Skip to main content
Top
Published in: Journal of Cachexia, Sarcopenia and Muscle 1/2012

Open Access 01-03-2012 | Original Article

Age- and gender-dependent values of skeletal muscle mass in healthy children and adolescents

Authors: Colin E. Webber, Ronald D. Barr

Published in: Journal of Cachexia, Sarcopenia and Muscle | Issue 1/2012

Login to get access

Abstract

Background

Skeletal muscle mass (SMM) can be extracted from whole-body scans obtained by X-ray-based dual-photon absorptiometry (DXA). There is a need to establish expected age-dependent values for children and adolescents.

Methods

Appendicular lean tissue mass (ALM) was extracted from whole-body DXA scans in 140 healthy children and adolescents (68 females and 72 males). Whole-body SMM was calculated from ALM using equations developed by Kim et al. (Am J Clin Nutr 84:1014–1020, 2006). Age-dependent patterns of increase in SMM were derived by fitting SMM values to equations that consisted of the sum of two logistic expressions, one accounting for SMM changes during growth and the other for SMM changes during puberty. Normal ranges were defined so that 95% of the SMM values were included. The reproducibility of SMM measurements was obtained from whole-body DXA scans repeated on three occasions in each of a separate group of 32 normal children with repositioning between scans.

Results

Normal ranges are presented as equations describing the age-dependent pattern of increase in SMM as well as population standard deviations that increased steadily with age. For 15 children below age 10, SMM reproducibility (95% CI) was 149 g (119–199 g) while for 17 children and adolescents over age 10, reproducibility was 170 g (138–223 g).

Conclusion

DXA-based measurements of SMM in children and adolescents are reproducible and can be expressed in terms of age-dependent Z scores.
Literature
1.
go back to reference Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52:214–8.PubMed Heymsfield SB, Smith R, Aulet M, Bensen B, Lichtman S, Wang J, et al. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52:214–8.PubMed
2.
go back to reference Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr. 2002;76:378–83.PubMed Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D. Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr. 2002;76:378–83.PubMed
3.
go back to reference Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, et al. Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol. 2004;97:655–60.PubMedCrossRef Kim J, Heshka S, Gallagher D, Kotler DP, Mayer L, Albu J, et al. Intermuscular adipose tissue-free skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in adults. J Appl Physiol. 2004;97:655–60.PubMedCrossRef
4.
go back to reference Kim J, Shen W, Gallagher D, Jones A, Wang Z, Wang J, et al. Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents. Am J Clin Nutr. 2006;84:1014–20.PubMed Kim J, Shen W, Gallagher D, Jones A, Wang Z, Wang J, et al. Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents. Am J Clin Nutr. 2006;84:1014–20.PubMed
5.
go back to reference Sala A, Webber CE, Morrison J, Beaumont LF, Barr RD. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy X-ray absorptiometry in a population of normal Canadian children and adolescents. Can Assoc Radiol J. 2007;58:46–52.PubMed Sala A, Webber CE, Morrison J, Beaumont LF, Barr RD. Whole-body bone mineral content, lean body mass, and fat mass measured by dual-energy X-ray absorptiometry in a population of normal Canadian children and adolescents. Can Assoc Radiol J. 2007;58:46–52.PubMed
6.
go back to reference Sun SS, Schubert CM, Chumlea WC, Roche AF, Kulin HE, Lee PA, et al. National estimates of the timing of sexual maturation and racial differences among US children. Pediatrics. 2002;110:911–9.PubMedCrossRef Sun SS, Schubert CM, Chumlea WC, Roche AF, Kulin HE, Lee PA, et al. National estimates of the timing of sexual maturation and racial differences among US children. Pediatrics. 2002;110:911–9.PubMedCrossRef
7.
go back to reference Leonard CM, Roza MA, Barr RD, Webber CE. Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatr Radiol. 2008;39:148–54.PubMedCrossRef Leonard CM, Roza MA, Barr RD, Webber CE. Reproducibility of DXA measurements of bone mineral density and body composition in children. Pediatr Radiol. 2008;39:148–54.PubMedCrossRef
8.
go back to reference Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteop Inter. 1995;5:262–70.CrossRef Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteop Inter. 1995;5:262–70.CrossRef
9.
go back to reference Poortmans JR, Boisseau N, Moraine J-J, Moreno-Reyes R, Goldman S. Estimation of total-body skeletal muscle mass in children and adolescents. Med Sci Sports Exer. 2005;37:316–22.CrossRef Poortmans JR, Boisseau N, Moraine J-J, Moreno-Reyes R, Goldman S. Estimation of total-body skeletal muscle mass in children and adolescents. Med Sci Sports Exer. 2005;37:316–22.CrossRef
10.
go back to reference Wang Z, Heshka S, Pietrobelli A, Chen Z, Silva AM, Sardinha LB, et al. A new total body potassium method to estimate total body skeletal muscle mass in children. J Nutr. 2007;137:1988–91.PubMed Wang Z, Heshka S, Pietrobelli A, Chen Z, Silva AM, Sardinha LB, et al. A new total body potassium method to estimate total body skeletal muscle mass in children. J Nutr. 2007;137:1988–91.PubMed
11.
go back to reference Wang Z, Zhu S, Wang J, Pierson RN, Heymsfield SB. Whole-body skeletal muscle mass: validation of estimates by total-body potassium—cellular level model. Am J Clin Nutr. 2003;77:76–82.PubMed Wang Z, Zhu S, Wang J, Pierson RN, Heymsfield SB. Whole-body skeletal muscle mass: validation of estimates by total-body potassium—cellular level model. Am J Clin Nutr. 2003;77:76–82.PubMed
12.
go back to reference Von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopemia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8.CrossRef Von Haehling S, Morley JE, Coats AJS, Anker SD. Ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopemia and Muscle. J Cachexia Sarcopenia Muscle. 2010;1:7–8.CrossRef
Metadata
Title
Age- and gender-dependent values of skeletal muscle mass in healthy children and adolescents
Authors
Colin E. Webber
Ronald D. Barr
Publication date
01-03-2012
Publisher
Springer-Verlag
Published in
Journal of Cachexia, Sarcopenia and Muscle / Issue 1/2012
Print ISSN: 2190-5991
Electronic ISSN: 2190-6009
DOI
https://doi.org/10.1007/s13539-011-0042-6

Other articles of this Issue 1/2012

Journal of Cachexia, Sarcopenia and Muscle 1/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.