Skip to main content
Top
Published in: Neurotherapeutics 2/2018

01-04-2018 | Original Article

Cannabinoid CB1 and CB2 Receptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson’s Disease

Authors: Francisco Navarrete, M. Salud García-Gutiérrez, Auxiliadora Aracil-Fernández, José L. Lanciego, Jorge Manzanares

Published in: Neurotherapeutics | Issue 2/2018

Login to get access

Abstract

Previous studies suggest that the endocannabinoid system plays an important role in the neuropathological basis of Parkinson’s disease (PD). This study was designed to detect potential alterations in the cannabinoid receptors CB1 (CB1r) and CB2 (A isoform, CB2Ar), and in monoacylglycerol lipase (MAGL) gene expression in the substantia nigra (SN) and putamen (PUT) of patients with PD. Immunohistochemical studies were performed to identify precise CB2r cellular localization in the SN of control and PD patients. To ensure the validity and reliability of gene expression data, the RNA integrity number (RIN) was calculated. CB1r, CB2Ar, and MAGL gene expressions were evaluated by real-time polymerase chain reaction (real-time PCR) using Taqman assays. Immunohistochemical experiments with in situ proximity ligation assay (PLA) were used to detect the precise cellular localization of CB2r in neurons, astrocytes, and/or microglia. All RIN values from control and PD postmortem brain samples were > 6. CB1r gene expression was unchanged in the SN but significantly higher in the PUT of patients with PD. CB2Ar gene expression was significantly increased (4-fold) in the SN but decreased in the PUT, whereas MAGL gene expression was decreased in the SN and increased in the PUT. Immunohistochemical analyses revealed that CB2r co-localize with astrocytes but not with neurons or microglial cells in the SN. The results of the present study suggest that CB1r, CB2r, and MAGL are closely related to the neuropathological processes of PD. Therefore, the pharmacological modulation of these targets could represent a new potential therapeutic tool for the management of PD.
Appendix
Available only for authorised users
Literature
1.
go back to reference Miller DB, O'Callaghan JP. Biomarkers of Parkinson's disease: present and future. Metabolism. 2015;64(3 Suppl. 1):S40-S46.CrossRefPubMed Miller DB, O'Callaghan JP. Biomarkers of Parkinson's disease: present and future. Metabolism. 2015;64(3 Suppl. 1):S40-S46.CrossRefPubMed
2.
go back to reference Sharma S, Moon CS, Khogali A, et al. Biomarkers in Parkinson's disease (recent update). Neurochem Int. 2013;63(3):201-229.CrossRefPubMed Sharma S, Moon CS, Khogali A, et al. Biomarkers in Parkinson's disease (recent update). Neurochem Int. 2013;63(3):201-229.CrossRefPubMed
3.
go back to reference Garcia-Arencibia M, Garcia C, Fernandez-Ruiz J. Cannabinoids and Parkinson's disease. CNS Neurol Disord Drug Targets. 2009;8(6):432-439.CrossRefPubMed Garcia-Arencibia M, Garcia C, Fernandez-Ruiz J. Cannabinoids and Parkinson's disease. CNS Neurol Disord Drug Targets. 2009;8(6):432-439.CrossRefPubMed
4.
go back to reference Pisani V, Madeo G, Tassone A, et al. Homeostatic changes of the endocannabinoid system in Parkinson's disease. Mov Disord. 2010;26(2):216-222.CrossRefPubMed Pisani V, Madeo G, Tassone A, et al. Homeostatic changes of the endocannabinoid system in Parkinson's disease. Mov Disord. 2010;26(2):216-222.CrossRefPubMed
5.
go back to reference Walsh S, Mnich K, Mackie K, et al. Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson's disease in the rat. Brain Res Bull 2010;81(6):543-548.CrossRefPubMedPubMedCentral Walsh S, Mnich K, Mackie K, et al. Loss of cannabinoid CB1 receptor expression in the 6-hydroxydopamine-induced nigrostriatal terminal lesion model of Parkinson's disease in the rat. Brain Res Bull 2010;81(6):543-548.CrossRefPubMedPubMedCentral
6.
go back to reference Hurley MJ, Mash DC, Jenner P. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm. 2003;110(11):1279-1288.CrossRefPubMed Hurley MJ, Mash DC, Jenner P. Expression of cannabinoid CB1 receptor mRNA in basal ganglia of normal and parkinsonian human brain. J Neural Transm. 2003;110(11):1279-1288.CrossRefPubMed
7.
go back to reference Van Laere K, Casteels C, Lunskens S, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson's disease in vivo. Neurobiol Aging. 2012;33(3):620 e621-e628. Van Laere K, Casteels C, Lunskens S, et al. Regional changes in type 1 cannabinoid receptor availability in Parkinson's disease in vivo. Neurobiol Aging. 2012;33(3):620 e621-e628.
8.
go back to reference Cao X, Liang L, Hadcock JR, et al. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J Pharmacol Exp Ther. 2007;323(1):318-326.CrossRefPubMed Cao X, Liang L, Hadcock JR, et al. Blockade of cannabinoid type 1 receptors augments the antiparkinsonian action of levodopa without affecting dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated rhesus monkeys. J Pharmacol Exp Ther. 2007;323(1):318-326.CrossRefPubMed
9.
go back to reference Price DA, Martinez AA, Seillier A, et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Eur J Neurosci. 2009;29(11):2177-2186.CrossRefPubMedPubMedCentral Price DA, Martinez AA, Seillier A, et al. WIN55,212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Eur J Neurosci. 2009;29(11):2177-2186.CrossRefPubMedPubMedCentral
10.
go back to reference Cerri S, Levandis G, Ambrosi G, et al. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J Neuropathol Exp Neurol. 2014;73(5):414-424.CrossRefPubMed Cerri S, Levandis G, Ambrosi G, et al. Neuroprotective potential of adenosine A2A and cannabinoid CB1 receptor antagonists in an animal model of Parkinson disease. J Neuropathol Exp Neurol. 2014;73(5):414-424.CrossRefPubMed
11.
go back to reference Zeng BY, Dass B, Owen A, et al. Chronic L-DOPA treatment increases striatal cannabinoid CB1 receptor mRNA expression in 6-hydroxydopamine-lesioned rats. Neurosci Lett. 1999;276(2):71-74.CrossRefPubMed Zeng BY, Dass B, Owen A, et al. Chronic L-DOPA treatment increases striatal cannabinoid CB1 receptor mRNA expression in 6-hydroxydopamine-lesioned rats. Neurosci Lett. 1999;276(2):71-74.CrossRefPubMed
12.
go back to reference Silverdale MA, McGuire S, McInnes A, Crossman AR, Brotchie JM. Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson's disease. Exp Neurol. 2001;169(2):400-406.CrossRefPubMed Silverdale MA, McGuire S, McInnes A, Crossman AR, Brotchie JM. Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson's disease. Exp Neurol. 2001;169(2):400-406.CrossRefPubMed
13.
go back to reference Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310(5746):329-332.CrossRefPubMed Van Sickle MD, Duncan M, Kingsley PJ, et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310(5746):329-332.CrossRefPubMed
14.
go back to reference Palazuelos J, Aguado T, Pazos MR, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain. 2009;132(Pt 11):3152-3164.CrossRefPubMed Palazuelos J, Aguado T, Pazos MR, et al. Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity. Brain. 2009;132(Pt 11):3152-3164.CrossRefPubMed
15.
16.
go back to reference Grunblatt E, Zander N, Bartl J, et al. Comparison analysis of gene expression patterns between sporadic Alzheimer's and Parkinson's disease. J Alzheimers Dis. 2007;12(4):291-311.CrossRefPubMed Grunblatt E, Zander N, Bartl J, et al. Comparison analysis of gene expression patterns between sporadic Alzheimer's and Parkinson's disease. J Alzheimers Dis. 2007;12(4):291-311.CrossRefPubMed
17.
go back to reference Ternianov A, Perez-Ortiz JM, Solesio ME, et al. Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine. Neurobiol Aging. 2012;33(2):421 e421-e416.CrossRef Ternianov A, Perez-Ortiz JM, Solesio ME, et al. Overexpression of CB2 cannabinoid receptors results in neuroprotection against behavioral and neurochemical alterations induced by intracaudate administration of 6-hydroxydopamine. Neurobiol Aging. 2012;33(2):421 e421-e416.CrossRef
18.
go back to reference Gonsiorek W, Lunn C, Fan X, et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol. 2000;57(5):1045-1050.PubMed Gonsiorek W, Lunn C, Fan X, et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol. 2000;57(5):1045-1050.PubMed
19.
20.
go back to reference Kreutz S, Koch M, Bottger C, et al. 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia. 2009;57(3):286-294.CrossRefPubMed Kreutz S, Koch M, Bottger C, et al. 2-Arachidonoylglycerol elicits neuroprotective effects on excitotoxically lesioned dentate gyrus granule cells via abnormal-cannabidiol-sensitive receptors on microglial cells. Glia. 2009;57(3):286-294.CrossRefPubMed
21.
go back to reference Carloni S, Alonso-Alconada D, Girelli S, et al. Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats. Pediatr Res. 2012;72(4):400-406.CrossRefPubMed Carloni S, Alonso-Alconada D, Girelli S, et al. Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats. Pediatr Res. 2012;72(4):400-406.CrossRefPubMed
22.
go back to reference Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, et al. The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. 2014;35(11):2603-2616.CrossRefPubMed Fernandez-Suarez D, Celorrio M, Riezu-Boj JI, et al. The monoacylglycerol lipase inhibitor JZL184 is neuroprotective and alters glial cell phenotype in the chronic MPTP mouse model. Neurobiol Aging. 2014;35(11):2603-2616.CrossRefPubMed
23.
go back to reference Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol. 2007;114(3):231-241.CrossRefPubMed Braak H, Sastre M, Del Tredici K. Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson's disease. Acta Neuropathol. 2007;114(3):231-241.CrossRefPubMed
24.
go back to reference Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262-9272.CrossRefPubMedPubMedCentral Lee HJ, Suk JE, Patrick C, et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262-9272.CrossRefPubMedPubMedCentral
25.
go back to reference Gu XL, Long CX, Sun L, et al. Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.CrossRefPubMedPubMedCentral Gu XL, Long CX, Sun L, et al. Astrocytic expression of Parkinson's disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain. 2010;3:12.CrossRefPubMedPubMedCentral
26.
go back to reference Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson's disease. Prog Neurobiol. 2009;89(3):277-287.CrossRefPubMed Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson's disease. Prog Neurobiol. 2009;89(3):277-287.CrossRefPubMed
27.
go back to reference Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation. 2005;2:14.CrossRefPubMedPubMedCentral Croisier E, Moran LB, Dexter DT, Pearce RK, Graeber MB. Microglial inflammation in the parkinsonian substantia nigra: relationship to alpha-synuclein deposition. J Neuroinflammation. 2005;2:14.CrossRefPubMedPubMedCentral
28.
go back to reference Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E. The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets. 2010;14(4):387-404.CrossRefPubMed Fernandez-Ruiz J, Garcia C, Sagredo O, Gomez-Ruiz M, de Lago E. The endocannabinoid system as a target for the treatment of neuronal damage. Expert Opin Ther Targets. 2010;14(4):387-404.CrossRefPubMed
29.
go back to reference Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia. 2000;29(1):58-69.CrossRefPubMed Puffenbarger RA, Boothe AC, Cabral GA. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia. 2000;29(1):58-69.CrossRefPubMed
30.
go back to reference Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia. 2003;41(2):161-168.CrossRefPubMed Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A. Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lypopolysaccharide. Glia. 2003;41(2):161-168.CrossRefPubMed
31.
go back to reference Molina-Holgado F, Lledo A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport. 1997;8(8):1929-1933.CrossRefPubMed Molina-Holgado F, Lledo A, Guaza C. Anandamide suppresses nitric oxide and TNF-alpha responses to Theiler's virus or endotoxin in astrocytes. Neuroreport. 1997;8(8):1929-1933.CrossRefPubMed
32.
go back to reference Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 2002;67(6):829-836. Molina-Holgado F, Molina-Holgado E, Guaza C, Rothwell NJ. Role of CB1 and CB2 receptors in the inhibitory effects of cannabinoids on lipopolysaccharide-induced nitric oxide release in astrocyte cultures. J Neurosci Res 2002;67(6):829-836.
33.
go back to reference Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol. 2003;139(4):775-786.CrossRefPubMedPubMedCentral Klegeris A, Bissonnette CJ, McGeer PL. Reduction of human monocytic cell neurotoxicity and cytokine secretion by ligands of the cannabinoid-type CB2 receptor. Br J Pharmacol. 2003;139(4):775-786.CrossRefPubMedPubMedCentral
34.
go back to reference Sheng WS, Hu S, Min X, et al. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia. 2005;49(2):211-219.CrossRefPubMed Sheng WS, Hu S, Min X, et al. Synthetic cannabinoid WIN55,212-2 inhibits generation of inflammatory mediators by IL-1beta-stimulated human astrocytes. Glia. 2005;49(2):211-219.CrossRefPubMed
35.
go back to reference Concannon RM, Okine BN, Finn DP, Dowd E. Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease. Exp Neurol. 2015;269:133-141.CrossRefPubMed Concannon RM, Okine BN, Finn DP, Dowd E. Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson's disease. Exp Neurol. 2015;269:133-141.CrossRefPubMed
36.
go back to reference Liu QR, Pan CH, Hishimoto A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009;8(5):519-530.CrossRefPubMedPubMedCentral Liu QR, Pan CH, Hishimoto A, et al. Species differences in cannabinoid receptor 2 (CNR2 gene): identification of novel human and rodent CB2 isoforms, differential tissue expression and regulation by cannabinoid receptor ligands. Genes Brain Behav. 2009;8(5):519-530.CrossRefPubMedPubMedCentral
37.
38.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25(4):402-408.CrossRefPubMed Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001;25(4):402-408.CrossRefPubMed
39.
go back to reference Kap M, Oomen M, Arshad S, de Jong B, Riegman P. Fit for purpose frozen tissue collections by RNA integrity number-based quality control assurance at the Erasmus MC tissue bank. Biopreserv Biobank. 2014;12(2):81-90.CrossRefPubMed Kap M, Oomen M, Arshad S, de Jong B, Riegman P. Fit for purpose frozen tissue collections by RNA integrity number-based quality control assurance at the Erasmus MC tissue bank. Biopreserv Biobank. 2014;12(2):81-90.CrossRefPubMed
40.
go back to reference Garcia MC, Cinquina V, Palomo-Garo C, Rabano A, Fernandez-Ruiz J. Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson's disease. Neurosci Lett. 2015;587:1-4.CrossRefPubMed Garcia MC, Cinquina V, Palomo-Garo C, Rabano A, Fernandez-Ruiz J. Identification of CB2 receptors in human nigral neurons that degenerate in Parkinson's disease. Neurosci Lett. 2015;587:1-4.CrossRefPubMed
41.
go back to reference Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:200-208.CrossRefPubMed Gomez-Galvez Y, Palomo-Garo C, Fernandez-Ruiz J, Garcia C. Potential of the cannabinoid CB(2) receptor as a pharmacological target against inflammation in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:200-208.CrossRefPubMed
42.
go back to reference Beltramo M, Bernardini N, Bertorelli R, et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci. 2006;23(6):1530-1538.CrossRefPubMed Beltramo M, Bernardini N, Bertorelli R, et al. CB2 receptor-mediated antihyperalgesia: possible direct involvement of neural mechanisms. Eur J Neurosci. 2006;23(6):1530-1538.CrossRefPubMed
43.
go back to reference Mukhopadhyay S, Das S, Williams EA, et al. Lipopolysaccharide and cyclic AMP regulation of CB(2) cannabinoid receptor levels in rat brain and mouse RAW 264.7 macrophages. J Neuroimmunol. 2006;181(1-2):82-92.CrossRefPubMed Mukhopadhyay S, Das S, Williams EA, et al. Lipopolysaccharide and cyclic AMP regulation of CB(2) cannabinoid receptor levels in rat brain and mouse RAW 264.7 macrophages. J Neuroimmunol. 2006;181(1-2):82-92.CrossRefPubMed
44.
go back to reference Ashton JC, Rahman RM, Nair SM, et al. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett. 2007;412(2):114-117.CrossRefPubMed Ashton JC, Rahman RM, Nair SM, et al. Cerebral hypoxia-ischemia and middle cerebral artery occlusion induce expression of the cannabinoid CB2 receptor in the brain. Neurosci Lett. 2007;412(2):114-117.CrossRefPubMed
45.
go back to reference Sagredo O, Gonzalez S, Aroyo I, et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia. 2009;57(11):1154-1167.CrossRefPubMedPubMedCentral Sagredo O, Gonzalez S, Aroyo I, et al. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia. 2009;57(11):1154-1167.CrossRefPubMedPubMedCentral
46.
go back to reference Concannon RM, Okine BN, Finn DP, Dowd E. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease. Exp Neurol. 2016;283(Pt A):204-212.CrossRefPubMed Concannon RM, Okine BN, Finn DP, Dowd E. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson's disease. Exp Neurol. 2016;283(Pt A):204-212.CrossRefPubMed
47.
go back to reference Benito C, Nunez E, Tolon RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J Neurosci. 2003;23(35):11136-11141.CrossRefPubMed Benito C, Nunez E, Tolon RM, et al. Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains. J Neurosci. 2003;23(35):11136-11141.CrossRefPubMed
48.
go back to reference Benito C, Romero JP, Tolon RM, et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci. 2007;27(9):2396-2402.CrossRefPubMed Benito C, Romero JP, Tolon RM, et al. Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci. 2007;27(9):2396-2402.CrossRefPubMed
49.
go back to reference Yiangou Y, Facer P, Durrenberger P, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol. 2006;6:12.CrossRefPubMedPubMedCentral Yiangou Y, Facer P, Durrenberger P, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol. 2006;6:12.CrossRefPubMedPubMedCentral
50.
go back to reference Fernández-Ruiz J, González S, Romero J, Ja R. Cannabinoids in neurodegeneration and neuroprotection. R M, editor. Birkhaüser, Switzerland, 2005. Fernández-Ruiz J, González S, Romero J, Ja R. Cannabinoids in neurodegeneration and neuroprotection. R M, editor. Birkhaüser, Switzerland, 2005.
51.
go back to reference Stempel AV, Stumpf A, Zhang HY, et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron. 2016;90(4):795-809.CrossRefPubMedPubMedCentral Stempel AV, Stumpf A, Zhang HY, et al. Cannabinoid type 2 receptors mediate a cell type-specific plasticity in the hippocampus. Neuron. 2016;90(4):795-809.CrossRefPubMedPubMedCentral
52.
go back to reference Zhang HY, Gao M, Liu QR, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014;111(46):E5007-E5015.CrossRefPubMedPubMedCentral Zhang HY, Gao M, Liu QR, et al. Cannabinoid CB2 receptors modulate midbrain dopamine neuronal activity and dopamine-related behavior in mice. Proc Natl Acad Sci U S A. 2014;111(46):E5007-E5015.CrossRefPubMedPubMedCentral
53.
go back to reference Sierra S, Luquin N, Rico AJ, et al. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 2015;220(5):2721-2738.CrossRefPubMed Sierra S, Luquin N, Rico AJ, et al. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 2015;220(5):2721-2738.CrossRefPubMed
54.
go back to reference Ortega-Gutierrez S, Molina-Holgado E, Arevalo-Martin A, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005;19(10):1338-1340.CrossRefPubMed Ortega-Gutierrez S, Molina-Holgado E, Arevalo-Martin A, et al. Activation of the endocannabinoid system as therapeutic approach in a murine model of multiple sclerosis. FASEB J. 2005;19(10):1338-1340.CrossRefPubMed
55.
go back to reference Docagne F, Muneton V, Clemente D, et al. Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol Cell Neurosci. 2007;34(4):551-561.CrossRefPubMed Docagne F, Muneton V, Clemente D, et al. Excitotoxicity in a chronic model of multiple sclerosis: Neuroprotective effects of cannabinoids through CB1 and CB2 receptor activation. Mol Cell Neurosci. 2007;34(4):551-561.CrossRefPubMed
56.
go back to reference Patel S, Rademacher DJ, Hillard CJ. Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther. 2003;306(3):880-888.CrossRefPubMed Patel S, Rademacher DJ, Hillard CJ. Differential regulation of the endocannabinoids anandamide and 2-arachidonylglycerol within the limbic forebrain by dopamine receptor activity. J Pharmacol Exp Ther. 2003;306(3):880-888.CrossRefPubMed
57.
go back to reference Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol. 2000;62(1):63-88.CrossRefPubMed Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol. 2000;62(1):63-88.CrossRefPubMed
58.
go back to reference Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection and neurotoxicity. Curr Drug Targets CNS Neurol Disord. 2005;4(6):677-684.CrossRefPubMed Sarne Y, Mechoulam R. Cannabinoids: between neuroprotection and neurotoxicity. Curr Drug Targets CNS Neurol Disord. 2005;4(6):677-684.CrossRefPubMed
59.
go back to reference van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromol Med. 2005;7(1-2):37-50.CrossRef van der Stelt M, Di Marzo V. Cannabinoid receptors and their role in neuroprotection. Neuromol Med. 2005;7(1-2):37-50.CrossRef
60.
go back to reference Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab. 2005;25(4):477-484.CrossRefPubMed Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E. CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab. 2005;25(4):477-484.CrossRefPubMed
62.
go back to reference Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J. 2000;14(10):1432-1438.PubMed Di Marzo V, Hill MP, Bisogno T, Crossman AR, Brotchie JM. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson's disease. FASEB J. 2000;14(10):1432-1438.PubMed
63.
go back to reference van der Stelt M, Fox SH, Hill M, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J. 2005;19(9):1140-1142.CrossRefPubMed van der Stelt M, Fox SH, Hill M, et al. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J. 2005;19(9):1140-1142.CrossRefPubMed
64.
go back to reference Aymerich MS, Rojo-Bustamante E, Molina C, et al. Neuroprotective effect of JZL184 in MPP(+)-treated SH-SY5Y cells through CB2 receptors. Mol Neurobiol 2016;53(4):2312-2319.CrossRefPubMed Aymerich MS, Rojo-Bustamante E, Molina C, et al. Neuroprotective effect of JZL184 in MPP(+)-treated SH-SY5Y cells through CB2 receptors. Mol Neurobiol 2016;53(4):2312-2319.CrossRefPubMed
65.
go back to reference Mounsey RB, Mustafa S, Robinson L, et al. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Exp Neurol. 2015;273:36-44.CrossRefPubMedPubMedCentral Mounsey RB, Mustafa S, Robinson L, et al. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Exp Neurol. 2015;273:36-44.CrossRefPubMedPubMedCentral
Metadata
Title
Cannabinoid CB1 and CB2 Receptors, and Monoacylglycerol Lipase Gene Expression Alterations in the Basal Ganglia of Patients with Parkinson’s Disease
Authors
Francisco Navarrete
M. Salud García-Gutiérrez
Auxiliadora Aracil-Fernández
José L. Lanciego
Jorge Manzanares
Publication date
01-04-2018
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 2/2018
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-0603-x

Other articles of this Issue 2/2018

Neurotherapeutics 2/2018 Go to the issue