Skip to main content
Top
Published in: Cellular Oncology 3/2015

Open Access 01-06-2015 | Original Paper

MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1

Authors: Chao Yu, Min Wang, Zhipeng Li, Jie Xiao, Feng Peng, Xingjun Guo, Yazhu Deng, Jianxin Jiang, Chengyi Sun

Published in: Cellular Oncology | Issue 3/2015

Login to get access

Abstract

Purpose

The prognosis of pancreatic cancer ranks among the worst of all cancer types, which is primarily due to the fact that during the past decades little progress has been made in its diagnosis and treatment. Here, we set out to investigate the role of microRNA 138 (miR-138-5p) in the regulation of pancreatic cancer cell growth and to assess its role as putative therapeutic target.

Methods

qRT-PCR was used to examine the expression of miR-138-5p in 8 pancreatic cancer cell lines and 18 primary human pancreatic cancer samples. A lentivirual vector containing miR-138-5p mimics (lv-miR-138-5p) was used to exogenously over-express miR-138-5p in the pancreatic cancer cells lines Capan-2 and PANC-1. The effect of this over-expression on cell proliferation was examined using an in vitro propidium iodide fluorescence assay. Capan-2 cells exogenously over-expressing miR-138-5p were transplanted into nude mice to examine its in vivo effect on tumor growth. A predicted target of miR-138-5p (FOXC1) was first validated using a luciferase assay and, subsequently, down-regulated by siRNA to assess its effect on pancreatic cancer cell growth.

Results

We found that miR-138-5p was markedly down-regulated in both pancreatic cancer cell lines and primary human pancreatic cancer samples, compared to a human pancreas ductal epithelial (HPDE) cell line and normal pancreatic tissues, respectively (P < 0.05). In addition, we found that in the pancreatic cancer cells lines Capan-2 and PANC-1 lentiviral transfection of miR-138-5p mimicked up-regulation of the endogenous expression of miR-138-5p and, concomitantly, inhibited cancer cell proliferation (P < 0.05). The exogenous over-expression of miR-138-5p also led to a significant inhibition of tumor formation in vivo. Using a luciferase assay, we found that miR-138-5p directly targets FOXC1. In conformity with this notion, we found that FOXC1 was down-regulated upon miR-138-5p over-expression in pancreatic cancer cells. Finally, we found that silencing of FOXC1 by siRNA had an inhibitory effect on pancreatic cancer cell growth.

Conclusions

Our data indicate that miR-138-5p may play an important role in regulating pancreatic cancer cell growth, possibly through targeting FOXC1. Over-expression of miR-138-5p may serve as a novel approach for the treatment of patients with pancreatic cancer.
Literature
1.
go back to reference A. Jemal, R. Siegel, J. Xu, E. Ward, Cancer statistics, 2010. CA Cancer J Clin 60, 277–300 (2010)CrossRefPubMed A. Jemal, R. Siegel, J. Xu, E. Ward, Cancer statistics, 2010. CA Cancer J Clin 60, 277–300 (2010)CrossRefPubMed
2.
go back to reference W. Chen, R. Zheng, S. Zhang, P. Zhao, G. Li, L. Wu, J. He, Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res Chung-kuo yen cheng yen chiu. 25, 10–21 (2013) W. Chen, R. Zheng, S. Zhang, P. Zhao, G. Li, L. Wu, J. He, Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res Chung-kuo yen cheng yen chiu. 25, 10–21 (2013)
3.
go back to reference K. Hirata, S. Egawa, Y. Kimura, T. Nobuoka, H. Oshima, T. Katsuramaki, T. Mizuguchi, T. Furuhata, Current status of surgery for pancreatic cancer. Dig. Surg. 24, 137–147 (2007)CrossRefPubMed K. Hirata, S. Egawa, Y. Kimura, T. Nobuoka, H. Oshima, T. Katsuramaki, T. Mizuguchi, T. Furuhata, Current status of surgery for pancreatic cancer. Dig. Surg. 24, 137–147 (2007)CrossRefPubMed
4.
go back to reference S. Gillen, T. Schuster, C. Meyer Zum Buschenfelde, H. Friess, J. Kleeff, Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 7, e1000267 (2010)CrossRefPubMedCentralPubMed S. Gillen, T. Schuster, C. Meyer Zum Buschenfelde, H. Friess, J. Kleeff, Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 7, e1000267 (2010)CrossRefPubMedCentralPubMed
6.
7.
go back to reference W. Feng, Y. Feng, MicroRNAs in neural cell development and brain diseases. Sci. China Life Sci. 54, 1103–1112 (2011)CrossRefPubMed W. Feng, Y. Feng, MicroRNAs in neural cell development and brain diseases. Sci. China Life Sci. 54, 1103–1112 (2011)CrossRefPubMed
10.
go back to reference Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, Strano S and Yarden Y. Tumor suppressor microRNAs: A novel non-coding alliance against cancer. FEBS letters 2014 Blandino G, Fazi F, Donzelli S, Kedmi M, Sas-Chen A, Muti P, Strano S and Yarden Y. Tumor suppressor microRNAs: A novel non-coding alliance against cancer. FEBS letters 2014
12.
go back to reference R. Nagadia, P. Pandit, W.B. Coman, J. Cooper-White, C. Punyadeera, miRNAs in head and neck cancer revisited. Cell Oncol. Dordr. 36, 1–7 (2013)CrossRefPubMed R. Nagadia, P. Pandit, W.B. Coman, J. Cooper-White, C. Punyadeera, miRNAs in head and neck cancer revisited. Cell Oncol. Dordr. 36, 1–7 (2013)CrossRefPubMed
13.
go back to reference Y. Wang, M. Li, W. Zang, Y. Ma, N. Wang, P. Li, T. Wang, G. Zhao, MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol. Dordr 36, 385–394 (2013)CrossRefPubMed Y. Wang, M. Li, W. Zang, Y. Ma, N. Wang, P. Li, T. Wang, G. Zhao, MiR-429 up-regulation induces apoptosis and suppresses invasion by targeting Bcl-2 and SP-1 in esophageal carcinoma. Cell Oncol. Dordr 36, 385–394 (2013)CrossRefPubMed
14.
go back to reference L. Rask, E. Balslev, R. Sokilde, E. Hogdall, H. Flyger, J. Eriksen, T. Litman, Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol. Dordr 37, 215–227 (2014)CrossRefPubMed L. Rask, E. Balslev, R. Sokilde, E. Hogdall, H. Flyger, J. Eriksen, T. Litman, Differential expression of miR-139, miR-486 and miR-21 in breast cancer patients sub-classified according to lymph node status. Cell Oncol. Dordr 37, 215–227 (2014)CrossRefPubMed
15.
go back to reference E.J. Lee, Y. Gusev, J. Jiang, G.J. Nuovo, M.R. Lerner, W.L. Frankel, D.L. Morgan, R.G. Postier, D.J. Brackett, T.D. Schmittgen, Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054 (2007)CrossRefPubMedCentralPubMed E.J. Lee, Y. Gusev, J. Jiang, G.J. Nuovo, M.R. Lerner, W.L. Frankel, D.L. Morgan, R.G. Postier, D.J. Brackett, T.D. Schmittgen, Expression profiling identifies microRNA signature in pancreatic cancer. Int. J. Cancer 120, 1046–1054 (2007)CrossRefPubMedCentralPubMed
16.
go back to reference M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)CrossRefPubMedCentralPubMed M. Dillhoff, J. Liu, W. Frankel, C. Croce, M. Bloomston, MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. J. Gastrointest. Surg. 12, 2171–2176 (2008)CrossRefPubMedCentralPubMed
17.
go back to reference T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)CrossRefPubMed T. Moriyama, K. Ohuchida, K. Mizumoto, J. Yu, N. Sato, T. Nabae, S. Takahata, H. Toma, E. Nagai, M. Tanaka, MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8, 1067–1074 (2009)CrossRefPubMed
19.
go back to reference Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)CrossRefPubMedCentralPubMed Q. Ji, X. Hao, M. Zhang, W. Tang, M. Yang, L. Li, D. Xiang, J.T. Desano, G.T. Bommer, D. Fan, E.R. Fearon, T.S. Lawrence, L. Xu, MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS One 4, e6816 (2009)CrossRefPubMedCentralPubMed
20.
go back to reference Y. Gao, X. Fan, W. Li, W. Ping, Y. Deng, X. Fu, miR-138-5p reverses Gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem. Biophys. Res. Commun. 446, 179–186 (2014)CrossRefPubMed Y. Gao, X. Fan, W. Li, W. Ping, Y. Deng, X. Fu, miR-138-5p reverses Gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem. Biophys. Res. Commun. 446, 179–186 (2014)CrossRefPubMed
21.
go back to reference W. Wang, L.J. Zhao, Y.X. Tan, H. Ren, Z.T. Qi, MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33, 1113–1120 (2012)CrossRefPubMedCentralPubMed W. Wang, L.J. Zhao, Y.X. Tan, H. Ren, Z.T. Qi, MiR-138 induces cell cycle arrest by targeting cyclin D3 in hepatocellular carcinoma. Carcinogenesis 33, 1113–1120 (2012)CrossRefPubMedCentralPubMed
22.
go back to reference X. Zhao, L. Yang, J. Hu, J. Ruan, miR-138 might reverse multidrug resistance of leukemia cells. Leuk. Res. 34, 1078–1082 (2010)CrossRefPubMed X. Zhao, L. Yang, J. Hu, J. Ruan, miR-138 might reverse multidrug resistance of leukemia cells. Leuk. Res. 34, 1078–1082 (2010)CrossRefPubMed
23.
go back to reference V.M. Golubovskaya, B. Sumbler, B. Ho, M. Yemma, W.G. Cance, MiR-138 and MiR-135 directly target focal adhesion kinase, inhibit cell invasion, and increase sensitivity to chemotherapy in cancer cells. Anticancer. Agents Med. Chem. 14, 18–28 (2014)CrossRefPubMedCentralPubMed V.M. Golubovskaya, B. Sumbler, B. Ho, M. Yemma, W.G. Cance, MiR-138 and MiR-135 directly target focal adhesion kinase, inhibit cell invasion, and increase sensitivity to chemotherapy in cancer cells. Anticancer. Agents Med. Chem. 14, 18–28 (2014)CrossRefPubMedCentralPubMed
24.
go back to reference T. Kume, K.Y. Deng, V. Winfrey, D.B. Gould, M.A. Walter, B.L. Hogan, The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93, 985–996 (1998)CrossRefPubMed T. Kume, K.Y. Deng, V. Winfrey, D.B. Gould, M.A. Walter, B.L. Hogan, The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93, 985–996 (1998)CrossRefPubMed
25.
go back to reference A.J. Mears, T. Jordan, F. Mirzayans, S. Dubois, T. Kume, M. Parlee, R. Ritch, B. Koop, W.L. Kuo, C. Collins, J. Marshall, D.B. Gould, W. Pearce, P. Carlsson, S. Enerback, J. Morissette, S. Bhattacharya, B. Hogan, V. Raymond, M.A. Walter, Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 63, 1316–1328 (1998)CrossRefPubMedCentralPubMed A.J. Mears, T. Jordan, F. Mirzayans, S. Dubois, T. Kume, M. Parlee, R. Ritch, B. Koop, W.L. Kuo, C. Collins, J. Marshall, D.B. Gould, W. Pearce, P. Carlsson, S. Enerback, J. Morissette, S. Bhattacharya, B. Hogan, V. Raymond, M.A. Walter, Mutations of the forkhead/winged-helix gene, FKHL7, in patients with Axenfeld-Rieger anomaly. Am. J. Hum. Genet. 63, 1316–1328 (1998)CrossRefPubMedCentralPubMed
26.
go back to reference P.S. Ray, S.P. Bagaria, J. Wang, J.M. Shamonki, X. Ye, M.S. Sim, S. Steen, Y. Qu, X. Cui, A.E. Giuliano, Basal-like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann. Surg. Oncol. 18, 3839–3847 (2011)CrossRefPubMed P.S. Ray, S.P. Bagaria, J. Wang, J.M. Shamonki, X. Ye, M.S. Sim, S. Steen, Y. Qu, X. Cui, A.E. Giuliano, Basal-like breast cancer defined by FOXC1 expression offers superior prognostic value: a retrospective immunohistochemical study. Ann. Surg. Oncol. 18, 3839–3847 (2011)CrossRefPubMed
27.
go back to reference P.S. Ray, J. Wang, Y. Qu, M.S. Sim, J. Shamonki, S.P. Bagaria, X. Ye, B. Liu, D. Elashoff, D.S. Hoon, M.A. Walter, J.W. Martens, A.L. Richardson, A.E. Giuliano, X. Cui, FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 70, 3870–3876 (2010)CrossRefPubMed P.S. Ray, J. Wang, Y. Qu, M.S. Sim, J. Shamonki, S.P. Bagaria, X. Ye, B. Liu, D. Elashoff, D.S. Hoon, M.A. Walter, J.W. Martens, A.L. Richardson, A.E. Giuliano, X. Cui, FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res. 70, 3870–3876 (2010)CrossRefPubMed
28.
go back to reference J. Wang, P.S. Ray, M.S. Sim, X.Z. Zhou, K.P. Lu, A.V. Lee, X. Lin, S.P. Bagaria, A.E. Giuliano, X. Cui, FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene 31, 4798–4802 (2012)CrossRefPubMedCentralPubMed J. Wang, P.S. Ray, M.S. Sim, X.Z. Zhou, K.P. Lu, A.V. Lee, X. Lin, S.P. Bagaria, A.E. Giuliano, X. Cui, FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-kappaB signaling. Oncogene 31, 4798–4802 (2012)CrossRefPubMedCentralPubMed
29.
go back to reference Y. Xu, Q.S. Shao, H.B. Yao, Y. Jin, Y.Y. Ma, L.H. Jia, Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology 64, 963–970 (2014)CrossRefPubMed Y. Xu, Q.S. Shao, H.B. Yao, Y. Jin, Y.Y. Ma, L.H. Jia, Overexpression of FOXC1 correlates with poor prognosis in gastric cancer patients. Histopathology 64, 963–970 (2014)CrossRefPubMed
30.
go back to reference L. Wang, F. Gu, C.Y. Liu, R.J. Wang, J. Li, J.Y. Xu, High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol. J. Int. Soc. Oncol. Dev. Biol. Med. 34, 853–858 (2013)CrossRef L. Wang, F. Gu, C.Y. Liu, R.J. Wang, J. Li, J.Y. Xu, High level of FOXC1 expression is associated with poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol. J. Int. Soc. Oncol. Dev. Biol. Med. 34, 853–858 (2013)CrossRef
31.
go back to reference N. Radulovich, J.Y. Qian, M.S. Tsao, Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 439, 1–13 (2008)PubMed N. Radulovich, J.Y. Qian, M.S. Tsao, Human pancreatic duct epithelial cell model for KRAS transformation. Methods Enzymol. 439, 1–13 (2008)PubMed
32.
go back to reference L. Zhang, K. Mizumoto, N. Sato, T. Ogawa, M. Kusumoto, H. Niiyama, M. Tanaka, Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 142, 129–137 (1999)CrossRefPubMed L. Zhang, K. Mizumoto, N. Sato, T. Ogawa, M. Kusumoto, H. Niiyama, M. Tanaka, Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 142, 129–137 (1999)CrossRefPubMed
33.
go back to reference Y. Gao, X. Fan, W. Li, W. Ping, Y. Deng, X. Fu, miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem. Biophys. Res. Commun. 446, 179–186 (2014)CrossRefPubMed Y. Gao, X. Fan, W. Li, W. Ping, Y. Deng, X. Fu, miR-138-5p reverses gefitinib resistance in non-small cell lung cancer cells via negatively regulating G protein-coupled receptor 124. Biochem. Biophys. Res. Commun. 446, 179–186 (2014)CrossRefPubMed
34.
go back to reference Ayaz L, Cayan F, Balci S, Gorur A, Akbayir S, Yildirim Yaroglu H, Dogruer Unal N and Tamer L. Circulating microRNA expression profiles in ovarian cancer. J Obstet Gynaecol 2014; 1–5 Ayaz L, Cayan F, Balci S, Gorur A, Akbayir S, Yildirim Yaroglu H, Dogruer Unal N and Tamer L. Circulating microRNA expression profiles in ovarian cancer. J Obstet Gynaecol 2014; 1–5
35.
go back to reference C. Augello, U. Gianelli, F. Savi, A. Moro, E. Bonoldi, M. Gambacorta, V. Vaira, L. Baldini, S. Bosari, MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma. J. Clin. Pathol. 67, 697–701 (2014)CrossRefPubMed C. Augello, U. Gianelli, F. Savi, A. Moro, E. Bonoldi, M. Gambacorta, V. Vaira, L. Baldini, S. Bosari, MicroRNA as potential biomarker in HCV-associated diffuse large B-cell lymphoma. J. Clin. Pathol. 67, 697–701 (2014)CrossRefPubMed
36.
go back to reference A.V. Biankin, N. Waddell, K.S. Kassahn, M.C. Gingras, L.B. Muthuswamy, A.L. Johns, D.K. Miller, P.J. Wilson, A.M. Patch, J. Wu, D.K. Chang, M.J. Cowley, B.B. Gardiner, S. Song, I. Harliwong, S. Idrisoglu, C. Nourse, E. Nourbakhsh, S. Manning, S. Wani, M. Gongora, M. Pajic, C.J. Scarlett, A.J. Gill, A.V. Pinho, I. Rooman, M. Anderson, O. Holmes, C. Leonard, D. Taylor, S. Wood, Q. Xu, K. Nones, J.L. Fink, A. Christ, T. Bruxner, N. Cloonan, G. Kolle, F. Newell, M. Pinese, R.S. Mead, J.L. Humphris, W. Kaplan, M.D. Jones, E.K. Colvin, A.M. Nagrial, E.S. Humphrey, A. Chou, V.T. Chin, L.A. Chantrill, A. Mawson, J.S. Samra, J.G. Kench, J.A. Lovell, R.J. Daly, N.D. Merrett, C. Toon, K. Epari, N.Q. Nguyen, A. Barbour, N. Zeps, I. Australian Pancreatic Cancer Genome, N. Kakkar, F. Zhao, Y.Q. Wu, M. Wang, D.M. Muzny, W.E. Fisher, F.C. Brunicardi, S.E. Hodges, J.G. Reid, J. Drummond, K. Chang, Y. Han, L.R. Lewis, H. Dinh, C.J. Buhay, T. Beck, L. Timms, M. Sam, K. Begley, A. Brown, D. Pai, A. Panchal, N. Buchner, R. De Borja, R.E. Denroche, C.K. Yung, S. Serra, N. Onetto, D. Mukhopadhyay, M.S. Tsao, P.A. Shaw, G.M. Petersen, S. Gallinger, R.H. Hruban, A. Maitra, C.A. Iacobuzio-Donahue, R.D. Schulick, C.L. Wolfgang, R.A. Morgan, R.T. Lawlor, P. Capelli, V. Corbo, M. Scardoni, G. Tortora, M.A. Tempero, K.M. Mann, N.A. Jenkins, P.A. Perez-Mancera, D.J. Adams, D.A. Largaespada, L.F. Wessels, A.G. Rust, L.D. Stein, D.A. Tuveson, N.G. Copeland, E.A. Musgrove, A. Scarpa, J.R. Eshleman, T.J. Hudson, R.L. Sutherland, D.A. Wheeler, J.V. Pearson, J.D. McPherson, R.A. Gibbs, S.M. Grimmond, Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012)CrossRefPubMedCentralPubMed A.V. Biankin, N. Waddell, K.S. Kassahn, M.C. Gingras, L.B. Muthuswamy, A.L. Johns, D.K. Miller, P.J. Wilson, A.M. Patch, J. Wu, D.K. Chang, M.J. Cowley, B.B. Gardiner, S. Song, I. Harliwong, S. Idrisoglu, C. Nourse, E. Nourbakhsh, S. Manning, S. Wani, M. Gongora, M. Pajic, C.J. Scarlett, A.J. Gill, A.V. Pinho, I. Rooman, M. Anderson, O. Holmes, C. Leonard, D. Taylor, S. Wood, Q. Xu, K. Nones, J.L. Fink, A. Christ, T. Bruxner, N. Cloonan, G. Kolle, F. Newell, M. Pinese, R.S. Mead, J.L. Humphris, W. Kaplan, M.D. Jones, E.K. Colvin, A.M. Nagrial, E.S. Humphrey, A. Chou, V.T. Chin, L.A. Chantrill, A. Mawson, J.S. Samra, J.G. Kench, J.A. Lovell, R.J. Daly, N.D. Merrett, C. Toon, K. Epari, N.Q. Nguyen, A. Barbour, N. Zeps, I. Australian Pancreatic Cancer Genome, N. Kakkar, F. Zhao, Y.Q. Wu, M. Wang, D.M. Muzny, W.E. Fisher, F.C. Brunicardi, S.E. Hodges, J.G. Reid, J. Drummond, K. Chang, Y. Han, L.R. Lewis, H. Dinh, C.J. Buhay, T. Beck, L. Timms, M. Sam, K. Begley, A. Brown, D. Pai, A. Panchal, N. Buchner, R. De Borja, R.E. Denroche, C.K. Yung, S. Serra, N. Onetto, D. Mukhopadhyay, M.S. Tsao, P.A. Shaw, G.M. Petersen, S. Gallinger, R.H. Hruban, A. Maitra, C.A. Iacobuzio-Donahue, R.D. Schulick, C.L. Wolfgang, R.A. Morgan, R.T. Lawlor, P. Capelli, V. Corbo, M. Scardoni, G. Tortora, M.A. Tempero, K.M. Mann, N.A. Jenkins, P.A. Perez-Mancera, D.J. Adams, D.A. Largaespada, L.F. Wessels, A.G. Rust, L.D. Stein, D.A. Tuveson, N.G. Copeland, E.A. Musgrove, A. Scarpa, J.R. Eshleman, T.J. Hudson, R.L. Sutherland, D.A. Wheeler, J.V. Pearson, J.D. McPherson, R.A. Gibbs, S.M. Grimmond, Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012)CrossRefPubMedCentralPubMed
37.
go back to reference A. Geurts van Kessel, The cancer genome: from structure to function. Cell Oncol. Dordr 37, 155–165 (2014)CrossRefPubMed A. Geurts van Kessel, The cancer genome: from structure to function. Cell Oncol. Dordr 37, 155–165 (2014)CrossRefPubMed
38.
go back to reference J. Du, L. Li, Z. Ou, C. Kong, Y. Zhang, Z. Dong, S. Zhu, H. Jiang, Z. Shao, B. Huang, J. Lu, FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res. Treat. 131, 65–73 (2012)CrossRefPubMed J. Du, L. Li, Z. Ou, C. Kong, Y. Zhang, Z. Dong, S. Zhu, H. Jiang, Z. Shao, B. Huang, J. Lu, FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res. Treat. 131, 65–73 (2012)CrossRefPubMed
39.
go back to reference T.K. Chung, T.S. Lau, T.H. Cheung, S.F. Yim, K.W. Lo, N.S. Siu, L.K. Chan, M.Y. Yu, J. Kwong, G. Doran, L.M. Barroilhet, A.S. Ng, R.R. Wong, V.W. Wang, S.C. Mok, D.I. Smith, R.S. Berkowitz, Y.F. Wong, Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int. J. Cancer J. Int. Cancer 130, 1036–1045 (2012)CrossRef T.K. Chung, T.S. Lau, T.H. Cheung, S.F. Yim, K.W. Lo, N.S. Siu, L.K. Chan, M.Y. Yu, J. Kwong, G. Doran, L.M. Barroilhet, A.S. Ng, R.R. Wong, V.W. Wang, S.C. Mok, D.I. Smith, R.S. Berkowitz, Y.F. Wong, Dysregulation of microRNA-204 mediates migration and invasion of endometrial cancer by regulating FOXC1. Int. J. Cancer J. Int. Cancer 130, 1036–1045 (2012)CrossRef
Metadata
Title
MicroRNA-138-5p regulates pancreatic cancer cell growth through targeting FOXC1
Authors
Chao Yu
Min Wang
Zhipeng Li
Jie Xiao
Feng Peng
Xingjun Guo
Yazhu Deng
Jianxin Jiang
Chengyi Sun
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 3/2015
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-014-0200-x

Other articles of this Issue 3/2015

Cellular Oncology 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine