Skip to main content
Top
Published in: Cellular Oncology 3/2015

01-06-2015 | Original Paper

Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells

Authors: Zeynep Birsu Cincin, Miray Unlu, Bayram Kiran, Elif Sinem Bireller, Yusuf Baran, Bedia Cakmakoglu

Published in: Cellular Oncology | Issue 3/2015

Login to get access

Abstract

Purpose

Hesperidin, a glycoside flavonoid, is thought to act as an anti-cancer agent, since it has been found to exhibit both pro-apoptotic and anti-proliferative effects in several cancer cell types. The mechanisms underlying hesperidin-induced growth arrest and apoptosis are, however, not well understood. Here, we aimed to investigate the anti-proliferative and apoptotic effects of hesperidin on non-small cell lung cancer (NSCLC) cells and to investigate the mechanisms involved.

Methods

The anti-proliferative and apoptotic effects of hesperidin on two NSCLC-derived cell lines, A549 and NCI-H358, were determined using a WST-1 colorimetric assay, a LDH cytotoxicity assay, a Cell Death Detection assay, an AnnexinV-FITC assay, a caspase-3 assay and a JC-1 assay, respectively, all in a time- and dose-dependent manner. As a control, non-cancerous MRC-5 lung fibroblasts were included. Changes in whole genome gene expression profiles were assessed using an Illumina Human HT-12v4 beadchip microarray platform, and subsequent data analyses were performed using an Illumina Genome Studio and Ingenuity Pathway Analyser (IPA).

Results

We found that after hesperidin treatment, A549 and NCI-H358 cells exhibited decreasing cell proliferation and increasing caspase-3 and other apoptosis-related activities, in conjunction with decreasing mitochondrial membrane potential activities, in a dose- and time-dependent manner. Through a GO analysis, by which changes in gene expression profiles were compared, we found that the FGF and NF-κB signal transduction pathways were most significantly affected in the hesperidin treated NCI-H358 and A549 NSCLC cells.

Conclusions

Our results indicate that hesperidin elicits an in vitro growth inhibitory effect on NSCLC cells by modulating immune response-related pathways that affect apoptosis. When confirmed in vivo, hesperidin may serve as a novel anti-proliferative agent for non-small cell lung cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference W. Pao, N. Girard, New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175–180 (2011)CrossRefPubMed W. Pao, N. Girard, New driver mutations in non-small-cell lung cancer. Lancet Oncol. 12, 175–180 (2011)CrossRefPubMed
3.
go back to reference Q. Wu, Y.F. Chen, J. Fu, Q.H. You, S.M. Wang, X. Huang, X.J. Feng, S.H. Zhang, Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell. Oncol. 37, 399–407 (2014)CrossRef Q. Wu, Y.F. Chen, J. Fu, Q.H. You, S.M. Wang, X. Huang, X.J. Feng, S.H. Zhang, Short hairpin RNA-mediated down-regulation of CENP-A attenuates the aggressive phenotype of lung adenocarcinoma cells. Cell. Oncol. 37, 399–407 (2014)CrossRef
4.
go back to reference A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)CrossRef A. Koren, H. Motaln, T. Cufer, Lung cancer stem cells: a biological and clinical perspective. Cell. Oncol. 36, 265–275 (2013)CrossRef
5.
go back to reference N. Peled, M.W. Wynes, N. Ikeda, T. Ohira, K. Yoshida, J. Qian, M. Ilouze, R. Brenner, Y. Kato, C. Mascaux, F.R. Hirsch, Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell. Oncol. 36, 277–288 (2013)CrossRef N. Peled, M.W. Wynes, N. Ikeda, T. Ohira, K. Yoshida, J. Qian, M. Ilouze, R. Brenner, Y. Kato, C. Mascaux, F.R. Hirsch, Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell. Oncol. 36, 277–288 (2013)CrossRef
6.
go back to reference A. Maier, AL. Peille, V. Vuaroqueaux, M. Lahn. Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell. Oncol. 2015 Jan 9. [Epub ahead of print] DOI 10.1007/s13402-014-0210-8 A. Maier, AL. Peille, V. Vuaroqueaux, M. Lahn. Anti-tumor activity of the TGF-β receptor kinase inhibitor galunisertib (LY2157299 monohydrate) in patient-derived tumor xenografts. Cell. Oncol. 2015 Jan 9. [Epub ahead of print] DOI 10.​1007/​s13402-014-0210-8
7.
go back to reference P. Ulivi, R. Silvestrini, Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell. Oncol. 36, 439–448 (2013)CrossRef P. Ulivi, R. Silvestrini, Role of quantitative and qualitative characteristics of free circulating DNA in the management of patients with non-small cell lung cancer. Cell. Oncol. 36, 439–448 (2013)CrossRef
8.
go back to reference G. Giaccone, Twenty-five years of treating advanced NSCLC: what have we achieved? Ann. Oncol. 15 Suppl 4: iv81–83 (2004) G. Giaccone, Twenty-five years of treating advanced NSCLC: what have we achieved? Ann. Oncol. 15 Suppl 4: iv81–83 (2004)
9.
go back to reference J.W. Neal, L.V. Sequist, Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh. Curr. Treat. Options in Oncol. 11, 36–44 (2010)CrossRef J.W. Neal, L.V. Sequist, Exciting new targets in lung cancer therapy: ALK, IGF-1R, HDAC, and Hh. Curr. Treat. Options in Oncol. 11, 36–44 (2010)CrossRef
10.
go back to reference R. Sangha, P.N. Lara, P.C. Mack, D.R. Gandara, Beyond antiepidermal growth factor receptors and antiangiogenesis strategies for nonsmall cell lung cancer: exploring a new frontier. Curr. Opin. Oncol. 21, 116–123 (2009)CrossRefPubMed R. Sangha, P.N. Lara, P.C. Mack, D.R. Gandara, Beyond antiepidermal growth factor receptors and antiangiogenesis strategies for nonsmall cell lung cancer: exploring a new frontier. Curr. Opin. Oncol. 21, 116–123 (2009)CrossRefPubMed
11.
go back to reference S. Mateen, K. Raina, R. Agarwal, Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr. Cancer J. 65, 3–11 (2013)CrossRef S. Mateen, K. Raina, R. Agarwal, Chemopreventive and anti-cancer efficacy of silibinin against growth and progression of lung cancer. Nutr. Cancer J. 65, 3–11 (2013)CrossRef
12.
go back to reference J. Nones, T.C.E. Spohr, F.C. Gomes, Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem. Res. 36, 1776–1784 (2011)CrossRefPubMed J. Nones, T.C.E. Spohr, F.C. Gomes, Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem. Res. 36, 1776–1784 (2011)CrossRefPubMed
13.
go back to reference T. Tanaka, R. Takahashi, Flavonoids and asthma. Nutrients 10, 2128–2143 (2013)CrossRef T. Tanaka, R. Takahashi, Flavonoids and asthma. Nutrients 10, 2128–2143 (2013)CrossRef
14.
go back to reference J.A. Manthey, K. Grohmann, N. Guthrie, Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8, 135–153 (2001)CrossRefPubMed J.A. Manthey, K. Grohmann, N. Guthrie, Biological properties of citrus flavonoids pertaining to cancer and inflammation. Curr. Med. Chem. 8, 135–153 (2001)CrossRefPubMed
15.
go back to reference J. Yu, L. Wang, R.L. Walzem, E.G. Miller, L.M. Pike, B.S. Patil, Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem. 53, 2009–2014 (2005)CrossRefPubMed J. Yu, L. Wang, R.L. Walzem, E.G. Miller, L.M. Pike, B.S. Patil, Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J. Agric. Food Chem. 53, 2009–2014 (2005)CrossRefPubMed
16.
go back to reference S.L. Hwang, P.H. Shih, G.C. Yen, Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 60, 877–885 (2012)CrossRefPubMed S.L. Hwang, P.H. Shih, G.C. Yen, Neuroprotective effects of citrus flavonoids. J. Agric. Food Chem. 60, 877–885 (2012)CrossRefPubMed
17.
go back to reference E. Meiyanto, A. Hermawan, Anindyajati: natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian. Pac. J. Cancer Prev. 13, 427–1436 (2012)CrossRefPubMed E. Meiyanto, A. Hermawan, Anindyajati: natural products for cancer-targeted therapy: citrus flavonoids as potent chemopreventive agents. Asian. Pac. J. Cancer Prev. 13, 427–1436 (2012)CrossRefPubMed
18.
go back to reference J.A. Manthey, N. Guthrie, Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 50, 5837–5843 (2002)CrossRefPubMed J.A. Manthey, N. Guthrie, Antiproliferative activities of citrus flavonoids against six human cancer cell lines. J. Agric. Food Chem. 50, 5837–5843 (2002)CrossRefPubMed
19.
go back to reference G. Saiprasad, P. Chitra, R. Manikandan, G. Sudhandiran, Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice. Inflamm. Res. 62, 425–440 (2013)CrossRefPubMed G. Saiprasad, P. Chitra, R. Manikandan, G. Sudhandiran, Hesperidin alleviates oxidative stress and downregulates the expressions of proliferative and inflammatory markers in azoxymethane-induced experimental colon carcinogenesis in mice. Inflamm. Res. 62, 425–440 (2013)CrossRefPubMed
20.
go back to reference O.G. Benavente, J. Castillo, M. Alcaraz, V. Vicente, J.A. Del, A. Ortuno, Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr. Cancer Drug Targets 7, 795–809 (2007)CrossRef O.G. Benavente, J. Castillo, M. Alcaraz, V. Vicente, J.A. Del, A. Ortuno, Beneficial action of Citrus flavonoids on multiple cancer-related biological pathways. Curr. Cancer Drug Targets 7, 795–809 (2007)CrossRef
21.
go back to reference J. Nones, T.C.E. Spohr, F.C. Gomes, Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem. Res. 36, 1776–1784 (2011)CrossRefPubMed J. Nones, T.C.E. Spohr, F.C. Gomes, Hesperidin, a flavone glycoside, as mediator of neuronal survival. Neurochem. Res. 36, 1776–1784 (2011)CrossRefPubMed
22.
go back to reference V. Gaur, A. Kumar, Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol. Rep. 62, 635–648 (2010)CrossRefPubMed V. Gaur, A. Kumar, Hesperidin pre-treatment attenuates NO-mediated cerebral ischemic reperfusion injury and memory dysfunction. Pharmacol. Rep. 62, 635–648 (2010)CrossRefPubMed
23.
go back to reference S. Ou, Pharmacological action of hesperidin. Zhong. Yao. Cai. 25, 531–533 (2002)PubMed S. Ou, Pharmacological action of hesperidin. Zhong. Yao. Cai. 25, 531–533 (2002)PubMed
24.
go back to reference O. Benavente-Garcia, J. Castillo, Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56, 6185–6205 (2008)CrossRefPubMed O. Benavente-Garcia, J. Castillo, Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem. 56, 6185–6205 (2008)CrossRefPubMed
25.
go back to reference A. Chanet, D. Milenkovic, C. Manach, A. Mazur, C. Morand, Citrus flavanones: what is their role in cardiovascular protection? J. Agric. Food Chem. 60, 8809–8822 (2012)CrossRefPubMed A. Chanet, D. Milenkovic, C. Manach, A. Mazur, C. Morand, Citrus flavanones: what is their role in cardiovascular protection? J. Agric. Food Chem. 60, 8809–8822 (2012)CrossRefPubMed
26.
go back to reference B.D. Sahu, M. Kuncha, G.J. Sindhura, R. Sistla, Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20, 453–460 (2013)CrossRefPubMed B.D. Sahu, M. Kuncha, G.J. Sindhura, R. Sistla, Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20, 453–460 (2013)CrossRefPubMed
27.
go back to reference J.R. Patil, K.N. Chidambara Murthy, G.K. Jayaprakasha, M.B. Chetti, B.S. Patil, Bioactive compounds from Mexican lime [Citrus aurantifolia] juice induce apoptosis in human pancreatic cells. J. Agric. Food Chem 57, 10933–10942 (2009)CrossRefPubMed J.R. Patil, K.N. Chidambara Murthy, G.K. Jayaprakasha, M.B. Chetti, B.S. Patil, Bioactive compounds from Mexican lime [Citrus aurantifolia] juice induce apoptosis in human pancreatic cells. J. Agric. Food Chem 57, 10933–10942 (2009)CrossRefPubMed
28.
go back to reference M. Galleano, O. Pechanova, C.G. Fraga, Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol. 11, 837–848 (2010)CrossRefPubMed M. Galleano, O. Pechanova, C.G. Fraga, Hypertension, nitric oxide, oxidants, and dietary plant polyphenols. Curr. Pharm. Biotechnol. 11, 837–848 (2010)CrossRefPubMed
29.
go back to reference H.J. Park, M.J. Kim, E. Ha, J.H. Chung, Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine 15, 147–151 (2008)CrossRefPubMed H.J. Park, M.J. Kim, E. Ha, J.H. Chung, Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine 15, 147–151 (2008)CrossRefPubMed
30.
go back to reference A. Ghorban, M. Nazari, M. Jeddi-Tehrani, H. Zand, The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. Eur. J. Nutr. 51, 39–46 (2012)CrossRef A. Ghorban, M. Nazari, M. Jeddi-Tehrani, H. Zand, The citrus flavonoid hesperidin induces p53 and inhibits NF-κB activation in order to trigger apoptosis in NALM-6 cells: involvement of PPARγ-dependent mechanism. Eur. J. Nutr. 51, 39–46 (2012)CrossRef
31.
go back to reference M. Nazari, A. Ghorbani, A. Hekmat-Doost, M. Jeddi-Tehrani, H. Zand, Inactivation of nuclear factor-κB by citrus flavanone hesperidin contributes to apoptosis and chemo-sensitizing effect in Ramos cells. Eur. J. Pharmacol. 650, 526–533 (2011)CrossRefPubMed M. Nazari, A. Ghorbani, A. Hekmat-Doost, M. Jeddi-Tehrani, H. Zand, Inactivation of nuclear factor-κB by citrus flavanone hesperidin contributes to apoptosis and chemo-sensitizing effect in Ramos cells. Eur. J. Pharmacol. 650, 526–533 (2011)CrossRefPubMed
32.
go back to reference K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)CrossRef K. Mohankumar, S. Pajaniradje, S. Sridharan, V.K. Singh, L. Ronsard, A.C. Banerjea, B.C. Selvanesan, M.S. Coumar, L. Periyasamy, R. Rajagopalan, Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways. Cell. Oncol. 37, 439–454 (2014)CrossRef
33.
go back to reference S. Aranganathan, N. Nalini, Efficacy of the potential chemopreventive agent, hesperetin [citrus flavanone], on 1,2-dimethylhydrazine induced colon carcinogenesis. Food Chem. Toxicol. 47, 2594–2600 (2009)CrossRefPubMed S. Aranganathan, N. Nalini, Efficacy of the potential chemopreventive agent, hesperetin [citrus flavanone], on 1,2-dimethylhydrazine induced colon carcinogenesis. Food Chem. Toxicol. 47, 2594–2600 (2009)CrossRefPubMed
34.
go back to reference C.J. Lee, L. Wilson, M.A. Jordan, V. Nguyen, J. Tang, G. Smiyun, Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. Suppl 1, S15–S19 (2010)CrossRef C.J. Lee, L. Wilson, M.A. Jordan, V. Nguyen, J. Tang, G. Smiyun, Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res. Suppl 1, S15–S19 (2010)CrossRef
35.
go back to reference G. Saiprasad, P. Chitra, R. Manikandan, G. Sudhandiran, Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. Eur. J. Cancer 50, 2489–2507 (2014)CrossRefPubMed G. Saiprasad, P. Chitra, R. Manikandan, G. Sudhandiran, Hesperidin induces apoptosis and triggers autophagic markers through inhibition of Aurora-A mediated phosphoinositide-3-kinase/Akt/mammalian target of rapamycin and glycogen synthase kinase-3 beta signalling cascades in experimental colon carcinogenesis. Eur. J. Cancer 50, 2489–2507 (2014)CrossRefPubMed
36.
go back to reference S. Yumnam, HS. Park, MK. Kim, A. Nagappan, GE. et al, Hesperidin induces paraptosis like cell death in hepatoblatoma, HepG2 cells: involvement of ERK1/2 MAPK. PLoS One 30;9(6):e101321 (2014) S. Yumnam, HS. Park, MK. Kim, A. Nagappan, GE. et al, Hesperidin induces paraptosis like cell death in hepatoblatoma, HepG2 cells: involvement of ERK1/2 MAPK. PLoS One 30;9(6):e101321 (2014)
Metadata
Title
Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells
Authors
Zeynep Birsu Cincin
Miray Unlu
Bayram Kiran
Elif Sinem Bireller
Yusuf Baran
Bedia Cakmakoglu
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 3/2015
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-015-0222-z

Other articles of this Issue 3/2015

Cellular Oncology 3/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine