hyperactivity disorder; and mining of microscopic electroencephalogram signals and granular genetic signatures. We additionally note important challenges in the integration of deep learning tools in the clinical setting and discuss the barriers to tackling the challenges that currently exist.
Literature
1.
go back to reference Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13(6):395–405.PubMedCrossRef Jensen PB, Jensen LJ, Brunak S. Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012;13(6):395–405.PubMedCrossRef
2.
go back to reference Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights. 2016;19(8):1–10. Luo J, Wu M, Gopukumar D, Zhao Y. Big data application in biomedical research and health care: a literature review. Biomed Inform Insights. 2016;19(8):1–10.
3.
go back to reference Kohli MD, Summers RM, Geis JR. Medical image data and datasets in the era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset session. J Digit Imaging. 2017;30(4):392–9.PubMedPubMedCentralCrossRef Kohli MD, Summers RM, Geis JR. Medical image data and datasets in the era of machine learning-whitepaper from the 2016 C-MIMI meeting dataset session. J Digit Imaging. 2017;30(4):392–9.PubMedPubMedCentralCrossRef
4.
go back to reference Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.PubMedCrossRef Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.PubMedCrossRef
6.
go back to reference Li H, Lin Z, Shen X, Brandt J, Hua G. A convolutional neural network cascade for face detection. In: Proceedings of IEEE conference on computer vision and pattern recognition. Boston, MA. 2015. pp. 5325–34. Li H, Lin Z, Shen X, Brandt J, Hua G. A convolutional neural network cascade for face detection. In: Proceedings of IEEE conference on computer vision and pattern recognition. Boston, MA. 2015. pp. 5325–34.
8.
go back to reference Ramanishka V, Chen Y-T, Misu T, Saenko K. Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning. In: Proceedings of IEEE conference on computer vision and pattern recognition. Salt Lake City, UT. 2018. pp. 7699–707. Ramanishka V, Chen Y-T, Misu T, Saenko K. Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning. In: Proceedings of IEEE conference on computer vision and pattern recognition. Salt Lake City, UT. 2018. pp. 7699–707.
14.
go back to reference Mitchell TM. The discipline of machine learning, vol. 9. Pittsburgh: School of Computer Science, Carnegie Mellon University; 2006. Mitchell TM. The discipline of machine learning, vol. 9. Pittsburgh: School of Computer Science, Carnegie Mellon University; 2006.
16.
go back to reference Ogutu JO, Schulz-Streeck T, Piepho H-P. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012;6[Suppl 2]:S10.PubMedPubMedCentralCrossRef Ogutu JO, Schulz-Streeck T, Piepho H-P. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 2012;6[Suppl 2]:S10.PubMedPubMedCentralCrossRef
17.
go back to reference Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems, vol. 25. New York: Curran Associates, Inc.; 2012; 1097–105. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems, vol. 25. New York: Curran Associates, Inc.; 2012; 1097–105.
19.
go back to reference Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.PubMedCrossRef Saba L, Biswas M, Kuppili V, et al. The present and future of deep learning in radiology. Eur J Radiol. 2019;114:14–24.PubMedCrossRef
20.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMedCrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316(22):2402–10.PubMedCrossRef
21.
22.
go back to reference Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.PubMedCrossRef Haenssle HA, Fink C, Schneiderbauer R, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42.PubMedCrossRef
23.
go back to reference De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50.PubMedCrossRef De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–50.PubMedCrossRef
24.
go back to reference Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMedCrossRef Poplin R, Varadarajan AV, Blumer K, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2(3):158–64.PubMedCrossRef
26.
go back to reference Rumelhart DE, McClelland JL. Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition: foundations. Wachtendonk: MITP Verlags-GmbH & Co. KG; 1987. pp. 318–62. Rumelhart DE, McClelland JL. Learning internal representations by error propagation. In: Parallel distributed processing: explorations in the microstructure of cognition: foundations. Wachtendonk: MITP Verlags-GmbH & Co. KG; 1987. pp. 318–62.
27.
go back to reference Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.PubMedCrossRef Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.PubMedCrossRef
29.
go back to reference Shin H-C, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In:Proc Third International Workshop, SASHIMI 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018. In: Gooya A, Goksel O, Oguz I, Burgos N, editors. Simulation and synthesis in medical imaging. Cham: Springer International Publishing; 2018:1–11. Shin H-C, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In:Proc Third International Workshop, SASHIMI 2018, held in conjunction with MICCAI 2018, Granada, Spain, September 16, 2018. In: Gooya A, Goksel O, Oguz I, Burgos N, editors. Simulation and synthesis in medical imaging. Cham: Springer International Publishing; 2018:1–11.
32.
go back to reference Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9.PubMedPubMedCentralCrossRef Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology. 2010;74(3):201–9.PubMedPubMedCentralCrossRef
33.
go back to reference Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993–2024.PubMedCrossRef Menze BH, Jakab A, Bauer S, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993–2024.PubMedCrossRef
34.
go back to reference Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):583–90.PubMedPubMedCentral Suk H-I, Shen D. Deep learning-based feature representation for AD/MCI classification. Med Image Comput Comput Assist Interv. 2013;16(Pt 2):583–90.PubMedPubMedCentral
35.
go back to reference Gupta A, Ayhan M, Maida A. Natural image bases to represent neuroimaging data. In: Proceedings of 30th international conference on machine learning. vol. 28. Atlanta, GA. 2013. pp. 987–94. Gupta A, Ayhan M, Maida A. Natural image bases to represent neuroimaging data. In: Proceedings of 30th international conference on machine learning. vol. 28. Atlanta, GA. 2013. pp. 987–94.
36.
go back to reference Li F, Tran L, Thung K-H, Ji S, Shen D, Li J. Robust deep learning for improved classification of AD/MCI Patients. Machine learning in medical imaging. New York: Springer International Publishing; 2014:240–7.CrossRef Li F, Tran L, Thung K-H, Ji S, Shen D, Li J. Robust deep learning for improved classification of AD/MCI Patients. Machine learning in medical imaging. New York: Springer International Publishing; 2014:240–7.CrossRef
37.
go back to reference Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D. Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). Beijing, China. 2014. pp. 1015–8. http://ieeexplore.ieee.org. Liu S, Liu S, Cai W, Pujol S, Kikinis R, Feng D. Early diagnosis of Alzheimer’s disease with deep learning. In: 2014 IEEE 11th international symposium on biomedical imaging (ISBI). Beijing, China. 2014. pp. 1015–8. http://​ieeexplore.​ieee.​org.
38.
go back to reference Liu S, Liu S, Cai W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.PubMedCrossRef Liu S, Liu S, Cai W, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62(4):1132–40.PubMedCrossRef
39.
go back to reference Suk H-I, Lee S-W, Shen D. Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–59.PubMedCrossRef Suk H-I, Lee S-W, Shen D. Alzheimer’s disease neuroimaging initiative. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Funct. 2015;220(2):841–59.PubMedCrossRef
41.
go back to reference Suk H-I, Lee S-W, Shen D. Alzheimer’s disease neuroimaging initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct Funct. 2016;221(5):2569–87.PubMedCrossRef Suk H-I, Lee S-W, Shen D. Alzheimer’s disease neuroimaging initiative. Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Struct Funct. 2016;221(5):2569–87.PubMedCrossRef
42.
go back to reference Valliani A, Soni A. Deep residual nets for improved Alzheimer’s diagnosis. In: BCB. Boston, MA. 2017. p. 615. Valliani A, Soni A. Deep residual nets for improved Alzheimer’s diagnosis. In: BCB. Boston, MA. 2017. p. 615.
45.
go back to reference Hosseini-Asl E, Ghazal M, Mahmoud A, et al. Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front Biosci. 2018;1(23):584–96. Hosseini-Asl E, Ghazal M, Mahmoud A, et al. Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front Biosci. 2018;1(23):584–96.
46.
47.
go back to reference Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290(2):456–64.PubMedCrossRef Ding Y, Sohn JH, Kawczynski MG, et al. A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology. 2019;290(2):456–64.PubMedCrossRef
48.
go back to reference Titano JJ, Badgeley M, Schefflein J, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.PubMedCrossRef Titano JJ, Badgeley M, Schefflein J, et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat Med. 2018;24(9):1337–41.PubMedCrossRef
49.
go back to reference Zech J, Pain M, Titano J, et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;30:171093. Zech J, Pain M, Titano J, et al. Natural language-based machine learning models for the annotation of clinical radiology reports. Radiology. 2018;30:171093.
50.
go back to reference Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ,et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med. 2018;1(1):9.PubMedPubMedCentralCrossRef Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ,et al. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digit Med. 2018;1(1):9.PubMedPubMedCentralCrossRef
51.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.PubMedCrossRef Chilamkurthy S, Ghosh R, Tanamala S, et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.PubMedCrossRef
53.
go back to reference Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage. 2018;15(170):434–45.CrossRef Wachinger C, Reuter M, Klein T. DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage. 2018;15(170):434–45.CrossRef
54.
go back to reference Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.PubMedCrossRef Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005;64(6):479–89.PubMedCrossRef
55.
56.
go back to reference Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.PubMedCrossRef Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron. 2002;33(3):341–55.PubMedCrossRef
57.
go back to reference Landman B, Warfield S. MICCAI 2012 workshop on multi-atlas labeling. In: Medical image computing and computer assisted intervention conference. Nice, France. October 1–5, 2012. Landman B, Warfield S. MICCAI 2012 workshop on multi-atlas labeling. In: Medical image computing and computer assisted intervention conference. Nice, France. October 1–5, 2012.
58.
go back to reference Livne M, Rieger J, Aydin OU, et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. 2019;28(13):97.CrossRef Livne M, Rieger J, Aydin OU, et al. A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front Neurosci. 2019;28(13):97.CrossRef
59.
go back to reference Loftis JM, Huckans M, Morasco BJ. Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis. 2010;37(3):519–33.PubMedCrossRef Loftis JM, Huckans M, Morasco BJ. Neuroimmune mechanisms of cytokine-induced depression: current theories and novel treatment strategies. Neurobiol Dis. 2010;37(3):519–33.PubMedCrossRef
60.
61.
go back to reference Lian C, Zhang J, Liu M, et al. Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Med Image Anal. 2018;46:106–17.PubMedPubMedCentralCrossRef Lian C, Zhang J, Liu M, et al. Multi-channel multi-scale fully convolutional network for 3D perivascular spaces segmentation in 7T MR images. Med Image Anal. 2018;46:106–17.PubMedPubMedCentralCrossRef
62.
go back to reference Jeong Y, Rachmadi MF, Valdés-Hernández MDC, Komura T. Dilated saliency U-Net for white matter hyperintensities segmentation using irregularity age map. Front Aging Neurosci. 2019;27(11):150.CrossRef Jeong Y, Rachmadi MF, Valdés-Hernández MDC, Komura T. Dilated saliency U-Net for white matter hyperintensities segmentation using irregularity age map. Front Aging Neurosci. 2019;27(11):150.CrossRef
63.
go back to reference Gootjes L, Teipel SJ, Zebuhr Y, et al. Regional distribution of white matter hyperintensities in vascular dementia, Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2004;18(2):180–8.PubMedCrossRef Gootjes L, Teipel SJ, Zebuhr Y, et al. Regional distribution of white matter hyperintensities in vascular dementia, Alzheimer’s disease and healthy aging. Dement Geriatr Cogn Disord. 2004;18(2):180–8.PubMedCrossRef
64.
go back to reference Karargyros A, Syeda-Mahmood T. Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation. In: Medical imaging 2018: computer-aided diagnosis. International Society for Optics and Photonics. Houston, TX. 2018. 105751T. Karargyros A, Syeda-Mahmood T. Saliency U-Net: A regional saliency map-driven hybrid deep learning network for anomaly segmentation. In: Medical imaging 2018: computer-aided diagnosis. International Society for Optics and Photonics. Houston, TX. 2018. 105751T.
65.
66.
go back to reference Suk H-I, Wee C-Y, Lee S-W, Shen D. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage. 2016;1(129):292–307.CrossRef Suk H-I, Wee C-Y, Lee S-W, Shen D. State-space model with deep learning for functional dynamics estimation in resting-state fMRI. Neuroimage. 2016;1(129):292–307.CrossRef
67.
go back to reference Meszlényi RJ, Buza K, Vidnyánszky Z. Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Front Neuroinform. 2017;17(11):61.CrossRef Meszlényi RJ, Buza K, Vidnyánszky Z. Resting state fMRI functional connectivity-based classification using a convolutional neural network architecture. Front Neuroinform. 2017;17(11):61.CrossRef
68.
go back to reference Montufar GF, Pascanu R, Cho K, Bengio Y. On the number of linear regions of deep neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems, vol. 27. Red Hook: Curran Associates, Inc.; 2014:2924–32. Montufar GF, Pascanu R, Cho K, Bengio Y. On the number of linear regions of deep neural networks. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems, vol. 27. Red Hook: Curran Associates, Inc.; 2014:2924–32.
69.
go back to reference Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.PubMedCrossRef Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex. 2015;63:55–67.PubMedCrossRef
70.
go back to reference Chen H, Duan X, Liu F, et al. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center study. Prog Neuropsychopharmacol Biol Psychiatry. 2016;4(64):1–9.CrossRef Chen H, Duan X, Liu F, et al. Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center study. Prog Neuropsychopharmacol Biol Psychiatry. 2016;4(64):1–9.CrossRef
71.
go back to reference Kuang D, Guo X, An X, Zhao Y, He L. Discrimination of ADHD based on fMRI data with deep belief network. Intelligent computing in bioinformatics. New York: Springer International Publishing; 2014:225–32.CrossRef Kuang D, Guo X, An X, Zhao Y, He L. Discrimination of ADHD based on fMRI data with deep belief network. Intelligent computing in bioinformatics. New York: Springer International Publishing; 2014:225–32.CrossRef
72.
go back to reference Tjepkema-Cloostermans MC, de Carvalho RCV, van Putten MJAM. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin Neurophysiol. 2018;129(10):2191–6.PubMedCrossRef Tjepkema-Cloostermans MC, de Carvalho RCV, van Putten MJAM. Deep learning for detection of focal epileptiform discharges from scalp EEG recordings. Clin Neurophysiol. 2018;129(10):2191–6.PubMedCrossRef
73.
go back to reference Tsiouris ΚΜ, Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med. 2018;1(99):24–37.CrossRef Tsiouris ΚΜ, Pezoulas VC, Zervakis M, Konitsiotis S, Koutsouris DD, Fotiadis DI. A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput Biol Med. 2018;1(99):24–37.CrossRef
74.
go back to reference Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;1(100):270–8.CrossRef Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018;1(100):270–8.CrossRef
75.
go back to reference Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Kavehei O. A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. 2017. http://arxiv.org/abs/1707.01976. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Kavehei O. A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. 2017. http://​arxiv.​org/​abs/​1707.​01976.
76.
go back to reference Khan H, Marcuse L, Fields M, Swann K, Yener B. Focal onset seizure prediction using convolutional networks. IEEE Trans Biomed Eng. 2018;65(9):2109–18.PubMedCrossRef Khan H, Marcuse L, Fields M, Swann K, Yener B. Focal onset seizure prediction using convolutional networks. IEEE Trans Biomed Eng. 2018;65(9):2109–18.PubMedCrossRef
77.
go back to reference Yousefi S, Amrollahi F, Amgad M, et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7(1):11707.PubMedPubMedCentralCrossRef Yousefi S, Amrollahi F, Amgad M, et al. Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models. Sci Rep. 2017;7(1):11707.PubMedPubMedCentralCrossRef
78.
go back to reference Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet. 2019;51(6):973–80.PubMedPubMedCentralCrossRef Zhou J, Park CY, Theesfeld CL, et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat Genet. 2019;51(6):973–80.PubMedPubMedCentralCrossRef
79.
go back to reference Buda M, Saha A, Mazurowski MA. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med. 2019;109:218–25.PubMedCrossRef Buda M, Saha A, Mazurowski MA. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med. 2019;109:218–25.PubMedCrossRef
80.
go back to reference Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA. 2018;115(13):E2970–9.PubMedPubMedCentralCrossRef Mobadersany P, Yousefi S, Amgad M, et al. Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Natl Acad Sci USA. 2018;115(13):E2970–9.PubMedPubMedCentralCrossRef
81.
go back to reference Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.PubMedPubMedCentralCrossRef Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study. PLoS Med. 2018;15(11):e1002683.PubMedPubMedCentralCrossRef
83.
go back to reference Obermeyer Z, Mullainathan S. Dissecting racial bias in an algorithm that guides health decisions for 70 million people. In: Proceedings of conference on fairness, accountability, and transparency. New York: ACM; 2019. p. 89.CrossRef Obermeyer Z, Mullainathan S. Dissecting racial bias in an algorithm that guides health decisions for 70 million people. In: Proceedings of conference on fairness, accountability, and transparency. New York: ACM; 2019. p. 89.CrossRef
Metadata
Title
Deep Learning and Neurology: A Systematic Review
Authors
Aly Al-Amyn Valliani
Daniel Ranti
Eric Karl Oermann
Publication date
01-12-2019
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue 2/2019
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-019-00153-8

Other articles of this Issue 2/2019

Neurology and Therapy 2/2019 Go to the issue