Skip to main content
Top
Published in: Neurotherapeutics 2/2018

01-04-2018 | Review

Glutamate and Its Receptors as Therapeutic Targets for Migraine

Authors: Jan Hoffmann, Andrew Charles

Published in: Neurotherapeutics | Issue 2/2018

Login to get access

Abstract

There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiological Reviews. 2017;97:553–622.PubMedPubMedCentralCrossRef Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiological Reviews. 2017;97:553–622.PubMedPubMedCentralCrossRef
2.
go back to reference Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005;179:4–29.PubMedCrossRef Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology (Berl). 2005;179:4–29.PubMedCrossRef
3.
go back to reference Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews. 2010;62:405–96.PubMedPubMedCentralCrossRef Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacological reviews. 2010;62:405–96.PubMedPubMedCentralCrossRef
4.
go back to reference Herrero I, Miras-Portugal MT, Sanchez-Prieto J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature. 1992;360:163–6.PubMedCrossRef Herrero I, Miras-Portugal MT, Sanchez-Prieto J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature. 1992;360:163–6.PubMedCrossRef
5.
go back to reference Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47:614–24.PubMedCrossRef Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47:614–24.PubMedCrossRef
6.
go back to reference Ferrari MD, Odink J, Bos KD, Malessy MJ, Bruyn GW. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology. 1990;40:1582–6.PubMedCrossRef Ferrari MD, Odink J, Bos KD, Malessy MJ, Bruyn GW. Neuroexcitatory plasma amino acids are elevated in migraine. Neurology. 1990;40:1582–6.PubMedCrossRef
7.
go back to reference Campos F, Sobrino T, Perez-Mato M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33:1148–54.PubMedCrossRef Campos F, Sobrino T, Perez-Mato M, et al. Glutamate oxaloacetate transaminase: a new key in the dysregulation of glutamate in migraine patients. Cephalalgia. 2013;33:1148–54.PubMedCrossRef
8.
go back to reference Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13:89–93.PubMedCrossRef Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13:89–93.PubMedCrossRef
9.
go back to reference Ferrari A, Spaccalopelo L, Pinetti D, Tacchi R, Bertolini A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia. 2009;29:423–9.PubMedCrossRef Ferrari A, Spaccalopelo L, Pinetti D, Tacchi R, Bertolini A. Effective prophylactic treatments of migraine lower plasma glutamate levels. Cephalalgia. 2009;29:423–9.PubMedCrossRef
10.
go back to reference Vieira DS, Naffah-Mazzacoratti Mda G, Zukerman E, et al. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine. Headache. 2007;47:842–7.PubMedCrossRef Vieira DS, Naffah-Mazzacoratti Mda G, Zukerman E, et al. Glutamate levels in cerebrospinal fluid and triptans overuse in chronic migraine. Headache. 2007;47:842–7.PubMedCrossRef
11.
go back to reference Peres MF, Zukerman E, Senne Soares CA, Alonso EO, Santos BF, Faulhaber MH. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. 2004;24:735–9.PubMedCrossRef Peres MF, Zukerman E, Senne Soares CA, Alonso EO, Santos BF, Faulhaber MH. Cerebrospinal fluid glutamate levels in chronic migraine. Cephalalgia. 2004;24:735–9.PubMedCrossRef
12.
go back to reference Nam JH, Lee HS, Kim J, Kim J, Chu MK. Salivary glutamate is elevated in individuals with chronic migraine. Cephalalgia. 2017;0333102417742366. Nam JH, Lee HS, Kim J, Kim J, Chu MK. Salivary glutamate is elevated in individuals with chronic migraine. Cephalalgia. 2017;0333102417742366.
13.
go back to reference Rajda C, Tajti J, Komoróczy R, Seres E, Klivényi P, Vécsei L. Amino acids in the saliva of patients with migraine. Headache: The Journal of Head and Face Pain. 1999;39:644–9.CrossRef Rajda C, Tajti J, Komoróczy R, Seres E, Klivényi P, Vécsei L. Amino acids in the saliva of patients with migraine. Headache: The Journal of Head and Face Pain. 1999;39:644–9.CrossRef
14.
15.
go back to reference Baad-Hansen L, Cairns B, Ernberg M, Svensson P. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia. 2010;30:68–76.PubMedCrossRef Baad-Hansen L, Cairns B, Ernberg M, Svensson P. Effect of systemic monosodium glutamate (MSG) on headache and pericranial muscle sensitivity. Cephalalgia. 2010;30:68–76.PubMedCrossRef
16.
go back to reference Yang WH, Drouin MA, Herbert M, Mao Y, Karsh J. The monosodium glutamate symptom complex: assessment in a double-blind, placebo-controlled, randomized study. J Allergy Clin Immunol. 1997;99:757–62.PubMedCrossRef Yang WH, Drouin MA, Herbert M, Mao Y, Karsh J. The monosodium glutamate symptom complex: assessment in a double-blind, placebo-controlled, randomized study. J Allergy Clin Immunol. 1997;99:757–62.PubMedCrossRef
17.
go back to reference Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12:64–82.PubMedCrossRef Vecsei L, Szalardy L, Fulop F, Toldi J. Kynurenines in the CNS: recent advances and new questions. Nat Rev Drug Discov. 2013;12:64–82.PubMedCrossRef
18.
go back to reference Nagy-Grocz G, Laborc KF, Veres G, et al. The effect of systemic nitroglycerin administration on the kynurenine pathway in the rat. Front Neurol. 2017;8:278.PubMedPubMedCentralCrossRef Nagy-Grocz G, Laborc KF, Veres G, et al. The effect of systemic nitroglycerin administration on the kynurenine pathway in the rat. Front Neurol. 2017;8:278.PubMedPubMedCentralCrossRef
19.
go back to reference Greco R, Demartini C, Zanaboni AM, et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia. 2017;37:1272–84.PubMedCrossRef Greco R, Demartini C, Zanaboni AM, et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: targets and anti-migraine mechanisms. Cephalalgia. 2017;37:1272–84.PubMedCrossRef
20.
go back to reference Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S. Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol. 2012;236:207–14.PubMedCrossRef Chauvel V, Vamos E, Pardutz A, Vecsei L, Schoenen J, Multon S. Effect of systemic kynurenine on cortical spreading depression and its modulation by sex hormones in rat. Exp Neurol. 2012;236:207–14.PubMedCrossRef
21.
go back to reference Curto M, Lionetto L, Negro A, et al. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain. 2015;17:47.PubMedCrossRef Curto M, Lionetto L, Negro A, et al. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J Headache Pain. 2015;17:47.PubMedCrossRef
22.
go back to reference Formicola D, Aloia A, Sampaolo S, et al. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC Med Genet. 2010;11:103.PubMedPubMedCentralCrossRef Formicola D, Aloia A, Sampaolo S, et al. Common variants in the regulative regions of GRIA1 and GRIA3 receptor genes are associated with migraine susceptibility. BMC Med Genet. 2010;11:103.PubMedPubMedCentralCrossRef
23.
go back to reference Maher BH, Lea RA, Follett J, et al. Association of a GRIA3 gene polymorphism with migraine in an Australian case-control cohort. Headache. 2013;53:1245–9.PubMedCrossRef Maher BH, Lea RA, Follett J, et al. Association of a GRIA3 gene polymorphism with migraine in an Australian case-control cohort. Headache. 2013;53:1245–9.PubMedCrossRef
24.
go back to reference Gasparini CF, Sutherland HG, Haupt LM, Griffiths LR. Genetic analysis of GRIA2 and GRIA4 genes in migraine. Headache. 2014;54:303–12.PubMedCrossRef Gasparini CF, Sutherland HG, Haupt LM, Griffiths LR. Genetic analysis of GRIA2 and GRIA4 genes in migraine. Headache. 2014;54:303–12.PubMedCrossRef
25.
go back to reference Cargnin S, Viana M, Mittino D, et al. Lack of association between GRIA1 polymorphisms and haplotypes with migraine without aura or response to triptans. Neurol Sci. 2014;35:421–7.PubMedCrossRef Cargnin S, Viana M, Mittino D, et al. Lack of association between GRIA1 polymorphisms and haplotypes with migraine without aura or response to triptans. Neurol Sci. 2014;35:421–7.PubMedCrossRef
26.
go back to reference Fang J, An X, Chen S, Yu Z, Ma Q, Qu H. Case-control study of GRIA1 and GRIA3 gene variants in migraine. J Headache Pain. 2015;17:2.PubMedCrossRef Fang J, An X, Chen S, Yu Z, Ma Q, Qu H. Case-control study of GRIA1 and GRIA3 gene variants in migraine. J Headache Pain. 2015;17:2.PubMedCrossRef
27.
go back to reference Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48:856–66.PubMedPubMedCentralCrossRef Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48:856–66.PubMedPubMedCentralCrossRef
28.
go back to reference Sutherland HG, Griffiths LR. Genetics of migraine: insights into the molecular basis of migraine disorders. Headache. 2017;57:537–69.PubMedCrossRef Sutherland HG, Griffiths LR. Genetics of migraine: insights into the molecular basis of migraine disorders. Headache. 2017;57:537–69.PubMedCrossRef
29.
go back to reference Shin HE, Han SJ, Lee KS, Park JW. Polymorphism of the glutamate transporter protein EAAT2 and migraine transformation into chronic daily headache. J Clin Neurol. 2011;7:143–7.PubMedPubMedCentralCrossRef Shin HE, Han SJ, Lee KS, Park JW. Polymorphism of the glutamate transporter protein EAAT2 and migraine transformation into chronic daily headache. J Clin Neurol. 2011;7:143–7.PubMedPubMedCentralCrossRef
30.
go back to reference Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the alpha1A subunit of P/Q type calcium channels. Neuroscience. 2000;95:639–45.PubMedCrossRef Ayata C, Shimizu-Sasamata M, Lo EH, Noebels JL, Moskowitz MA. Impaired neurotransmitter release and elevated threshold for cortical spreading depression in mice with mutations in the alpha1A subunit of P/Q type calcium channels. Neuroscience. 2000;95:639–45.PubMedCrossRef
31.
go back to reference Capuani C, Melone M, Tottene A, et al. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med. 2016;8:967–86.PubMedPubMedCentralCrossRef Capuani C, Melone M, Tottene A, et al. Defective glutamate and K+ clearance by cortical astrocytes in familial hemiplegic migraine type 2. EMBO Mol Med. 2016;8:967–86.PubMedPubMedCentralCrossRef
32.
go back to reference Riant F, Roze E, Barbance C, et al. PRRT2 mutations cause hemiplegic migraine. Neurology. 2012;79:2122–4.PubMedCrossRef Riant F, Roze E, Barbance C, et al. PRRT2 mutations cause hemiplegic migraine. Neurology. 2012;79:2122–4.PubMedCrossRef
33.
go back to reference Brennan KC, Bates EA, Shapiro RE, et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Science translational medicine. 2013;5:183ra56, 1-11.PubMedPubMedCentralCrossRef Brennan KC, Bates EA, Shapiro RE, et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Science translational medicine. 2013;5:183ra56, 1-11.PubMedPubMedCentralCrossRef
34.
go back to reference Hoffmann J, Martins-Oliveira M, Supronsinchai W, et al. The CK1δ T44A mutation affects nociceptive activation of the trigeminocervical complex in an in vivo model of migraine (P1.258). Neurology. 2014;82:P1.258. Hoffmann J, Martins-Oliveira M, Supronsinchai W, et al. The CK1δ T44A mutation affects nociceptive activation of the trigeminocervical complex in an in vivo model of migraine (P1.258). Neurology. 2014;82:P1.258.
36.
go back to reference Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neuroscience Letters. 1992;141:79–83.PubMedCrossRef Tallaksen-Greene SJ, Young AB, Penney JB, Beitz AJ. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neuroscience Letters. 1992;141:79–83.PubMedCrossRef
37.
go back to reference Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12:570–84.PubMedCrossRef Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12:570–84.PubMedCrossRef
38.
go back to reference Greenamyre J, Young A, Penney J. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. The Journal of Neuroscience. 1984;4:2133–44.PubMedCrossRef Greenamyre J, Young A, Penney J. Quantitative autoradiographic distribution of L-[3H]glutamate-binding sites in rat central nervous system. The Journal of Neuroscience. 1984;4:2133–44.PubMedCrossRef
39.
go back to reference Halpain S, Wieczorek C, Rainbow T. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. The Journal of Neuroscience. 1984;4:2247–58.PubMedCrossRef Halpain S, Wieczorek C, Rainbow T. Localization of L-glutamate receptors in rat brain by quantitative autoradiography. The Journal of Neuroscience. 1984;4:2247–58.PubMedCrossRef
40.
go back to reference Silva E, Quiñones B, Freund N, Gonzalez LE, Hernandez L. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Research. 2001;923:45–9.PubMedCrossRef Silva E, Quiñones B, Freund N, Gonzalez LE, Hernandez L. Extracellular glutamate, aspartate and arginine increase in the ventral posterolateral thalamic nucleus during nociceptive stimulation. Brain Research. 2001;923:45–9.PubMedCrossRef
41.
go back to reference Bereiter DA, Benetti AP. Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain. 1996;67:451–9.PubMedCrossRef Bereiter DA, Benetti AP. Excitatory amino release within spinal trigeminal nucleus after mustard oil injection into the temporomandibular joint region of the rat. Pain. 1996;67:451–9.PubMedCrossRef
42.
go back to reference Hill RG, Salt TE. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. The Journal of Physiology. 1982;327:65–78.PubMedPubMedCentralCrossRef Hill RG, Salt TE. An ionophoretic study of the responses of rat caudal trigeminal nucleus neurones to non-noxious mechanical sensory stimuli. The Journal of Physiology. 1982;327:65–78.PubMedPubMedCentralCrossRef
43.
go back to reference Bereiter DA, Bereiter DF, Hathaway CB. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat. Pain. 1996;64:179–89.PubMedCrossRef Bereiter DA, Bereiter DF, Hathaway CB. The NMDA receptor antagonist MK-801 reduces Fos-like immunoreactivity in central trigeminal neurons and blocks select endocrine and autonomic responses to corneal stimulation in the rat. Pain. 1996;64:179–89.PubMedCrossRef
44.
go back to reference Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience. 1999;90:1371–6.PubMedCrossRef Storer RJ, Goadsby PJ. Trigeminovascular nociceptive transmission involves N-methyl-D-aspartate and non-N-methyl-D-aspartate glutamate receptors. Neuroscience. 1999;90:1371–6.PubMedCrossRef
45.
go back to reference Hoffmann J, Park JW, Storer RJ, Goadsby PJ. Magnesium and memantine do not inhibit nociceptive neuronal activity in the trigeminocervical complex of the rat. J Headache Pain. 2013;1 (Suppl 1):71.CrossRef Hoffmann J, Park JW, Storer RJ, Goadsby PJ. Magnesium and memantine do not inhibit nociceptive neuronal activity in the trigeminocervical complex of the rat. J Headache Pain. 2013;1 (Suppl 1):71.CrossRef
46.
go back to reference Ma Q-P. Co-localization of 5-HT1B/1D/1F receptors and glutamate in trigeminal ganglia in rats. Neuroreport. 2001;12:1589–91.PubMedCrossRef Ma Q-P. Co-localization of 5-HT1B/1D/1F receptors and glutamate in trigeminal ganglia in rats. Neuroreport. 2001;12:1589–91.PubMedCrossRef
47.
go back to reference Zhou Q, Wang J, Zhang X, Zeng L, Wang L, Jiang W. Effect of metabotropic glutamate 5 receptor antagonists on morphine efficacy and tolerance in rats with neuropathic pain. European Journal of Pharmacology. 2013;718:17–23.PubMedCrossRef Zhou Q, Wang J, Zhang X, Zeng L, Wang L, Jiang W. Effect of metabotropic glutamate 5 receptor antagonists on morphine efficacy and tolerance in rats with neuropathic pain. European Journal of Pharmacology. 2013;718:17–23.PubMedCrossRef
48.
go back to reference Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;12:223–9.PubMedCrossRef Lauritzen M, Hansen AJ. The effect of glutamate receptor blockade on anoxic depolarization and cortical spreading depression. J Cereb Blood Flow Metab. 1992;12:223–9.PubMedCrossRef
49.
go back to reference Faria LC, Mody I. Protective effect of ifenprodil against spreading depression in the mouse entorhinal cortex. J Neurophysiol. 2004;92:2610–4.PubMedCrossRef Faria LC, Mody I. Protective effect of ifenprodil against spreading depression in the mouse entorhinal cortex. J Neurophysiol. 2004;92:2610–4.PubMedCrossRef
50.
go back to reference Peeters M, Gunthorpe MJ, Strijbos PJ, Goldsmith P, Upton N, James MF. Effects of pan- and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther. 2007;321:564–72.PubMedCrossRef Peeters M, Gunthorpe MJ, Strijbos PJ, Goldsmith P, Upton N, James MF. Effects of pan- and subtype-selective N-methyl-D-aspartate receptor antagonists on cortical spreading depression in the rat: therapeutic potential for migraine. J Pharmacol Exp Ther. 2007;321:564–72.PubMedCrossRef
51.
go back to reference Sanchez-Porras R, Santos E, Scholl M, et al. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology. 2014;84:52–61.PubMedCrossRef Sanchez-Porras R, Santos E, Scholl M, et al. The effect of ketamine on optical and electrical characteristics of spreading depolarizations in gyrencephalic swine cortex. Neuropharmacology. 2014;84:52–61.PubMedCrossRef
52.
go back to reference Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. 2005;16:1383–7.PubMedCrossRef Akerman S, Goadsby PJ. Topiramate inhibits cortical spreading depression in rat and cat: impact in migraine aura. Neuroreport. 2005;16:1383–7.PubMedCrossRef
53.
go back to reference Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. Journal of Neurophysiology. 1987;57:869–88.PubMedCrossRef Mody I, Lambert JD, Heinemann U. Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. Journal of Neurophysiology. 1987;57:869–88.PubMedCrossRef
54.
go back to reference Addae JI, Ali N, Stone TW. Effects of AMPA and clomethiazole on spreading depression cycles in the rat neocortex in vivo. Eur J Pharmacol. 2011;653:41–6.PubMedCrossRef Addae JI, Ali N, Stone TW. Effects of AMPA and clomethiazole on spreading depression cycles in the rat neocortex in vivo. Eur J Pharmacol. 2011;653:41–6.PubMedCrossRef
55.
go back to reference Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology. 1999;38:735–67.PubMedCrossRef Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-d-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology. 1999;38:735–67.PubMedCrossRef
56.
go back to reference Le Doaré K, Akerman S, Holland PR, et al. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neuroscience Letters. 2006;403:73–7.PubMedCrossRef Le Doaré K, Akerman S, Holland PR, et al. Occipital afferent activation of second order neurons in the trigeminocervical complex in rat. Neuroscience Letters. 2006;403:73–7.PubMedCrossRef
57.
go back to reference Hattori Y, Watanabe M, Iwabe T, et al. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Research. 2004;1021:183–91.PubMedCrossRef Hattori Y, Watanabe M, Iwabe T, et al. Administration of MK-801 decreases c-Fos expression in the trigeminal sensory nuclear complex but increases it in the midbrain during experimental movement of rat molars. Brain Research. 2004;1021:183–91.PubMedCrossRef
58.
go back to reference Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123 ( Pt 8):1703–9.PubMedCrossRef Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;123 ( Pt 8):1703–9.PubMedCrossRef
59.
go back to reference Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. The Journal of Pain. 2009;10:895–926.PubMedPubMedCentralCrossRef Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. The Journal of Pain. 2009;10:895–926.PubMedPubMedCentralCrossRef
60.
go back to reference Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–15.PubMedCrossRef Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152:S2–15.PubMedCrossRef
61.
go back to reference Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.PubMedCrossRef Woolf CJ, Thompson SW. The induction and maintenance of central sensitization is dependent on N-methyl-D-aspartic acid receptor activation; implications for the treatment of post-injury pain hypersensitivity states. Pain. 1991;44:293–9.PubMedCrossRef
62.
go back to reference Haley JE, Dickenson AH. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Research. 2016;1645:58–60. Haley JE, Dickenson AH. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat. Brain Research. 2016;1645:58–60.
63.
go back to reference Jackson DL, Graff CB, Richardson JD, Hargreaves KM. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. European Journal of Pharmacology. 1995;284:321–5.PubMedCrossRef Jackson DL, Graff CB, Richardson JD, Hargreaves KM. Glutamate participates in the peripheral modulation of thermal hyperalgesia in rats. European Journal of Pharmacology. 1995;284:321–5.PubMedCrossRef
64.
go back to reference Lawand NB, Willis WD, Westlund KN. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. European Journal of Pharmacology. 1997;324:169–77.PubMedCrossRef Lawand NB, Willis WD, Westlund KN. Excitatory amino acid receptor involvement in peripheral nociceptive transmission in rats. European Journal of Pharmacology. 1997;324:169–77.PubMedCrossRef
65.
go back to reference Filatova E, Latysheva N, Kurenkov A. Evidence of persistent central sensitization in chronic headaches: a multi-method study. The Journal of Headache and Pain. 2008;9:295–300.PubMedPubMedCentralCrossRef Filatova E, Latysheva N, Kurenkov A. Evidence of persistent central sensitization in chronic headaches: a multi-method study. The Journal of Headache and Pain. 2008;9:295–300.PubMedPubMedCentralCrossRef
66.
go back to reference Buchgreitz L, Lyngberg AC, Bendtsen L, Jensen R. Frequency of headache is related to sensitization: a population study. Pain. 2006;123:19–27.PubMedCrossRef Buchgreitz L, Lyngberg AC, Bendtsen L, Jensen R. Frequency of headache is related to sensitization: a population study. Pain. 2006;123:19–27.PubMedCrossRef
67.
go back to reference Buchgreitz L, Lyngberg AC, Bendtsen L, Jensen R. Increased prevalence of tension-type headache over a 12-year period is related to increased pain sensitivity. A population study. Cephalalgia. 2007;27:145–52.PubMedCrossRef Buchgreitz L, Lyngberg AC, Bendtsen L, Jensen R. Increased prevalence of tension-type headache over a 12-year period is related to increased pain sensitivity. A population study. Cephalalgia. 2007;27:145–52.PubMedCrossRef
68.
go back to reference Srikiatkhachorn A, Grand SM, Supornsilpchai W, Storer RJ. Pathophysiology of medication overuse headache—an update. Headache: The Journal of Head and Face Pain. 2014;54:204–10.CrossRef Srikiatkhachorn A, Grand SM, Supornsilpchai W, Storer RJ. Pathophysiology of medication overuse headache—an update. Headache: The Journal of Head and Face Pain. 2014;54:204–10.CrossRef
69.
go back to reference Mitsikostas DD, Sanchez del Rio M, Waeber C, Huang Z, Cutrer FM, Moskowitz MA. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Brit J Pharmacol. 1999;127:623–30.CrossRef Mitsikostas DD, Sanchez del Rio M, Waeber C, Huang Z, Cutrer FM, Moskowitz MA. Non-NMDA glutamate receptors modulate capsaicin induced c-fos expression within trigeminal nucleus caudalis. Brit J Pharmacol. 1999;127:623–30.CrossRef
70.
go back to reference Johnson KW, Dieckman DK, Phebus LA, et al. GLUR5 antagonists as novel migraine therapies. Cephalagia. 2001;21:268. Johnson KW, Dieckman DK, Phebus LA, et al. GLUR5 antagonists as novel migraine therapies. Cephalagia. 2001;21:268.
71.
go back to reference Ramadan N, Sang C, Chappell A, et al. IV LY293558, an AMPA/KA receptor antagonist, is effective in migraine. Cephalagia. 2001;21:267.CrossRef Ramadan N, Sang C, Chappell A, et al. IV LY293558, an AMPA/KA receptor antagonist, is effective in migraine. Cephalagia. 2001;21:267.CrossRef
72.
go back to reference Jane DE, Lodge D, Collingridge GL. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology. 2009;56:90–113.PubMedCrossRef Jane DE, Lodge D, Collingridge GL. Kainate receptors: pharmacology, function and therapeutic potential. Neuropharmacology. 2009;56:90–113.PubMedCrossRef
73.
go back to reference Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology. 2009;56:2–5.PubMedCrossRef Collingridge GL, Olsen RW, Peters J, Spedding M. A nomenclature for ligand-gated ion channels. Neuropharmacology. 2009;56:2–5.PubMedCrossRef
74.
go back to reference Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends in Pharmacological Sciences. 1999;20:26–35.PubMedCrossRef Chittajallu R, Braithwaite SP, Clarke VRJ, Henley JM. Kainate receptors: subunits, synaptic localization and function. Trends in Pharmacological Sciences. 1999;20:26–35.PubMedCrossRef
75.
go back to reference Sahara Y, Noro N, Iida Y, Soma K, Nakamura Y. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. The Journal of Neuroscience. 1997;17:6611–20.PubMedCrossRef Sahara Y, Noro N, Iida Y, Soma K, Nakamura Y. Glutamate receptor subunits GluR5 and KA-2 are coexpressed in rat trigeminal ganglion neurons. The Journal of Neuroscience. 1997;17:6611–20.PubMedCrossRef
76.
go back to reference Andreou AP, Holland PR, Lasalandra MP, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain. 2015;156:439–50.PubMedCrossRef Andreou AP, Holland PR, Lasalandra MP, Goadsby PJ. Modulation of nociceptive dural input to the trigeminocervical complex through GluK1 kainate receptors. Pain. 2015;156:439–50.PubMedCrossRef
77.
go back to reference Kerchner GA, Wang G-D, Qiu C-S, Huettner JE, Zhuo M. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism. Neuron. 2001;32:477–88.PubMedCrossRef Kerchner GA, Wang G-D, Qiu C-S, Huettner JE, Zhuo M. Direct presynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism. Neuron. 2001;32:477–88.PubMedCrossRef
78.
go back to reference Kerchner GA, Wilding TJ, Huettner JE, Zhuo M. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. The Journal of Neuroscience. 2002;22:8010–7.PubMedCrossRef Kerchner GA, Wilding TJ, Huettner JE, Zhuo M. Kainate receptor subunits underlying presynaptic regulation of transmitter release in the dorsal horn. The Journal of Neuroscience. 2002;22:8010–7.PubMedCrossRef
79.
go back to reference Bortolotto ZA, Clarke VRJ, Delany CM, et al. Kainate receptors are involved in synaptic plasticity. Nature. 1999;402:297–301.PubMedCrossRef Bortolotto ZA, Clarke VRJ, Delany CM, et al. Kainate receptors are involved in synaptic plasticity. Nature. 1999;402:297–301.PubMedCrossRef
80.
go back to reference Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature. 1997;388:182–6.PubMedCrossRef Castillo PE, Malenka RC, Nicoll RA. Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature. 1997;388:182–6.PubMedCrossRef
81.
go back to reference Li P, Wilding TJ, Kim SJ, Calejesan AA, Huettner JE, Zhuo M. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature. 1999;397:161–4.PubMedCrossRef Li P, Wilding TJ, Kim SJ, Calejesan AA, Huettner JE, Zhuo M. Kainate-receptor-mediated sensory synaptic transmission in mammalian spinal cord. Nature. 1999;397:161–4.PubMedCrossRef
82.
go back to reference Huettner JE. Kainate receptors and synaptic transmission. Progress in Neurobiology. 2003;70:387–407.PubMedCrossRef Huettner JE. Kainate receptors and synaptic transmission. Progress in Neurobiology. 2003;70:387–407.PubMedCrossRef
83.
go back to reference Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Brit J Pharmacol. 2009;157:464–73.CrossRef Andreou AP, Holland PR, Goadsby PJ. Activation of iGluR5 kainate receptors inhibits neurogenic dural vasodilatation in an animal model of trigeminovascular activation. Brit J Pharmacol. 2009;157:464–73.CrossRef
84.
go back to reference Zhou S, Bonasera L, Carlton SM. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport. 1996;7:895–900.PubMedCrossRef Zhou S, Bonasera L, Carlton SM. Peripheral administration of NMDA, AMPA or KA results in pain behaviors in rats. Neuroreport. 1996;7:895–900.PubMedCrossRef
85.
go back to reference Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia. 1997;17:785–90.PubMedCrossRef Goldstein DJ, Wang O, Saper JR, Stoltz R, Silberstein SD, Mathew NT. Ineffectiveness of neurokinin-1 antagonist in acute migraine: a crossover study. Cephalalgia. 1997;17:785–90.PubMedCrossRef
86.
go back to reference Goldstein DJ, Offen WW, Klein EG, et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia. 2001;21:102–6.PubMedCrossRef Goldstein DJ, Offen WW, Klein EG, et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia. 2001;21:102–6.PubMedCrossRef
87.
go back to reference Sang CN, Ramadan NM, Wallihan RG, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia. 2004;24:596–602.PubMedCrossRef Sang CN, Ramadan NM, Wallihan RG, et al. LY293558, a novel AMPA/GluR5 antagonist, is efficacious and well-tolerated in acute migraine. Cephalalgia. 2004;24:596–602.PubMedCrossRef
88.
go back to reference Chan KY, Edvinsson L, Eftekhari S, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. J Pharmacol Exp Ther. 2010;334:746–52.PubMedCrossRef Chan KY, Edvinsson L, Eftekhari S, et al. Characterization of the calcitonin gene-related peptide receptor antagonist telcagepant (MK-0974) in human isolated coronary arteries. J Pharmacol Exp Ther. 2010;334:746–52.PubMedCrossRef
89.
go back to reference Brandes JL, Saper JR, Diamond M, et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA. 2004;291:965–73.PubMedCrossRef Brandes JL, Saper JR, Diamond M, et al. Topiramate for migraine prevention: a randomized controlled trial. JAMA. 2004;291:965–73.PubMedCrossRef
90.
go back to reference Silberstein SD, Neto W, Schmitt J, Jacobs D. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61:490–5.PubMedCrossRef Silberstein SD, Neto W, Schmitt J, Jacobs D. Topiramate in migraine prevention: results of a large controlled trial. Arch Neurol. 2004;61:490–5.PubMedCrossRef
91.
go back to reference Bussone G, Diener HC, Pfeil J, Schwalen S. Topiramate 100 mg/day in migraine prevention: a pooled analysis of double-blinded randomised controlled trials. Int J Clin Pract. 2005;59:961–8.PubMedCrossRef Bussone G, Diener HC, Pfeil J, Schwalen S. Topiramate 100 mg/day in migraine prevention: a pooled analysis of double-blinded randomised controlled trials. Int J Clin Pract. 2005;59:961–8.PubMedCrossRef
92.
go back to reference Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia. 2011;31:1343–58.PubMedCrossRef Andreou AP, Goadsby PJ. Topiramate in the treatment of migraine: a kainate (glutamate) receptor antagonist within the trigeminothalamic pathway. Cephalalgia. 2011;31:1343–58.PubMedCrossRef
93.
go back to reference Bhave G, Karim F, Carlton SM, Gereau IV RW. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci. 2001;4:417–23.PubMedCrossRef Bhave G, Karim F, Carlton SM, Gereau IV RW. Peripheral group I metabotropic glutamate receptors modulate nociception in mice. Nat Neurosci. 2001;4:417–23.PubMedCrossRef
94.
go back to reference Gillard SE, Tzaferis J, Tsui H-CT, Kingston AE. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. The Journal of Comparative Neurology. 2003;461:317–32.PubMedCrossRef Gillard SE, Tzaferis J, Tsui H-CT, Kingston AE. Expression of metabotropic glutamate receptors in rat meningeal and brain microvasculature and choroid plexus. The Journal of Comparative Neurology. 2003;461:317–32.PubMedCrossRef
95.
go back to reference Li B, Lu L, Tan X, Zhong M, Guo Y, Yi X. Peripheral metabotropic glutamate receptor subtype 5 contributes to inflammation-induced hypersensitivity of the rat temporomandibular joint. Journal of Molecular Neuroscience. 2013;51:710–8.PubMedCrossRef Li B, Lu L, Tan X, Zhong M, Guo Y, Yi X. Peripheral metabotropic glutamate receptor subtype 5 contributes to inflammation-induced hypersensitivity of the rat temporomandibular joint. Journal of Molecular Neuroscience. 2013;51:710–8.PubMedCrossRef
96.
go back to reference Waung MW, Akerman S, Wakefield M, Keywood C, Goadsby PJ. Metabotropic glutamate receptor 5: a target for migraine therapy. Annals of Clinical and Translational Neurology. 2016;3:560–71.PubMedPubMedCentralCrossRef Waung MW, Akerman S, Wakefield M, Keywood C, Goadsby PJ. Metabotropic glutamate receptor 5: a target for migraine therapy. Annals of Clinical and Translational Neurology. 2016;3:560–71.PubMedPubMedCentralCrossRef
97.
go back to reference Tashiro A, Nishida Y, Bereiter DA. Local group I mGluR antagonists reduce TMJ-evoked activity of trigeminal subnucleus caudalis neurons in female rats. Neuroscience. 2015;299:125–33.PubMedCrossRef Tashiro A, Nishida Y, Bereiter DA. Local group I mGluR antagonists reduce TMJ-evoked activity of trigeminal subnucleus caudalis neurons in female rats. Neuroscience. 2015;299:125–33.PubMedCrossRef
98.
go back to reference Muñoz A, Liu XB, Jones EG. Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. Journal of Comparative Neurology. 1999;409:549–66.PubMedCrossRef Muñoz A, Liu XB, Jones EG. Development of metabotropic glutamate receptors from trigeminal nuclei to barrel cortex in postnatal mouse. Journal of Comparative Neurology. 1999;409:549–66.PubMedCrossRef
99.
go back to reference Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neuroscience Letters. 1993;163:53–7.PubMedCrossRef Shigemoto R, Nomura S, Ohishi H, Sugihara H, Nakanishi S, Mizuno N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. Neuroscience Letters. 1993;163:53–7.PubMedCrossRef
100.
go back to reference Walker K, Bowes M, Panesar M, et al. Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function: I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology. 2001;40:1–9.PubMedCrossRef Walker K, Bowes M, Panesar M, et al. Metabotropic glutamate receptor subtype 5 (mGlu5) and nociceptive function: I. Selective blockade of mGlu5 receptors in models of acute, persistent and chronic pain. Neuropharmacology. 2001;40:1–9.PubMedCrossRef
101.
go back to reference Walker K, Reeve A, Bowes M, et al. mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology. 2001;40:10–9.PubMedCrossRef Walker K, Reeve A, Bowes M, et al. mGlu5 receptors and nociceptive function II. mGlu5 receptors functionally expressed on peripheral sensory neurones mediate inflammatory hyperalgesia. Neuropharmacology. 2001;40:10–9.PubMedCrossRef
102.
go back to reference Kawasaki Y, Kohno T, Zhuang Z-Y, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of Neuroscience. 2004;24:8310–21.PubMedCrossRef Kawasaki Y, Kohno T, Zhuang Z-Y, et al. Ionotropic and metabotropic receptors, protein kinase A, protein kinase C, and Src contribute to C-fiber-induced ERK activation and cAMP response element-binding protein phosphorylation in dorsal horn neurons, leading to central sensitization. The Journal of Neuroscience. 2004;24:8310–21.PubMedCrossRef
103.
go back to reference Schröder H, Wu DF, Seifert A, et al. Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the μ-opioid receptor. Neuropharmacology. 2009;56:768–78.PubMedCrossRef Schröder H, Wu DF, Seifert A, et al. Allosteric modulation of metabotropic glutamate receptor 5 affects phosphorylation, internalization, and desensitization of the μ-opioid receptor. Neuropharmacology. 2009;56:768–78.PubMedCrossRef
104.
go back to reference Boye Larsen D, Ingemann Kristensen G, et al. Investigating the expression of metabotropic glutamate receptors in trigeminal ganglion neurons and satellite glial cells: implications for craniofacial pain. Journal of Receptors and Signal Transduction. 2014;34:261–9.PubMedPubMedCentralCrossRef Boye Larsen D, Ingemann Kristensen G, et al. Investigating the expression of metabotropic glutamate receptors in trigeminal ganglion neurons and satellite glial cells: implications for craniofacial pain. Journal of Receptors and Signal Transduction. 2014;34:261–9.PubMedPubMedCentralCrossRef
105.
go back to reference Shigemoto R, Nakanishi S, Mizuno N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. Journal of Comparative Neurology. 1992;322:121–35.PubMedCrossRef Shigemoto R, Nakanishi S, Mizuno N. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR1) in the central nervous system: an in situ hybridization study in adult and developing rat. Journal of Comparative Neurology. 1992;322:121–35.PubMedCrossRef
106.
go back to reference Salt TE, Binns KE. Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-d-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons. Neuroscience. 2000;100:375–80.PubMedCrossRef Salt TE, Binns KE. Contributions of mGlu1 and mGlu5 receptors to interactions with N-methyl-d-aspartate receptor-mediated responses and nociceptive sensory responses of rat thalamic neurons. Neuroscience. 2000;100:375–80.PubMedCrossRef
107.
go back to reference Salt TE, Eaton SA. Excitatory actions of the metabotropic excitatory amino acid receptor agonist, trans-(±)-1-amino-cyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neurons in vivo. European Journal of Neuroscience. 1991;3:1104–11.PubMedCrossRef Salt TE, Eaton SA. Excitatory actions of the metabotropic excitatory amino acid receptor agonist, trans-(±)-1-amino-cyclopentane-1,3-dicarboxylate (t-ACPD), on rat thalamic neurons in vivo. European Journal of Neuroscience. 1991;3:1104–11.PubMedCrossRef
108.
go back to reference Salt TE, Eaton SA. Modulation of sensory neurone excitatory and inhibitory responses in the ventrobasal thalamus by activation of metabotropic excitatory amino acid receptors. Neuropharmacology. 1995;34:1043–51.PubMedCrossRef Salt TE, Eaton SA. Modulation of sensory neurone excitatory and inhibitory responses in the ventrobasal thalamus by activation of metabotropic excitatory amino acid receptors. Neuropharmacology. 1995;34:1043–51.PubMedCrossRef
109.
go back to reference Salt TE, Eaton SA, Turner JP. Characterization of the metabotropic glutamate receptors (mGluRs) which modulate GABA-mediated inhibition in the ventrobasal thalamus. Neurochemistry International. 1996;29:317–22.PubMedCrossRef Salt TE, Eaton SA, Turner JP. Characterization of the metabotropic glutamate receptors (mGluRs) which modulate GABA-mediated inhibition in the ventrobasal thalamus. Neurochemistry International. 1996;29:317–22.PubMedCrossRef
110.
go back to reference Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Progress in Neurobiology. 1996;48:55–72.PubMedCrossRef Salt TE, Eaton SA. Functions of ionotropic and metabotropic glutamate receptors in sensory transmission in the mammalian thalamus. Progress in Neurobiology. 1996;48:55–72.PubMedCrossRef
111.
go back to reference Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. The Journal of Comparative Neurology. 1995;360:555–70.PubMedCrossRef Ohishi H, Akazawa C, Shigemoto R, Nakanishi S, Mizuno N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. The Journal of Comparative Neurology. 1995;360:555–70.PubMedCrossRef
112.
go back to reference Ohishi H, Nomura S, Ding YQ, et al. Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett. 1995;202:85–8.PubMedCrossRef Ohishi H, Nomura S, Ding YQ, et al. Presynaptic localization of a metabotropic glutamate receptor, mGluR7, in the primary afferent neurons: an immunohistochemical study in the rat. Neurosci Lett. 1995;202:85–8.PubMedCrossRef
113.
go back to reference Li J-L, Ohishi H, Kaneko T, et al. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR7, in ganglion neurons of the rat; with special reference to the presence in glutamatergic ganglion neurons. Neuroscience Letters. 1996;204:9–12.PubMedCrossRef Li J-L, Ohishi H, Kaneko T, et al. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR7, in ganglion neurons of the rat; with special reference to the presence in glutamatergic ganglion neurons. Neuroscience Letters. 1996;204:9–12.PubMedCrossRef
114.
go back to reference Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study. The Journal of Comparative Neurology. 1998;393:332–52.PubMedCrossRef Kinoshita A, Shigemoto R, Ohishi H, van der Putten H, Mizuno N. Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: A light and electron microscopic study. The Journal of Comparative Neurology. 1998;393:332–52.PubMedCrossRef
115.
go back to reference Jain AC, Sethi NC, Babbar PK. A clinical electroencephalgraphic and trace element study with special reference to zinc, copper and magnesium in serum and cerebrospinal fluid (CSF) in cases of migraine. Journal of Neurology. 1985;232, Supplement 1:161. Jain AC, Sethi NC, Babbar PK. A clinical electroencephalgraphic and trace element study with special reference to zinc, copper and magnesium in serum and cerebrospinal fluid (CSF) in cases of migraine. Journal of Neurology. 1985;232, Supplement 1:161.
116.
go back to reference Sarchielli P, Coata G, Firenze C, Morucci P, Abbritti G, Gallai V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia. 1992;12:21–7.PubMedCrossRef Sarchielli P, Coata G, Firenze C, Morucci P, Abbritti G, Gallai V. Serum and salivary magnesium levels in migraine and tension-type headache. Results in a group of adult patients. Cephalalgia. 1992;12:21–7.PubMedCrossRef
117.
go back to reference Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;29:416–9.PubMedCrossRef Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM. Low brain magnesium in migraine. Headache. 1989;29:416–9.PubMedCrossRef
118.
go back to reference Orr SL. Diet and nutraceutical interventions for headache management: a review of the evidence. Cephalalgia. 2016;36:1112–33.PubMedCrossRef Orr SL. Diet and nutraceutical interventions for headache management: a review of the evidence. Cephalalgia. 2016;36:1112–33.PubMedCrossRef
119.
go back to reference Tepper SJ. Nutraceutical and other modalities for the treatment of headache. Continuum (Minneap Minn). 2015;21:1018–31.PubMed Tepper SJ. Nutraceutical and other modalities for the treatment of headache. Continuum (Minneap Minn). 2015;21:1018–31.PubMed
120.
go back to reference Diener HC, Tfelt-Hansen P, Dahlof C, et al. Topiramate in migraine prophylaxis—results from a placebo-controlled trial with propranolol as an active control. J Neurol. 2004;251:943–50.PubMedCrossRef Diener HC, Tfelt-Hansen P, Dahlof C, et al. Topiramate in migraine prophylaxis—results from a placebo-controlled trial with propranolol as an active control. J Neurol. 2004;251:943–50.PubMedCrossRef
121.
go back to reference Diener HC, Bussone G, Van Oene JC, Lahaye M, Schwalen S, Goadsby PJ. Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia. 2007;27:814–23.PubMedCrossRef Diener HC, Bussone G, Van Oene JC, Lahaye M, Schwalen S, Goadsby PJ. Topiramate reduces headache days in chronic migraine: a randomized, double-blind, placebo-controlled study. Cephalalgia. 2007;27:814–23.PubMedCrossRef
122.
go back to reference Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A. Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res. 2004;29:275–82.PubMedCrossRef Poulsen CF, Simeone TA, Maar TE, Smith-Swintosky V, White HS, Schousboe A. Modulation by topiramate of AMPA and kainate mediated calcium influx in cultured cerebral cortical, hippocampal and cerebellar neurons. Neurochem Res. 2004;29:275–82.PubMedCrossRef
123.
go back to reference Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. Handb Clin Neurol. 2012;108:663–81.PubMedCrossRef Porter RJ, Dhir A, Macdonald RL, Rogawski MA. Mechanisms of action of antiseizure drugs. Handb Clin Neurol. 2012;108:663–81.PubMedCrossRef
124.
go back to reference Hoffmann J, Akerman S, Goadsby PJ. Efficacy and mechanism of anticonvulsant drugs in migraine. Expert Rev Clin Pharmacol. 2014;7:191–201.PubMedCrossRef Hoffmann J, Akerman S, Goadsby PJ. Efficacy and mechanism of anticonvulsant drugs in migraine. Expert Rev Clin Pharmacol. 2014;7:191–201.PubMedCrossRef
125.
go back to reference McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006:CD003154. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006:CD003154.
126.
go back to reference Rammes G, Rupprecht R, Ferrari U, Zieglgansberger W, Parsons CG. The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci Lett. 2001;306:81–4.PubMedCrossRef Rammes G, Rupprecht R, Ferrari U, Zieglgansberger W, Parsons CG. The N-methyl-D-aspartate receptor channel blockers memantine, MRZ 2/579 and other amino-alkyl-cyclohexanes antagonise 5-HT(3) receptor currents in cultured HEK-293 and N1E-115 cell systems in a non-competitive manner. Neurosci Lett. 2001;306:81–4.PubMedCrossRef
127.
go back to reference Aracava Y, Pereira EF, Maelicke A, Albuquerque EX. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther. 2005;312:1195–205.PubMedCrossRef Aracava Y, Pereira EF, Maelicke A, Albuquerque EX. Memantine blocks alpha7* nicotinic acetylcholine receptors more potently than n-methyl-D-aspartate receptors in rat hippocampal neurons. J Pharmacol Exp Ther. 2005;312:1195–205.PubMedCrossRef
128.
go back to reference Bigal M, Rapoport A, Sheftell F, Tepper D, Tepper S. Memantine in the preventive treatment of refractory migraine. Headache. 2008;48:1337–42.PubMedCrossRef Bigal M, Rapoport A, Sheftell F, Tepper D, Tepper S. Memantine in the preventive treatment of refractory migraine. Headache. 2008;48:1337–42.PubMedCrossRef
129.
go back to reference Charles A, Flippen C, Romero Reyes M, Brennan KC. Memantine for prevention of migraine: a retrospective study of 60 cases. J Headache Pain. 2007;8:248–50.PubMedPubMedCentralCrossRef Charles A, Flippen C, Romero Reyes M, Brennan KC. Memantine for prevention of migraine: a retrospective study of 60 cases. J Headache Pain. 2007;8:248–50.PubMedPubMedCentralCrossRef
130.
go back to reference Noruzzadeh R, Modabbernia A, Aghamollaii V, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache: The Journal of Head and Face Pain. 2016;56:95–103.CrossRef Noruzzadeh R, Modabbernia A, Aghamollaii V, et al. Memantine for prophylactic treatment of migraine without aura: a randomized double-blind placebo-controlled study. Headache: The Journal of Head and Face Pain. 2016;56:95–103.CrossRef
131.
go back to reference Iacobucci GJ, Visnjevac O, Pourafkari L, Nader ND. Ketamine: an update on cellular and subcellular mechanisms with implications for clinical practice. Pain Physician. 2017;20:E285-E301.PubMed Iacobucci GJ, Visnjevac O, Pourafkari L, Nader ND. Ketamine: an update on cellular and subcellular mechanisms with implications for clinical practice. Pain Physician. 2017;20:E285-E301.PubMed
132.
go back to reference Wohleb ES, Gerhard D, Thomas A, Duman RS. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr Neuropharmacol. 2017;15:11–20.PubMedPubMedCentralCrossRef Wohleb ES, Gerhard D, Thomas A, Duman RS. Molecular and cellular mechanisms of rapid-acting antidepressants ketamine and scopolamine. Curr Neuropharmacol. 2017;15:11–20.PubMedPubMedCentralCrossRef
133.
go back to reference Lauritsen C, Mazuera S, Lipton RB, Ashina S. Intravenous ketamine for subacute treatment of refractory chronic migraine: a case series. J Headache Pain. 2016;17:106.PubMedPubMedCentralCrossRef Lauritsen C, Mazuera S, Lipton RB, Ashina S. Intravenous ketamine for subacute treatment of refractory chronic migraine: a case series. J Headache Pain. 2016;17:106.PubMedPubMedCentralCrossRef
134.
go back to reference Pomeroy JL, Marmura MJ, Nahas SJ, Viscusi ER. Ketamine infusions for treatment refractory headache. Headache. 2017;57:276–82.PubMedCrossRef Pomeroy JL, Marmura MJ, Nahas SJ, Viscusi ER. Ketamine infusions for treatment refractory headache. Headache. 2017;57:276–82.PubMedCrossRef
135.
go back to reference Afridi SK, Giffin NJ, Kaube H, Goadsby PJ. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80:642–7.PubMedCrossRef Afridi SK, Giffin NJ, Kaube H, Goadsby PJ. A randomized controlled trial of intranasal ketamine in migraine with prolonged aura. Neurology. 2013;80:642–7.PubMedCrossRef
136.
go back to reference Kaube H, Herzog J, Kaufer T, Dichgans M, Diener HC. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology. 2000;55:139–41.PubMedCrossRef Kaube H, Herzog J, Kaufer T, Dichgans M, Diener HC. Aura in some patients with familial hemiplegic migraine can be stopped by intranasal ketamine. Neurology. 2000;55:139–41.PubMedCrossRef
Metadata
Title
Glutamate and Its Receptors as Therapeutic Targets for Migraine
Authors
Jan Hoffmann
Andrew Charles
Publication date
01-04-2018
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 2/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-0616-5

Other articles of this Issue 2/2018

Neurotherapeutics 2/2018 Go to the issue