Skip to main content
Top
Published in: Neurology and Therapy 1/2017

Open Access 01-07-2017 | Review

A Review of Biomarkers for Neurodegenerative Disease: Will They Swing Us Across the Valley?

Author: Thomas G. Beach

Published in: Neurology and Therapy | Special Issue 1/2017

Login to get access

Abstract

Measures of the severity of cognitive impairment or parkinsonism are the usual endpoints in clinical trials for Alzheimer’s disease (AD) and Parkinson’s disease (PD), but are critically hampered by their lack of disease sensitivity and specificity. Due to the high failure rate of clinical trials, the rate of regulatory approval for efficacious new drugs has stagnated in the past few decades, with the gap between basic science discovery and clinical application metaphorically termed the “Valley of Death”. While the causes for this are probably multiple and complex, the usage of biomarkers as surrogate endpoints, particularly when they are molecularly-specific for the disease, has achieved some success in cancer trials, and it is likely that neurodegenerative disease trials would benefit from the same approach. As dementia and parkinsonism are not disease-specific clinical syndromes, both AD and PD trials have been flawed by reliance on clinical diagnosis and clinical endpoints. Clinical improvement has been a requirement for regulatory approval, but molecularly-specific biomarkers should improve both diagnostic accuracy and tracking of disease progression, allowing quicker screening of drug candidates. However, even when a molecularly-specific biomarker is found, such as amyloid imaging for AD, it may not reflect the entire extant molecular disease repertoire and may not serve equally well in the different roles of preclinical detection, diagnostic confirmation and surrogate endpoint, necessitating the usage of two, three or more biomarkers, deployed in series or in parallel.
Literature
2.
go back to reference McGeer PL, Eccles JC, McGeer EG. Catecholamine neurons. In: Molecular neurobiology of the mammalian brain. 1987; p. 265–8. McGeer PL, Eccles JC, McGeer EG. Catecholamine neurons. In: Molecular neurobiology of the mammalian brain. 1987; p. 265–8.
3.
go back to reference Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.CrossRefPubMed Davies P, Maloney AJ. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.CrossRefPubMed
4.
go back to reference White P, Hiley CR, Goodhardt MJ, et al. Neocortical cholinergic neurons in elderly people. Lancet. 1977;1:668–71.CrossRefPubMed White P, Hiley CR, Goodhardt MJ, et al. Neocortical cholinergic neurons in elderly people. Lancet. 1977;1:668–71.CrossRefPubMed
5.
go back to reference Perry EK, Tomlinson BE, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978;2:1457–9.CrossRefPubMedPubMedCentral Perry EK, Tomlinson BE, Blessed G, et al. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br Med J. 1978;2:1457–9.CrossRefPubMedPubMedCentral
6.
go back to reference Olney JW. The toxic effects of glutamate and related compounds in the retina and the brain. Retina. 1982;2:341–59.CrossRefPubMed Olney JW. The toxic effects of glutamate and related compounds in the retina and the brain. Retina. 1982;2:341–59.CrossRefPubMed
7.
go back to reference Hornykiewicz O. Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord. 2002;17:501–8.CrossRefPubMed Hornykiewicz O. Dopamine miracle: from brain homogenate to dopamine replacement. Mov Disord. 2002;17:501–8.CrossRefPubMed
8.
go back to reference LoRusso PM, Schnipper LE, Stewart DJ, et al. Translating clinical trials into meaningful outcomes. Clin Cancer Res. 2010;16:5951–5.CrossRefPubMed LoRusso PM, Schnipper LE, Stewart DJ, et al. Translating clinical trials into meaningful outcomes. Clin Cancer Res. 2010;16:5951–5.CrossRefPubMed
9.
go back to reference Booth CM. Evaluating patient-centered outcomes in the randomized controlled trial and beyond: informing the future with lessons from the past. Clin Cancer Res. 2010;16:5963–71.CrossRefPubMed Booth CM. Evaluating patient-centered outcomes in the randomized controlled trial and beyond: informing the future with lessons from the past. Clin Cancer Res. 2010;16:5963–71.CrossRefPubMed
10.
go back to reference Stewart DJ, Whitney SN, Kurzrock R. Equipoise lost: ethics, costs, and the regulation of cancer clinical research. J Clin Oncol. 2010;28:2925–35.CrossRefPubMed Stewart DJ, Whitney SN, Kurzrock R. Equipoise lost: ethics, costs, and the regulation of cancer clinical research. J Clin Oncol. 2010;28:2925–35.CrossRefPubMed
11.
go back to reference Beach TG. Alzheimer’s disease and the “Valley of Death”: not enough guidance from human brain tissue? J Alzheimers Dis. 2013;33(Suppl 1):S219–33.PubMed Beach TG. Alzheimer’s disease and the “Valley of Death”: not enough guidance from human brain tissue? J Alzheimers Dis. 2013;33(Suppl 1):S219–33.PubMed
12.
go back to reference Duyckaerts C, Hauw JJ. Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging. 1997;18:362–9.CrossRefPubMed Duyckaerts C, Hauw JJ. Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging. 1997;18:362–9.CrossRefPubMed
13.
go back to reference Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18:351–7.CrossRefPubMed Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18:351–7.CrossRefPubMed
14.
go back to reference Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology. 2004;62:925–31.CrossRefPubMed Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology. 2004;62:925–31.CrossRefPubMed
15.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9:119–28.CrossRefPubMedPubMedCentral
16.
go back to reference Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedPubMedCentral Jack CR Jr, Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.CrossRefPubMedPubMedCentral
17.
go back to reference Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.CrossRefPubMedPubMedCentral
18.
go back to reference McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.CrossRefPubMedPubMedCentral
19.
go back to reference Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.CrossRefPubMedPubMedCentral Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:280–92.CrossRefPubMedPubMedCentral
20.
go back to reference Paone JF, Waalkes TP, Baker RR, et al. Serum UDP-galactosyl transferase as a potential biomarker for breast carcinoma. J Surg Oncol. 1980;15:59–66.CrossRefPubMed Paone JF, Waalkes TP, Baker RR, et al. Serum UDP-galactosyl transferase as a potential biomarker for breast carcinoma. J Surg Oncol. 1980;15:59–66.CrossRefPubMed
21.
go back to reference Ellenberg S, Hamilton JM. Surrogate endpoints in clinical trials: cancer. Stat Med. 1989;8:405–13.CrossRefPubMed Ellenberg S, Hamilton JM. Surrogate endpoints in clinical trials: cancer. Stat Med. 1989;8:405–13.CrossRefPubMed
22.
go back to reference Wittes J, Lakatos E, Probstfield J. Surrogate endpoints in clinical trials: cardiovascular diseases. Stat Med. 1989;8:415–25.CrossRefPubMed Wittes J, Lakatos E, Probstfield J. Surrogate endpoints in clinical trials: cardiovascular diseases. Stat Med. 1989;8:415–25.CrossRefPubMed
24.
go back to reference Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.
26.
go back to reference Sabbagh MN, Shah F, Reid RT, et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol. 2006;63:1771–6.CrossRefPubMed Sabbagh MN, Shah F, Reid RT, et al. Pathologic and nicotinic receptor binding differences between mild cognitive impairment, Alzheimer disease, and normal aging. Arch Neurol. 2006;63:1771–6.CrossRefPubMed
27.
go back to reference Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83:406–12.CrossRefPubMedPubMedCentral Adler CH, Beach TG, Hentz JG, et al. Low clinical diagnostic accuracy of early vs advanced Parkinson disease: clinicopathologic study. Neurology. 2014;83:406–12.CrossRefPubMedPubMedCentral
28.
go back to reference Beach TG, Monsell SE, Phillips LE, et al. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol. 2012;71:266–73.CrossRefPubMedPubMedCentral Beach TG, Monsell SE, Phillips LE, et al. Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. J Neuropathol Exp Neurol. 2012;71:266–73.CrossRefPubMedPubMedCentral
29.
go back to reference Dugger BN, Davis K, Malek-Ahmadi M, et al. Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment. BMC Neurol. 2015;15:146.CrossRefPubMedPubMedCentral Dugger BN, Davis K, Malek-Ahmadi M, et al. Neuropathological comparisons of amnestic and nonamnestic mild cognitive impairment. BMC Neurol. 2015;15:146.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Beach TG, Schneider JA, Sue LI, et al. Theoretical impact of Florbetapir (18F) amyloid imaging on diagnosis of alzheimer dementia and detection of preclinical cortical amyloid. J Neuropathol Exp Neurol. 2014;73:948–53.CrossRefPubMedPubMedCentral Beach TG, Schneider JA, Sue LI, et al. Theoretical impact of Florbetapir (18F) amyloid imaging on diagnosis of alzheimer dementia and detection of preclinical cortical amyloid. J Neuropathol Exp Neurol. 2014;73:948–53.CrossRefPubMedPubMedCentral
32.
go back to reference Beach TG, Adler CH, Sue LI, et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 2015;35:354–89.CrossRefPubMedPubMedCentral Beach TG, Adler CH, Sue LI, et al. Arizona study of aging and neurodegenerative disorders and brain and body donation program. Neuropathology. 2015;35:354–89.CrossRefPubMedPubMedCentral
33.
go back to reference Boyle PA, Wilson RS, Yu L, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol. 2013;74:478–89.CrossRefPubMed Boyle PA, Wilson RS, Yu L, et al. Much of late life cognitive decline is not due to common neurodegenerative pathologies. Ann Neurol. 2013;74:478–89.CrossRefPubMed
34.
go back to reference Villemagne VL, Dore V, Bourgeat P, et al. Abeta-amyloid and Tau imaging in dementia. Semin Nucl Med. 2017;47:75–88.CrossRefPubMed Villemagne VL, Dore V, Bourgeat P, et al. Abeta-amyloid and Tau imaging in dementia. Semin Nucl Med. 2017;47:75–88.CrossRefPubMed
35.
36.
go back to reference Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral Jack CR Jr, Bennett DA, Blennow K, et al. A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology. 2016;87:539–47.CrossRefPubMedPubMedCentral
37.
go back to reference Hoglund K, Kern S, Zettergren A, et al. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry. 2017;7:e995.CrossRefPubMed Hoglund K, Kern S, Zettergren A, et al. Preclinical amyloid pathology biomarker positivity: effects on tau pathology and neurodegeneration. Transl Psychiatry. 2017;7:e995.CrossRefPubMed
38.
go back to reference Blennow K, Mattsson N, Scholl M, et al. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.CrossRefPubMed Blennow K, Mattsson N, Scholl M, et al. Amyloid biomarkers in Alzheimer’s disease. Trends Pharmacol Sci. 2015;36:297–309.CrossRefPubMed
39.
go back to reference Lewczuk P, Matzen A, Blennow K, et al. Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis. 2017;55:813–22.CrossRefPubMed Lewczuk P, Matzen A, Blennow K, et al. Cerebrospinal fluid Abeta42/40 corresponds better than Abeta42 to amyloid PET in Alzheimer’s disease. J Alzheimers Dis. 2017;55:813–22.CrossRefPubMed
40.
go back to reference Morris E, Chalkidou A, Hammers A, et al. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:374–85.CrossRefPubMed Morris E, Chalkidou A, Hammers A, et al. Diagnostic accuracy of (18)F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43:374–85.CrossRefPubMed
41.
go back to reference Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed Clark CM, Pontecorvo MJ, Beach TG, et al. Cerebral PET with florbetapir compared with neuropathology at autopsy for detection of neuritic amyloid-beta plaques: a prospective cohort study. Lancet Neurol. 2012;11:669–78.CrossRefPubMed
42.
go back to reference Curtis C, Gamez JE, Singh U, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.CrossRefPubMed Curtis C, Gamez JE, Singh U, et al. Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol. 2015;72:287–94.CrossRefPubMed
43.
go back to reference Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRefPubMed Sabri O, Sabbagh MN, Seibyl J, et al. Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer’s disease: phase 3 study. Alzheimers Dement. 2015;11:964–74.CrossRefPubMed
44.
go back to reference Boccardi M, Altomare D, Ferrari C, et al. Assessment of the incremental diagnostic value of florbetapir F 18 imaging in patients with cognitive impairment: the incremental diagnostic value of amyloid PET with [18F]-florbetapir (INDIA-FBP) study. JAMA Neurol. 2016;73:1417–24.CrossRefPubMed Boccardi M, Altomare D, Ferrari C, et al. Assessment of the incremental diagnostic value of florbetapir F 18 imaging in patients with cognitive impairment: the incremental diagnostic value of amyloid PET with [18F]-florbetapir (INDIA-FBP) study. JAMA Neurol. 2016;73:1417–24.CrossRefPubMed
45.
go back to reference Thal DR, Beach TG, Zanette M, et al. [F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer’s disease: Specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11:975–85.CrossRefPubMed Thal DR, Beach TG, Zanette M, et al. [F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer’s disease: Specific detection of advanced phases of amyloid-beta pathology. Alzheimers Dement. 2015;11:975–85.CrossRefPubMed
46.
go back to reference Beach TG, Thal DR, Zanette M, et al. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52:863–73.CrossRefPubMed Beach TG, Thal DR, Zanette M, et al. Detection of striatal amyloid plaques with [18F]flutemetamol: validation with postmortem histopathology. J Alzheimers Dis. 2016;52:863–73.CrossRefPubMed
47.
go back to reference Thal DR, Rub U, Orantes M, et al. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.CrossRefPubMed Thal DR, Rub U, Orantes M, et al. Phases of a beta-deposition in the human brain and its relevance for the development of AD. Neurology. 2002;58:1791–800.CrossRefPubMed
48.
go back to reference Delrieu J, Ousset PJ, Voisin T, et al. Amyloid beta peptide immunotherapy in Alzheimer disease. Rev Neurol (Paris). 2014;170:739–48.CrossRef Delrieu J, Ousset PJ, Voisin T, et al. Amyloid beta peptide immunotherapy in Alzheimer disease. Rev Neurol (Paris). 2014;170:739–48.CrossRef
49.
go back to reference Rygiel K. Novel strategies for Alzheimer’s disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol. 2016;48:629–36.CrossRefPubMedPubMedCentral Rygiel K. Novel strategies for Alzheimer’s disease treatment: an overview of anti-amyloid beta monoclonal antibodies. Indian J Pharmacol. 2016;48:629–36.CrossRefPubMedPubMedCentral
50.
go back to reference Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6.CrossRefPubMed Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016;537:50–6.CrossRefPubMed
51.
go back to reference Schwarz AJ, Yu P, Miller BB, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–50.CrossRefPubMed Schwarz AJ, Yu P, Miller BB, et al. Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages. Brain. 2016;139:1539–50.CrossRefPubMed
53.
go back to reference Wang L, Benzinger TL, Su Y, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and tauopathy. JAMA Neurol. 2016;73:1070–7.CrossRefPubMed Wang L, Benzinger TL, Su Y, et al. Evaluation of tau imaging in staging Alzheimer disease and revealing interactions between beta-amyloid and tauopathy. JAMA Neurol. 2016;73:1070–7.CrossRefPubMed
54.
go back to reference Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.CrossRef Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl). 1991;82:239–59.CrossRef
55.
go back to reference Nelson PT, Abner EL, Schmitt FA, et al. Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol. 2010;20:66–79.CrossRefPubMed Nelson PT, Abner EL, Schmitt FA, et al. Modeling the association between 43 different clinical and pathological variables and the severity of cognitive impairment in a large autopsy cohort of elderly persons. Brain Pathol. 2010;20:66–79.CrossRefPubMed
56.
go back to reference Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.CrossRefPubMedPubMedCentral Nelson PT, Alafuzoff I, Bigio EH, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.CrossRefPubMedPubMedCentral
57.
go back to reference Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.CrossRefPubMedPubMedCentral Marquie M, Normandin MD, Vanderburg CR, et al. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol. 2015;78:787–800.CrossRefPubMedPubMedCentral
59.
go back to reference Marquie M, Normandin MD, Meltzer AC, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol. 2017;81:117–28.CrossRefPubMed Marquie M, Normandin MD, Meltzer AC, et al. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies. Ann Neurol. 2017;81:117–28.CrossRefPubMed
60.
go back to reference Chiu MJ, Yang SY, Chen TF, et al. New assay for old markers-plasma beta amyloid of mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res. 2012;9:1142–8.CrossRefPubMed Chiu MJ, Yang SY, Chen TF, et al. New assay for old markers-plasma beta amyloid of mild cognitive impairment and Alzheimer’s disease. Curr Alzheimer Res. 2012;9:1142–8.CrossRefPubMed
61.
go back to reference Yang CC, Yang SY, Chieh JJ, et al. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci. 2011;2:500–5.CrossRefPubMedPubMedCentral Yang CC, Yang SY, Chieh JJ, et al. Biofunctionalized magnetic nanoparticles for specifically detecting biomarkers of Alzheimer’s disease in vitro. ACS Chem Neurosci. 2011;2:500–5.CrossRefPubMedPubMedCentral
62.
go back to reference Fairfoul G, McGuire LI, Pal S, et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol. 2016;3:812–8.CrossRefPubMedPubMedCentral Fairfoul G, McGuire LI, Pal S, et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann Clin Transl Neurol. 2016;3:812–8.CrossRefPubMedPubMedCentral
63.
go back to reference Furman JL, Diamond MI. FRET and flow cytometry assays to measure proteopathic seeding activity in biological samples. Methods Mol Biol. 2017;1523:349–59.CrossRefPubMed Furman JL, Diamond MI. FRET and flow cytometry assays to measure proteopathic seeding activity in biological samples. Methods Mol Biol. 2017;1523:349–59.CrossRefPubMed
64.
go back to reference Saijo E, Ghetti B, Zanusso G, et al. Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017;133:751–65.CrossRefPubMed Saijo E, Ghetti B, Zanusso G, et al. Ultrasensitive and selective detection of 3-repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017;133:751–65.CrossRefPubMed
65.
go back to reference Catafau AM, Bullich S. Non-amyloid PET imaging biomarkers for neurodegeneration: focus on tau, alpha-synuclein and neuroinflammation. Curr Alzheimer Res. 2017;14:169–77.CrossRefPubMed Catafau AM, Bullich S. Non-amyloid PET imaging biomarkers for neurodegeneration: focus on tau, alpha-synuclein and neuroinflammation. Curr Alzheimer Res. 2017;14:169–77.CrossRefPubMed
66.
go back to reference Mollenhauer B, Parnetti L, Rektorova I, et al. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson’s disease and related disorders. J Neurochem. 2016;139(Suppl 1):290–317.CrossRefPubMed Mollenhauer B, Parnetti L, Rektorova I, et al. Biological confounders for the values of cerebrospinal fluid proteins in Parkinson’s disease and related disorders. J Neurochem. 2016;139(Suppl 1):290–317.CrossRefPubMed
67.
go back to reference Parnetti L, Cicognola C, Eusebi P, et al. Value of cerebrospinal fluid alpha-synuclein species as biomarker in Parkinson’s diagnosis and prognosis. Biomark Med. 2016;10:35–49.CrossRefPubMed Parnetti L, Cicognola C, Eusebi P, et al. Value of cerebrospinal fluid alpha-synuclein species as biomarker in Parkinson’s diagnosis and prognosis. Biomark Med. 2016;10:35–49.CrossRefPubMed
68.
go back to reference Beach TG, Corbille AG, Letournel F, et al. Multicenter assessment of immunohistochemical methods for pathological alpha-synuclein in autopsied sigmoid colon of Parkinson’s disease and control subjects. J Parkinson’s Dis. 2016;6:761–70.CrossRef Beach TG, Corbille AG, Letournel F, et al. Multicenter assessment of immunohistochemical methods for pathological alpha-synuclein in autopsied sigmoid colon of Parkinson’s disease and control subjects. J Parkinson’s Dis. 2016;6:761–70.CrossRef
69.
go back to reference Corbille AG, Letournel F, Kordower JH, et al. Evaluation of alpha-synuclein immunohistochemical methods for the detection of Lewy-type synucleinopathy in gastrointestinal biopsies. Acta Neuropathol Commun. 2016;4:35.CrossRefPubMedPubMedCentral Corbille AG, Letournel F, Kordower JH, et al. Evaluation of alpha-synuclein immunohistochemical methods for the detection of Lewy-type synucleinopathy in gastrointestinal biopsies. Acta Neuropathol Commun. 2016;4:35.CrossRefPubMedPubMedCentral
70.
go back to reference Lee JM, Derkinderen P, Kordower JH, et al. The search for a peripheral biopsy indicator of alpha-synuclein pathology for Parkinson disease. J Neuropathol Exp Neurol. 2017;76:2–15. Lee JM, Derkinderen P, Kordower JH, et al. The search for a peripheral biopsy indicator of alpha-synuclein pathology for Parkinson disease. J Neuropathol Exp Neurol. 2017;76:2–15.
71.
go back to reference Visanji NP, Mollenhauer B, Beach TG, et al. The systemic synuclein sampling study: toward a biomarker for Parkinson’s disease. Biomark Med. 2017;11:359–68.CrossRefPubMed Visanji NP, Mollenhauer B, Beach TG, et al. The systemic synuclein sampling study: toward a biomarker for Parkinson’s disease. Biomark Med. 2017;11:359–68.CrossRefPubMed
72.
go back to reference Reiman EM, Langbaum JB, Fleisher AS, et al. Alzheimer’s prevention initiative: a plan to accelerate the evaluation of presymptomatic treatments. J Alzheimers Dis. 2011;26(Suppl 3):321–9.PubMedPubMedCentral Reiman EM, Langbaum JB, Fleisher AS, et al. Alzheimer’s prevention initiative: a plan to accelerate the evaluation of presymptomatic treatments. J Alzheimers Dis. 2011;26(Suppl 3):321–9.PubMedPubMedCentral
73.
go back to reference Kouri N, Ross OA, Dombroski B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun. 2015;6:7247.CrossRefPubMedPubMedCentral Kouri N, Ross OA, Dombroski B, et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat Commun. 2015;6:7247.CrossRefPubMedPubMedCentral
74.
go back to reference Beecham GW, Dickson DW, Scott WK, et al. PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology. 2015;84:972–80.CrossRefPubMedPubMedCentral Beecham GW, Dickson DW, Scott WK, et al. PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology. 2015;84:972–80.CrossRefPubMedPubMedCentral
75.
go back to reference Jellinger KA, Attems J. Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm. 2015;122:505–21. Jellinger KA, Attems J. Challenges of multimorbidity of the aging brain: a critical update. J Neural Transm. 2015;122:505–21.
76.
go back to reference Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–44.CrossRefPubMed Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–44.CrossRefPubMed
77.
go back to reference Negash S, Bennett DA, Wilson RS, et al. Cognition and neuropathology in aging: multidimensional perspectives from the rush religious orders study and rush memory and aging project. Curr Alzheimer Res. 2011;8:336–40.CrossRefPubMedPubMedCentral Negash S, Bennett DA, Wilson RS, et al. Cognition and neuropathology in aging: multidimensional perspectives from the rush religious orders study and rush memory and aging project. Curr Alzheimer Res. 2011;8:336–40.CrossRefPubMedPubMedCentral
78.
go back to reference Schneider JA, Arvanitakis Z, Bang W, et al. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69:2197–204.CrossRefPubMed Schneider JA, Arvanitakis Z, Bang W, et al. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology. 2007;69:2197–204.CrossRefPubMed
79.
go back to reference Dugger BN, Clark CM, Serrano G, et al. Neuropathologic heterogeneity does not impair florbetapir-positron emission tomography postmortem correlates. J Neuropathol Exp Neurol. 2014;73:72–80.CrossRefPubMedPubMedCentral Dugger BN, Clark CM, Serrano G, et al. Neuropathologic heterogeneity does not impair florbetapir-positron emission tomography postmortem correlates. J Neuropathol Exp Neurol. 2014;73:72–80.CrossRefPubMedPubMedCentral
80.
go back to reference Serrano GE, Sabbagh MN, Sue LI, et al. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. 2014;42:813–21.PubMedPubMedCentral Serrano GE, Sabbagh MN, Sue LI, et al. Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions. J Alzheimers Dis. 2014;42:813–21.PubMedPubMedCentral
Metadata
Title
A Review of Biomarkers for Neurodegenerative Disease: Will They Swing Us Across the Valley?
Author
Thomas G. Beach
Publication date
01-07-2017
Publisher
Springer Healthcare
Published in
Neurology and Therapy / Issue Special Issue 1/2017
Print ISSN: 2193-8253
Electronic ISSN: 2193-6536
DOI
https://doi.org/10.1007/s40120-017-0072-x

Other articles of this Special Issue 1/2017

Neurology and Therapy 1/2017 Go to the issue