Skip to main content
Top
Published in: Cellular Oncology 6/2020

Open Access 01-12-2020 | Voraxapar | Original paper

Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation

Authors: Cansu Tekin, Hella L Aberson, Cynthia Waasdorp, Gerrit K J Hooijer, Onno J de Boer, Frederike Dijk, Maarten F Bijlsma, C Arnold Spek

Published in: Cellular Oncology | Issue 6/2020

Login to get access

Abstract

Purpose

Targeting tumor-infiltrating macrophages limits progression and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma (PDAC). Protease-activated receptor (PAR)1 drives monocyte/macrophage recruitment, and stromal ablation of PAR1 limits cancer growth and enhances gemcitabine sensitivity in experimental PDAC. However, the functional interplay between PAR1, macrophages and tumor cells remains unexplored. Here we address the PAR1-macrophage-tumor cell crosstalk and assess its contributions to tumor progression.

Methods

PAR1 expression and macrophage infiltration were correlated in primary PDAC biopsies using gene expression datasets and tissue microarrays. Medium transfer experiments were used to evaluate the functional consequences of macrophage-tumor cell crosstalk and to assess the contribution of PAR1 to the observed responses. PAR1 cleavage assays were used to identify a macrophage-secreted PAR1 agonist, and the effects of candidate proteases were assessed in medium transfer experiments with specific inhibitors and/or recombinant agonist.

Results

PAR1 expression correlates with macrophage infiltration in primary PDACs, and macrophages induce mesenchymal transition of PDAC cells through PAR1 activation. Protease profiling identified macrophage-secreted matrix metalloprotease 9 (MMP9) as the relevant PAR1 agonist in PDAC. PAR1 and/or MMP9 inhibition limited macrophage-driven mesenchymal transition. Likewise, preventing mesenchymal transition by silencing ZEB1 or by pharmacological inhibition of the MMP9/PAR1 axis significantly reduced the ability of tumor cells to survive the anti-tumor activities of macrophages.

Conclusion

Macrophages secrete MMP9, which acts upon PDAC cell PAR1 to induce mesenchymal transition. This macrophage-induced mesenchymal transition supports the tumor-promoting role of macrophage influx, explaining the dichotomous contributions of these immune cells to tumor growth.
Appendix
Available only for authorised users
Literature
1.
go back to reference D. Li, K. Xie, R. Wolff, J.L. Abbruzzese, Pancreatic cancer. Lancet 363, 1049–1057 (2004)PubMed D. Li, K. Xie, R. Wolff, J.L. Abbruzzese, Pancreatic cancer. Lancet 363, 1049–1057 (2004)PubMed
2.
go back to reference R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)PubMed R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2019. CA Cancer J. Clin. 69, 7–34 (2019)PubMed
3.
go back to reference H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed H.A. Burris 3rd, M.J. Moore, J. Andersen, M.R. Green, M.L. Rothenberg, M.R. Modiano, M.C. Cripps, R.K. Portenoy, A.M. Storniolo, P. Tarassoff, R. Nelson, F.A. Dorr, C.D. Stephens, D.D. Von Hoff, Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. J. Clin. Oncol. 15, 2403–2413 (1997)PubMed
4.
go back to reference T. Conroy, F. Desseigne, M. Ychou, O. Bouché, R. Guimbaud, Y. Bécouarn, A. Adenis, J.L. Raoul, S. Gourgou-Bourgade, C. de la Fouchardière, J. Bennouna, J.B. Bachet, F. Khemissa-Akouz, D. Péré-Vergé, C. Delbaldo, E. Assenat, B. Chauffert, P. Michel, C. Montoto-Grillot, M. Ducreux, Groupe Tumeurs digestives of Unicancer, and PRODIGE intergroup, FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl. J. Med. 364, 1817–1825 (2011) T. Conroy, F. Desseigne, M. Ychou, O. Bouché, R. Guimbaud, Y. Bécouarn, A. Adenis, J.L. Raoul, S. Gourgou-Bourgade, C. de la Fouchardière, J. Bennouna, J.B. Bachet, F. Khemissa-Akouz, D. Péré-Vergé, C. Delbaldo, E. Assenat, B. Chauffert, P. Michel, C. Montoto-Grillot, M. Ducreux, Groupe Tumeurs digestives of Unicancer, and PRODIGE intergroup, FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl. J. Med. 364, 1817–1825 (2011)
5.
go back to reference D.D. Von Hoff, T. Ervin, F.P. Arena, E.G. Chiorean, J. Infante, M. Moore, T. Seay, S.A. Tjulandin, W.W. Ma, M.N. Saleh, M. Harris, M. Reni, S. Dowden, D. Laheru, N. Bahary, R.K. Ramanathan, J. Tabernero, M. Hidalgo, D. Goldstein, E. Van Cutsem, X. Wei, J. Iglesias, M.F. Renschler, Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New Engl. J. Med. 369, 1691–1703 (2013) D.D. Von Hoff, T. Ervin, F.P. Arena, E.G. Chiorean, J. Infante, M. Moore, T. Seay, S.A. Tjulandin, W.W. Ma, M.N. Saleh, M. Harris, M. Reni, S. Dowden, D. Laheru, N. Bahary, R.K. Ramanathan, J. Tabernero, M. Hidalgo, D. Goldstein, E. Van Cutsem, X. Wei, J. Iglesias, M.F. Renschler, Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. New Engl. J. Med. 369, 1691–1703 (2013)
6.
go back to reference C. Porta, E. Riboldi, M.G. Totaro, L. Strauss, A. Sica, A. Mantovani, Macrophages in cancer and infectious diseases: The ‘good’ and the ‘bad’. Immunotherapy 3, 1185–1202 (2011)PubMed C. Porta, E. Riboldi, M.G. Totaro, L. Strauss, A. Sica, A. Mantovani, Macrophages in cancer and infectious diseases: The ‘good’ and the ‘bad’. Immunotherapy 3, 1185–1202 (2011)PubMed
7.
go back to reference M.R. Jadus, M.R.C. Irwin, R.D. Horansky, S. Sekhon, K.A. Pepper, D.B. Kohn, H.T. Wepsic, Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 87, 5232–5241 (1996)PubMed M.R. Jadus, M.R.C. Irwin, R.D. Horansky, S. Sekhon, K.A. Pepper, D.B. Kohn, H.T. Wepsic, Macrophages can recognize and kill tumor cells bearing the membrane isoform of macrophage colony-stimulating factor. Blood 87, 5232–5241 (1996)PubMed
8.
go back to reference K.K. Goswami, T. Ghosh, S. Ghosh, M. Sarkar, A. Bose, R. Baral, Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 316, 1–10 (2017) K.K. Goswami, T. Ghosh, S. Ghosh, M. Sarkar, A. Bose, R. Baral, Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 316, 1–10 (2017)
9.
go back to reference K.Y. Jung, S.W. Cho, Y.A. Kim, D. Kim, B.C. Oh, D.J. Park, Y.J. Park, Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J. Pathol. Transl. Med. 49, 318–324 (2015)PubMedPubMedCentral K.Y. Jung, S.W. Cho, Y.A. Kim, D. Kim, B.C. Oh, D.J. Park, Y.J. Park, Cancers with higher density of tumor-associated macrophages were associated with poor survival rates. J. Pathol. Transl. Med. 49, 318–324 (2015)PubMedPubMedCentral
10.
go back to reference T. Lindsten, A. Hedbrant, A. Ramberg, J. Wijkander, A. Solterbeck, M. Eriksson, D. Delbro, A. Erlandsson, Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int. J. Oncol. 51, 104–114 (2017) T. Lindsten, A. Hedbrant, A. Ramberg, J. Wijkander, A. Solterbeck, M. Eriksson, D. Delbro, A. Erlandsson, Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int. J. Oncol. 51, 104–114 (2017)
11.
go back to reference Q. Zhang, L. Liu, C.Y. Gong, H. Shi, Y. Zeng, X. Wang, Y. Zhao, Y. Wei, Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PLoS One 7, e50946 (2012)PubMedPubMedCentral Q. Zhang, L. Liu, C.Y. Gong, H. Shi, Y. Zeng, X. Wang, Y. Zhao, Y. Wei, Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PLoS One 7, e50946 (2012)PubMedPubMedCentral
12.
go back to reference S. Su, Q. Liu, J. Chen, J. Chen, F. Chen, C. He, D. Huang, W. Wu, L. Lin, W. Huang, J. Zhang, X. Cui, F. Zheng, H. Li, H. Yao, F. Su, E. Song, A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25, 605–620 (2014)PubMed S. Su, Q. Liu, J. Chen, J. Chen, F. Chen, C. He, D. Huang, W. Wu, L. Lin, W. Huang, J. Zhang, X. Cui, F. Zheng, H. Li, H. Yao, F. Su, E. Song, A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25, 605–620 (2014)PubMed
13.
go back to reference Q.M. Fan, Y.Y. Jing, G.F. Yu, X.R. Kou, F. Ye, L. Gao, R. Li, Q.D. Zhao, Y. Yang, Z.H. Lu, L.X. Wei, Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160–168 (2014)PubMed Q.M. Fan, Y.Y. Jing, G.F. Yu, X.R. Kou, F. Ye, L. Gao, R. Li, Q.D. Zhao, Y. Yang, Z.H. Lu, L.X. Wei, Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 352, 160–168 (2014)PubMed
14.
go back to reference C.Y. Liu, J.Y. Xu, X.Y. Shi, W. Huang, T.Y. Ruan, P. Xie, J.L. Ding, M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Investig. 93, 844–854 (2013)PubMed C.Y. Liu, J.Y. Xu, X.Y. Shi, W. Huang, T.Y. Ruan, P. Xie, J.L. Ding, M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway. Lab. Investig. 93, 844–854 (2013)PubMed
15.
go back to reference J.B. Mitchem, D.J. Brennan, B.L. Knolhoff, B.A. Belt, Y. Zhu, D.E. Sanford, L. Belaygorod, D. Carpenter, L. Collins, D. Piwnica-Worms, S. Hewitt, G.M. Udupi, W.M. Gallagher, C. Wegner, B.L. West, A. Wang-Gillam, P. Goedegebuure, D.C. Linehan, D.N. DG, Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013) J.B. Mitchem, D.J. Brennan, B.L. Knolhoff, B.A. Belt, Y. Zhu, D.E. Sanford, L. Belaygorod, D. Carpenter, L. Collins, D. Piwnica-Worms, S. Hewitt, G.M. Udupi, W.M. Gallagher, C. Wegner, B.L. West, A. Wang-Gillam, P. Goedegebuure, D.C. Linehan, D.N. DG, Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013)
16.
go back to reference N. Weizman, Y. Krelin, A. Shabtay-Orbach, M. Amit, Y. Binenbaum, R.J. Wong, Z. Gil, Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33, 3812–3819 (2014)PubMed N. Weizman, Y. Krelin, A. Shabtay-Orbach, M. Amit, Y. Binenbaum, R.J. Wong, Z. Gil, Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase. Oncogene 33, 3812–3819 (2014)PubMed
17.
go back to reference A. Adamska, A. Domenichini, M. Falasca, Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci. 18, 1338 (2017)PubMedCentral A. Adamska, A. Domenichini, M. Falasca, Pancreatic ductal adenocarcinoma: Current and evolving therapies. Int. J. Mol. Sci. 18, 1338 (2017)PubMedCentral
18.
go back to reference A. Boire, L. Covic, A. Agarwal, S. Jacques, S. Sherifi, A. Kuliopulos, PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–303 (2005)PubMed A. Boire, L. Covic, A. Agarwal, S. Jacques, S. Sherifi, A. Kuliopulos, PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120, 303–303 (2005)PubMed
19.
go back to reference J. Cisowski, K. O’Callaghan, A. Kuliopulos, J. Yang, N. Nguyen, Q. Deng, E. Yang, M. Fogel, S. Tressel, C. Foley, A. Agarwal, S.W. Hunt, T. McMurry, L. Brinckerhoff, L. Covic, Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am. J. Pathol. 179, 513–523 (2011)PubMedPubMedCentral J. Cisowski, K. O’Callaghan, A. Kuliopulos, J. Yang, N. Nguyen, Q. Deng, E. Yang, M. Fogel, S. Tressel, C. Foley, A. Agarwal, S.W. Hunt, T. McMurry, L. Brinckerhoff, L. Covic, Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am. J. Pathol. 179, 513–523 (2011)PubMedPubMedCentral
20.
go back to reference S. Grisaru-Granovsky, Z. Salah, M. Maoz, D. Pruss, U. Beller, R. Bar-Shavit, Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int. J. Cancer 113, 372–378 (2005)PubMed S. Grisaru-Granovsky, Z. Salah, M. Maoz, D. Pruss, U. Beller, R. Bar-Shavit, Differential expression of protease activated receptor 1 (Par1) and pY397FAK in benign and malignant human ovarian tissue samples. Int. J. Cancer 113, 372–378 (2005)PubMed
21.
go back to reference L. Zhu, X. Wang, J. Wu, D. Mao, Z. Xu, Z. He, A. Yu, Cooperation of protease-activated receptor 1 and integrin alphanubeta5 in thrombin-mediated lung cancer cell invasion. Oncol. Rep. 28, 553–560 (2012)PubMed L. Zhu, X. Wang, J. Wu, D. Mao, Z. Xu, Z. He, A. Yu, Cooperation of protease-activated receptor 1 and integrin alphanubeta5 in thrombin-mediated lung cancer cell invasion. Oncol. Rep. 28, 553–560 (2012)PubMed
22.
go back to reference S.R. Macfarlane, M.J. Seatter, T. Kanke, G.D. Hunter, R. Plevin, Proteinase-activated receptors. Pharmacol. Rev. 53, 245 LP – 245282 (2001) S.R. Macfarlane, M.J. Seatter, T. Kanke, G.D. Hunter, R. Plevin, Proteinase-activated receptors. Pharmacol. Rev. 53, 245 LP – 245282 (2001)
23.
go back to reference K.C.S. Queiroz, K. Shi, J. Duitman, H.L. Aberson, J.W. Wilmink, C.J.M. Van Noesel, D.J. Richel, C.A. Spek, Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int. J. Cancer 135, 2294–2304 (2014)PubMed K.C.S. Queiroz, K. Shi, J. Duitman, H.L. Aberson, J.W. Wilmink, C.J.M. Van Noesel, D.J. Richel, C.A. Spek, Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int. J. Cancer 135, 2294–2304 (2014)PubMed
24.
go back to reference Committee for Guidelines in Research (COREON), Human Tissue and Medical Research: Code of conduct for responsible use (2011) Committee for Guidelines in Research (COREON), Human Tissue and Medical Research: Code of conduct for responsible use (2011)
25.
go back to reference K.R. Pertiwi, A.C. Van Der Wal, D.R. Pabittei, C. Mackaaij, M.B. Van Leeuwen, X. Li, O.J. De Boer, Neutrophil extracellular traps participate in all different types of thrombotic and haemorrhagic complications of coronary atherosclerosis. Thromb. Haemost. 118, 1078–1087 (2018)PubMed K.R. Pertiwi, A.C. Van Der Wal, D.R. Pabittei, C. Mackaaij, M.B. Van Leeuwen, X. Li, O.J. De Boer, Neutrophil extracellular traps participate in all different types of thrombotic and haemorrhagic complications of coronary atherosclerosis. Thromb. Haemost. 118, 1078–1087 (2018)PubMed
26.
go back to reference M. Genin, F. Clement, A. Fattaccioli, M. Raes, C. Michiels, M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015)PubMedPubMedCentral M. Genin, F. Clement, A. Fattaccioli, M. Raes, C. Michiels, M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer 15, 577 (2015)PubMedPubMedCentral
27.
go back to reference S. Kumar, B.I. Ratnikov, M.D. Kazanov, J.W. Smith, P. Cieplak, CleavPredict: A platform for reasoning about matrix metalloproteinases proteolytic events. PLoS One 10, e0127877 (2015)PubMedPubMedCentral S. Kumar, B.I. Ratnikov, M.D. Kazanov, J.W. Smith, P. Cieplak, CleavPredict: A platform for reasoning about matrix metalloproteinases proteolytic events. PLoS One 10, e0127877 (2015)PubMedPubMedCentral
28.
go back to reference J. Wang, S. Yang, P. He, A.J. Schetter, J. Gaedcke, B.M. Ghadimi, T. Ried, H.G. Yfantis, D.H. Lee, M.M. Gaida, N. Hanna, H.R. Alexander, S.P. Hussain, Endothelial nitric oxide synthase traffic inducer (NOSTRIN) is a negative regulator of disease aggressiveness in pancreatic cancer. Clin. Cancer Res. 22, 5992–6001 (2016)PubMedPubMedCentral J. Wang, S. Yang, P. He, A.J. Schetter, J. Gaedcke, B.M. Ghadimi, T. Ried, H.G. Yfantis, D.H. Lee, M.M. Gaida, N. Hanna, H.R. Alexander, S.P. Hussain, Endothelial nitric oxide synthase traffic inducer (NOSTRIN) is a negative regulator of disease aggressiveness in pancreatic cancer. Clin. Cancer Res. 22, 5992–6001 (2016)PubMedPubMedCentral
29.
go back to reference G. Zhang, A. Schetter, P. He, N. Funamizu, J. Gaedcke, B.M. Ghadimi, T. Ried, R. Hassan, H.G. Yfantis, D.H. Lee, C. Lacy, A. Maitra, N. Hanna, H.R. Alexander, S.P. Hussain, DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One 7, e31507 (2012)PubMedPubMedCentral G. Zhang, A. Schetter, P. He, N. Funamizu, J. Gaedcke, B.M. Ghadimi, T. Ried, R. Hassan, H.G. Yfantis, D.H. Lee, C. Lacy, A. Maitra, N. Hanna, H.R. Alexander, S.P. Hussain, DPEP1 inhibits tumor cell invasiveness, enhances chemosensitivity and predicts clinical outcome in pancreatic ductal adenocarcinoma. PLoS One 7, e31507 (2012)PubMedPubMedCentral
30.
go back to reference L. Badea, V. Herlea, S.O. Dima, T. Dumitrascu, I. Popescu, Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterol. 55, 2016–2027 (2008) L. Badea, V. Herlea, S.O. Dima, T. Dumitrascu, I. Popescu, Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterol. 55, 2016–2027 (2008)
31.
go back to reference B.J. Raphael, R.H. Hruban, A.J. Aguirre, R.A. Moffitt, et al., Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017) B.J. Raphael, R.H. Hruban, A.J. Aguirre, R.A. Moffitt, et al., Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell 32, 185–203.e13 (2017)
32.
go back to reference F. Dijk, V.L. Veenstra, E.C. Soer, M.P.G. Dings, L. Zhao, J.B. Halfwerk, G.K. Hooijer, H. Damhofer, M. Marzano, A. Steins, C. Waasdorp, O.R. Busch, M.G. Besselink, J.A. Tol, L. Welling, L.B. van Rijssen, S. Klompmaker, H.W. Wilmink, H.W. van Laarhoven, J.P. Medema, L. Vermeulen, S.R. van Hooff, J. Koster, J. Verheij, M.J. van de Vijver, X. Wang, M.F. Bijlsma, Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci. Rep. 10, 1–12 (2020) F. Dijk, V.L. Veenstra, E.C. Soer, M.P.G. Dings, L. Zhao, J.B. Halfwerk, G.K. Hooijer, H. Damhofer, M. Marzano, A. Steins, C. Waasdorp, O.R. Busch, M.G. Besselink, J.A. Tol, L. Welling, L.B. van Rijssen, S. Klompmaker, H.W. Wilmink, H.W. van Laarhoven, J.P. Medema, L. Vermeulen, S.R. van Hooff, J. Koster, J. Verheij, M.J. van de Vijver, X. Wang, M.F. Bijlsma, Unsupervised class discovery in pancreatic ductal adenocarcinoma reveals cell-intrinsic mesenchymal features and high concordance between existing classification systems. Sci. Rep. 10, 1–12 (2020)
33.
go back to reference L. Arnes, N. Waddell, S. Song, A.M.M. Patch, D. Miller, A. Johns, J. Wu, K.S. Kassahn, D. Wood, P. Bailey, L. Fink, S. Manning, A.N. Christ, C. Nourse, S. Kazakoff, D. Taylor, C. Leonard, D.K. Chang, M.D. Jones, M. Thomas, C. Watson, M. Pinese, M. Cowley, I. Rooman, M. Pajic, G. Butturini, A. Malpaga, V. Corbo, S. Crippa, M. Falconi, G. Zamboni, P. Castelli, R.T. Lawlor, A.J. Gill, A. Scarpa, J.V. Pearson, A.V. Biankin, S.M. Grimmond, Comprehensive characterisation of compartment-specific long non-coding RNAs associated with pancreatic ductal adenocarcinoma. Gut 68, 499–511 (2019)PubMed L. Arnes, N. Waddell, S. Song, A.M.M. Patch, D. Miller, A. Johns, J. Wu, K.S. Kassahn, D. Wood, P. Bailey, L. Fink, S. Manning, A.N. Christ, C. Nourse, S. Kazakoff, D. Taylor, C. Leonard, D.K. Chang, M.D. Jones, M. Thomas, C. Watson, M. Pinese, M. Cowley, I. Rooman, M. Pajic, G. Butturini, A. Malpaga, V. Corbo, S. Crippa, M. Falconi, G. Zamboni, P. Castelli, R.T. Lawlor, A.J. Gill, A. Scarpa, J.V. Pearson, A.V. Biankin, S.M. Grimmond, Comprehensive characterisation of compartment-specific long non-coding RNAs associated with pancreatic ductal adenocarcinoma. Gut 68, 499–511 (2019)PubMed
34.
go back to reference K. Nones, R.K. Sinha, L. Burnier, E.A. Bouwens, J.H. Griffin, Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer 135, 1110–1118 (2014)PubMed K. Nones, R.K. Sinha, L. Burnier, E.A. Bouwens, J.H. Griffin, Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer 135, 1110–1118 (2014)PubMed
35.
go back to reference L.O. Mosnier, R.K. Sinha, L. Burnier, E.A. Bouwens, J.H. Griffin, Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 120, 5237–5246 (2012)PubMedPubMedCentral L.O. Mosnier, R.K. Sinha, L. Burnier, E.A. Bouwens, J.H. Griffin, Biased agonism of protease-activated receptor 1 by activated protein C caused by noncanonical cleavage at Arg46. Blood 120, 5237–5246 (2012)PubMedPubMedCentral
36.
go back to reference C. Tekin, K. Shi, J.B. Daalhuisen, M.S.T. Brink, M.F. Bijlsma, C.A. Spek, PAR1 signaling on tumor cells limits tumor growth by maintaining a mesenchymal phenotype in pancreatic cancer. Oncotarget 9, 32010–32023 (2018)PubMedPubMedCentral C. Tekin, K. Shi, J.B. Daalhuisen, M.S.T. Brink, M.F. Bijlsma, C.A. Spek, PAR1 signaling on tumor cells limits tumor growth by maintaining a mesenchymal phenotype in pancreatic cancer. Oncotarget 9, 32010–32023 (2018)PubMedPubMedCentral
38.
go back to reference J.M. Florence, A. Krupa, L.M. Booshehri, T.C. Allen, A.K. Kurdowska, Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1. PLoS One 12, e0171427 (2017)PubMedPubMedCentral J.M. Florence, A. Krupa, L.M. Booshehri, T.C. Allen, A.K. Kurdowska, Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1. PLoS One 12, e0171427 (2017)PubMedPubMedCentral
39.
go back to reference F. Jaffré, A.E. Friedman, Z. Hu, N. MacKman, B.C. Blaxall, β-Adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation 125, 2993–3003 (2012)PubMedPubMedCentral F. Jaffré, A.E. Friedman, Z. Hu, N. MacKman, B.C. Blaxall, β-Adrenergic receptor stimulation transactivates protease-activated receptor 1 via matrix metalloproteinase 13 in cardiac cells. Circulation 125, 2993–3003 (2012)PubMedPubMedCentral
40.
go back to reference N.M. Aiello, R. Maddipati, R.J. Norgard, D. Balli, J. Li, S. Yuan, T. Yamazoe, T. Black, A. Sahmoud, E.E. Furth, D. Bar-Sagi, BZ. Stanger, EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–695.e4 (2018) N.M. Aiello, R. Maddipati, R.J. Norgard, D. Balli, J. Li, S. Yuan, T. Yamazoe, T. Black, A. Sahmoud, E.E. Furth, D. Bar-Sagi, BZ. Stanger, EMT subtype influences epithelial plasticity and mode of cell migration. Dev. Cell 45, 681–695.e4 (2018)
41.
go back to reference K. Kuwada, S. Kagawa, R. Yoshida, S. Sakamoto, A. Ito, M. Watanabe, T. Ieda, S. Kuroda, S. Kikuchi, H. Tazawa, T. Fujiwara, The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J. Exp. Clin. Cancer Res. 37, 1–10 (2018) K. Kuwada, S. Kagawa, R. Yoshida, S. Sakamoto, A. Ito, M. Watanabe, T. Ieda, S. Kuroda, S. Kikuchi, H. Tazawa, T. Fujiwara, The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J. Exp. Clin. Cancer Res. 37, 1–10 (2018)
42.
go back to reference A. Habtezion, M. Edderkaoui, S.J. Pandol, Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett 381, 211–216 (2016)PubMed A. Habtezion, M. Edderkaoui, S.J. Pandol, Macrophages and pancreatic ductal adenocarcinoma. Cancer Lett 381, 211–216 (2016)PubMed
43.
go back to reference M.Z. Wojtukiewicz, D. Hempel, E. Sierko, S.C. Tucker, K.V. Honn, Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Rev. 34, 775–796 (2015)PubMedPubMedCentral M.Z. Wojtukiewicz, D. Hempel, E. Sierko, S.C. Tucker, K.V. Honn, Protease-activated receptors (PARs)-biology and role in cancer invasion and metastasis. Cancer Metastasis Rev. 34, 775–796 (2015)PubMedPubMedCentral
44.
go back to reference G.N. Adams, B.K. Sharma, L. Rosenfeldt, M. Frederick, M.J. Flick, D.P. Witte, L.O. Mosnier, E. Harmel-Laws, K.A. Steinbrecher, J.S. Palumbo, Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J. Thromb. Haemost. 16, 2258–2269 (2018)PubMedPubMedCentral G.N. Adams, B.K. Sharma, L. Rosenfeldt, M. Frederick, M.J. Flick, D.P. Witte, L.O. Mosnier, E. Harmel-Laws, K.A. Steinbrecher, J.S. Palumbo, Protease-activated receptor-1 impedes prostate and intestinal tumor progression in mice. J. Thromb. Haemost. 16, 2258–2269 (2018)PubMedPubMedCentral
45.
go back to reference A. Pryczynicz, K. Guzinska-Ustymowicz, V. Dymicka-Piekarska, J. Czyzewska, A. Kemona, Expression of matrix metalloproteinase 9 in pancreatic ductal carcinoma is associated with tumor metastasis formation. Folia Histochem. Cytobiol. 45, 37–40 (2007)PubMed A. Pryczynicz, K. Guzinska-Ustymowicz, V. Dymicka-Piekarska, J. Czyzewska, A. Kemona, Expression of matrix metalloproteinase 9 in pancreatic ductal carcinoma is associated with tumor metastasis formation. Folia Histochem. Cytobiol. 45, 37–40 (2007)PubMed
46.
go back to reference K. Jakubowska, A. Pryczynicz, J. Januszewska, I. Sidorkiewicz, A. Kemona, A. Niewiński, Ł. Lewczuk, B. Kędra, K. Guzińska-Ustymowicz, Expressions of matrix metalloproteinases 2, 7, and 9 in carcinogenesis of pancreatic ductal adenocarcinoma. Dis. Markers 2016, 1–7 (2016) K. Jakubowska, A. Pryczynicz, J. Januszewska, I. Sidorkiewicz, A. Kemona, A. Niewiński, Ł. Lewczuk, B. Kędra, K. Guzińska-Ustymowicz, Expressions of matrix metalloproteinases 2, 7, and 9 in carcinogenesis of pancreatic ductal adenocarcinoma. Dis. Markers 2016, 1–7 (2016)
47.
go back to reference B. Mroczko, M. Lukaszewicz-Zajac, U. Wereszczynska-Siemiatkowska, M. Groblewska, M. Gryko, B. Kedra, G. Jurkowska, M. Szmitkowski, Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: Metalloproteinase-9 as an independent prognostic factor. Pancreas 38, 613–618 (2009)PubMed B. Mroczko, M. Lukaszewicz-Zajac, U. Wereszczynska-Siemiatkowska, M. Groblewska, M. Gryko, B. Kedra, G. Jurkowska, M. Szmitkowski, Clinical significance of the measurements of serum matrix metalloproteinase-9 and its inhibitor (tissue inhibitor of metalloproteinase-1) in patients with pancreatic cancer: Metalloproteinase-9 as an independent prognostic factor. Pancreas 38, 613–618 (2009)PubMed
48.
go back to reference M.A. Shah, A. Starodub, S. Sharma, J. Berlin, M. Patel, Z.A. Wainberg, J. Chaves, M. Gordon, K. Windsor, C.B. Brachmann, X. Huang, G. Vosganian, J.D. Maltzman, V. Smith, J.A. Silverman, H.J. Lenz, J.C. Bendell, Andecaliximab/GS-5745 alone and combined with mFOLFOX6 in advanced gastric and gastroesophageal junction adenocarcinoma: Results from a phase I study. Clin. Cancer Res. 24, 3829–3837 (2018)PubMedPubMedCentral M.A. Shah, A. Starodub, S. Sharma, J. Berlin, M. Patel, Z.A. Wainberg, J. Chaves, M. Gordon, K. Windsor, C.B. Brachmann, X. Huang, G. Vosganian, J.D. Maltzman, V. Smith, J.A. Silverman, H.J. Lenz, J.C. Bendell, Andecaliximab/GS-5745 alone and combined with mFOLFOX6 in advanced gastric and gastroesophageal junction adenocarcinoma: Results from a phase I study. Clin. Cancer Res. 24, 3829–3837 (2018)PubMedPubMedCentral
Metadata
Title
Macrophage-secreted MMP9 induces mesenchymal transition in pancreatic cancer cells via PAR1 activation
Authors
Cansu Tekin
Hella L Aberson
Cynthia Waasdorp
Gerrit K J Hooijer
Onno J de Boer
Frederike Dijk
Maarten F Bijlsma
C Arnold Spek
Publication date
01-12-2020
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 6/2020
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-020-00549-x

Other articles of this Issue 6/2020

Cellular Oncology 6/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine