Skip to main content
Top
Published in: Neurotherapeutics 4/2016

01-10-2016 | Review

Neuroimmune Response in Ischemic Preconditioning

Authors: Ashley McDonough, Jonathan R. Weinstein

Published in: Neurotherapeutics | Issue 4/2016

Login to get access

Abstract

Ischemic preconditioning (IPC) is a robust neuroprotective phenomenon in which a brief period of cerebral ischemia confers transient tolerance to subsequent ischemic challenge. Research on IPC has implicated cellular, molecular, and systemic elements of the immune response in this phenomenon. Potent molecular mediators of IPC include innate immune signaling pathways such as Toll-like receptors and type 1 interferons. Brain ischemia results in release of pro- and anti-inflammatory cytokines and chemokines that orchestrate the neuroinflammtory response, resolution of inflammation, and transition to neurological recovery and regeneration. Cellular mediators of IPC include microglia, the resident central nervous system immune cells, astrocytes, and neurons. All of these cell types engage in cross-talk with each other using a multitude of signaling pathways that modulate activation/suppression of each of the other cell types in response to ischemia. As the postischemic neuroimmune response evolves over time there is a shift in function toward provision of trophic support and neuroprotection. Peripheral immune cells infiltrate the central nervous system en masse after stroke and are largely detrimental, with a few subtypes having beneficial, protective effects, though the role of these immune cells in IPC is largely unknown. The role of neural progenitor cells in IPC-mediated neuroprotection is another active area of investigation as is the role of microglial proliferation in this setting. A mechanistic understanding of these molecular and cellular mediators of IPC may not only facilitate more effective direct application of IPC to specific clinical scenarios, but also, more broadly, reveal novel targets for therapeutic intervention in stroke.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gidday, J.M., Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci, 2006. 7(6): p. 437–48.PubMedCrossRef Gidday, J.M., Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci, 2006. 7(6): p. 437–48.PubMedCrossRef
2.
go back to reference Kariko, K., D. Weissman, and F.A. Welsh, Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab, 2004. 24(11): p. 1288–304.PubMedCrossRef Kariko, K., D. Weissman, and F.A. Welsh, Inhibition of toll-like receptor and cytokine signaling--a unifying theme in ischemic tolerance. J Cereb Blood Flow Metab, 2004. 24(11): p. 1288–304.PubMedCrossRef
3.
go back to reference Zhang, J., Z.J. Yang, J.A. Klaus, et al., Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke, 2008. 39(3): p. 967–74.PubMedPubMedCentralCrossRef Zhang, J., Z.J. Yang, J.A. Klaus, et al., Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke, 2008. 39(3): p. 967–74.PubMedPubMedCentralCrossRef
4.
go back to reference Dirnagl, U., K. Becker, and A. Meisel, Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol, 2009. 8(4): p. 398–412.PubMedPubMedCentralCrossRef Dirnagl, U., K. Becker, and A. Meisel, Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol, 2009. 8(4): p. 398–412.PubMedPubMedCentralCrossRef
5.
go back to reference Marsh, B., S.L. Stevens, A.E. Packard, et al., Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci, 2009. 29(31): p. 9839–49.PubMedPubMedCentralCrossRef Marsh, B., S.L. Stevens, A.E. Packard, et al., Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci, 2009. 29(31): p. 9839–49.PubMedPubMedCentralCrossRef
6.
go back to reference Stenzel-Poore, M.P., S.L. Stevens, J.S. King, et al., Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke, 2007. 38(2 Suppl): p. 680–5.PubMedCrossRef Stenzel-Poore, M.P., S.L. Stevens, J.S. King, et al., Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke, 2007. 38(2 Suppl): p. 680–5.PubMedCrossRef
7.
go back to reference Moncayo, J., G.R. de Freitas, J. Bogousslavsky, et al., Do transient ischemic attacks have a neuroprotective effect? Neurology, 2000. 54(11): p. 2089–94.PubMedCrossRef Moncayo, J., G.R. de Freitas, J. Bogousslavsky, et al., Do transient ischemic attacks have a neuroprotective effect? Neurology, 2000. 54(11): p. 2089–94.PubMedCrossRef
8.
go back to reference Wegener, S., B. Gottschalk, V. Jovanovic, et al., Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke, 2004. 35(3): p. 616–21.PubMedCrossRef Wegener, S., B. Gottschalk, V. Jovanovic, et al., Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke, 2004. 35(3): p. 616–21.PubMedCrossRef
9.
11.
12.
go back to reference Pradillo, J.M., D. Fernandez-Lopez, I. Garcia-Yebenes, et al., Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem, 2009. 109(1): p. 287–94.PubMedCrossRef Pradillo, J.M., D. Fernandez-Lopez, I. Garcia-Yebenes, et al., Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem, 2009. 109(1): p. 287–94.PubMedCrossRef
13.
go back to reference Stevens, S.L., P.Y. Leung, K.B. Vartanian, et al., Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci, 2011. 31(23): p. 8456–63.PubMedPubMedCentralCrossRef Stevens, S.L., P.Y. Leung, K.B. Vartanian, et al., Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci, 2011. 31(23): p. 8456–63.PubMedPubMedCentralCrossRef
14.
go back to reference Stenzel-Poore, M.P., S.L. Stevens, and R.P. Simon, Genomics of preconditioning. Stroke, 2004. 35(11 Suppl 1): p. 2683–6.PubMedCrossRef Stenzel-Poore, M.P., S.L. Stevens, and R.P. Simon, Genomics of preconditioning. Stroke, 2004. 35(11 Suppl 1): p. 2683–6.PubMedCrossRef
15.
go back to reference Simon, R.P., R. Meller, A. Zhou, et al., Can genes modify stroke outcome and by what mechanisms? Stroke, 2012. 43(1): p. 286–91.PubMedCrossRef Simon, R.P., R. Meller, A. Zhou, et al., Can genes modify stroke outcome and by what mechanisms? Stroke, 2012. 43(1): p. 286–91.PubMedCrossRef
16.
go back to reference Marsh, B.J., S.L. Stevens, B. Hunter, et al., Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke, 2009. 40(3 Suppl): p. S34-7.PubMedCrossRef Marsh, B.J., S.L. Stevens, B. Hunter, et al., Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke, 2009. 40(3 Suppl): p. S34-7.PubMedCrossRef
17.
go back to reference Stenzel-Poore, M.P., S.L. Stevens, Z. Xiong, et al., Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet, 2003. 362(9389): p. 1028–37.PubMedCrossRef Stenzel-Poore, M.P., S.L. Stevens, Z. Xiong, et al., Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states. Lancet, 2003. 362(9389): p. 1028–37.PubMedCrossRef
18.
go back to reference Dave, K.R., I. Saul, R. Prado, et al., Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett, 2006. 404(1–2): p. 170–5.PubMedCrossRef Dave, K.R., I. Saul, R. Prado, et al., Remote organ ischemic preconditioning protect brain from ischemic damage following asphyxial cardiac arrest. Neurosci Lett, 2006. 404(1–2): p. 170–5.PubMedCrossRef
19.
go back to reference Ren, C., X. Gao, G.K. Steinberg, et al., Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience, 2008. 151(4): p. 1099–103.PubMedCrossRef Ren, C., X. Gao, G.K. Steinberg, et al., Limb remote-preconditioning protects against focal ischemia in rats and contradicts the dogma of therapeutic time windows for preconditioning. Neuroscience, 2008. 151(4): p. 1099–103.PubMedCrossRef
20.
go back to reference Hausenloy, D.J., L. Candilio, and D.M. Yellon, Remote Ischemic Preconditioning and Cardiac Surgery. N Engl J Med, 2016. 374(5): p. 491–2.PubMed Hausenloy, D.J., L. Candilio, and D.M. Yellon, Remote Ischemic Preconditioning and Cardiac Surgery. N Engl J Med, 2016. 374(5): p. 491–2.PubMed
21.
go back to reference Meybohm, P., D. Hasenclever, and K. Zacharowski, Remote Ischemic Preconditioning and Cardiac Surgery. N Engl J Med, 2016. 374(5): p. 491.PubMed Meybohm, P., D. Hasenclever, and K. Zacharowski, Remote Ischemic Preconditioning and Cardiac Surgery. N Engl J Med, 2016. 374(5): p. 491.PubMed
22.
go back to reference Healy, D.A., E. Boyle, D. McCartan, et al., A MultiCenter Pilot Randomized Controlled Trial of Remote Ischemic Preconditioning in Major Vascular Surgery. Vasc Endovascular Surg, 2015. 49(8): p. 220–7.PubMedCrossRef Healy, D.A., E. Boyle, D. McCartan, et al., A MultiCenter Pilot Randomized Controlled Trial of Remote Ischemic Preconditioning in Major Vascular Surgery. Vasc Endovascular Surg, 2015. 49(8): p. 220–7.PubMedCrossRef
23.
go back to reference Gonzalez, N.R., M. Connolly, J.R. Dusick, et al., Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery, 2014. 75(5): p. 590–8; discussion 598.PubMedPubMedCentralCrossRef Gonzalez, N.R., M. Connolly, J.R. Dusick, et al., Phase I clinical trial for the feasibility and safety of remote ischemic conditioning for aneurysmal subarachnoid hemorrhage. Neurosurgery, 2014. 75(5): p. 590–8; discussion 598.PubMedPubMedCentralCrossRef
24.
go back to reference Laiwalla, A.N., Y.C. Ooi, R. Liou, et al., Matched Cohort Analysis of the Effects of Limb Remote Ischemic Conditioning in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res, 2016. 7(1): p. 42–8PubMedCrossRef Laiwalla, A.N., Y.C. Ooi, R. Liou, et al., Matched Cohort Analysis of the Effects of Limb Remote Ischemic Conditioning in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res, 2016. 7(1): p. 42–8PubMedCrossRef
25.
go back to reference Meller, R. and R.P. Simon, A critical review of mechanisms regulating remote preconditioning-induced brain protection. J Appl Physiol (1985), 2015. 119(10): p. 1135–42.CrossRef Meller, R. and R.P. Simon, A critical review of mechanisms regulating remote preconditioning-induced brain protection. J Appl Physiol (1985), 2015. 119(10): p. 1135–42.CrossRef
26.
go back to reference Barone, F.C., R.F. White, P.A. Spera, et al., Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke, 1998. 29(9): p. 1937–50; discussion 1950–1.PubMedCrossRef Barone, F.C., R.F. White, P.A. Spera, et al., Ischemic preconditioning and brain tolerance: temporal histological and functional outcomes, protein synthesis requirement, and interleukin-1 receptor antagonist and early gene expression. Stroke, 1998. 29(9): p. 1937–50; discussion 1950–1.PubMedCrossRef
27.
go back to reference Kalakech, H., S. Tamareille, S. Pons, et al., Role of hypoxia inducible factor-1alpha in remote limb ischemic preconditioning. J Mol Cell Cardiol, 2013. 65: p. 98–104.PubMedCrossRef Kalakech, H., S. Tamareille, S. Pons, et al., Role of hypoxia inducible factor-1alpha in remote limb ischemic preconditioning. J Mol Cell Cardiol, 2013. 65: p. 98–104.PubMedCrossRef
28.
go back to reference Hibert, P., D. Prunier-Mirebeau, O. Beseme, et al., Apolipoprotein a-I is a potential mediator of remote ischemic preconditioning. PLoS One, 2013. 8(10): p. e77211.PubMedPubMedCentralCrossRef Hibert, P., D. Prunier-Mirebeau, O. Beseme, et al., Apolipoprotein a-I is a potential mediator of remote ischemic preconditioning. PLoS One, 2013. 8(10): p. e77211.PubMedPubMedCentralCrossRef
29.
go back to reference Hibert, P., D. Prunier-Mirebeau, O. Beseme, et al., Modifications in rat plasma proteome after remote ischemic preconditioning (RIPC) stimulus: identification by a SELDI-TOF-MS approach. PLoS One, 2014. 9(1): p. e85669.PubMedPubMedCentralCrossRef Hibert, P., D. Prunier-Mirebeau, O. Beseme, et al., Modifications in rat plasma proteome after remote ischemic preconditioning (RIPC) stimulus: identification by a SELDI-TOF-MS approach. PLoS One, 2014. 9(1): p. e85669.PubMedPubMedCentralCrossRef
30.
go back to reference Konstantinov, I.E., S. Arab, R.K. Kharbanda, et al., The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics, 2004. 19(1): p. 143–50.PubMedCrossRef Konstantinov, I.E., S. Arab, R.K. Kharbanda, et al., The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics, 2004. 19(1): p. 143–50.PubMedCrossRef
31.
go back to reference Wei, D., C. Ren, X. Chen, et al., The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One, 2012. 7(2): p. e30892.PubMedPubMedCentralCrossRef Wei, D., C. Ren, X. Chen, et al., The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS One, 2012. 7(2): p. e30892.PubMedPubMedCentralCrossRef
32.
go back to reference Kirino, T., T. Nakagomi, H. Kanemitsu, et al., Ischemic tolerance. Adv Neurol, 1996. 71: p. 505–11.PubMed Kirino, T., T. Nakagomi, H. Kanemitsu, et al., Ischemic tolerance. Adv Neurol, 1996. 71: p. 505–11.PubMed
33.
go back to reference Gesuete, R., A.E. Packard, K.B. Vartanian, et al., Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem, 2012. 123 Suppl 2: p. 75–85.PubMedPubMedCentralCrossRef Gesuete, R., A.E. Packard, K.B. Vartanian, et al., Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem, 2012. 123 Suppl 2: p. 75–85.PubMedPubMedCentralCrossRef
34.
go back to reference Leung, P.Y., S.L. Stevens, A.E. Packard, et al., Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke J Cereb Circ, 2012. 43(5): p. 1383–9.CrossRef Leung, P.Y., S.L. Stevens, A.E. Packard, et al., Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke J Cereb Circ, 2012. 43(5): p. 1383–9.CrossRef
35.
go back to reference Packard, A.E., P.Y. Leung, K.B. Vartanian, et al., TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab, 2012. 32(12): p. 2193–200.PubMedPubMedCentralCrossRef Packard, A.E., P.Y. Leung, K.B. Vartanian, et al., TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab, 2012. 32(12): p. 2193–200.PubMedPubMedCentralCrossRef
36.
go back to reference Stark, G.R., How cells respond to interferons revisited: from early history to current complexity. Cytokine Growth Factor Rev, 2007. 18(5–6): p. 419–23.PubMedPubMedCentralCrossRef Stark, G.R., How cells respond to interferons revisited: from early history to current complexity. Cytokine Growth Factor Rev, 2007. 18(5–6): p. 419–23.PubMedPubMedCentralCrossRef
37.
go back to reference Stark, G.R., I.M. Kerr, B.R. Williams, et al., How cells respond to interferons. Annu Rev Biochem, 1998. 67: p. 227–64.PubMedCrossRef Stark, G.R., I.M. Kerr, B.R. Williams, et al., How cells respond to interferons. Annu Rev Biochem, 1998. 67: p. 227–64.PubMedCrossRef
38.
go back to reference Khorooshi, R. and T. Owens, Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J Immunol, 2010. 185(2): p. 1258–64.PubMedCrossRef Khorooshi, R. and T. Owens, Injury-induced type I IFN signaling regulates inflammatory responses in the central nervous system. J Immunol, 2010. 185(2): p. 1258–64.PubMedCrossRef
39.
go back to reference Inacio, A.R., Y. Liu, B.H. Clausen, et al., Endogenous IFN-beta signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation, 2015. 12: p. 211.PubMedPubMedCentralCrossRef Inacio, A.R., Y. Liu, B.H. Clausen, et al., Endogenous IFN-beta signaling exerts anti-inflammatory actions in experimentally induced focal cerebral ischemia. J Neuroinflammation, 2015. 12: p. 211.PubMedPubMedCentralCrossRef
40.
go back to reference Shichita, T., T. Ago, M. Kamouchi, et al., Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem, 2012. 123 Suppl 2: p. 29–38.PubMedCrossRef Shichita, T., T. Ago, M. Kamouchi, et al., Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke. J Neurochem, 2012. 123 Suppl 2: p. 29–38.PubMedCrossRef
41.
go back to reference Khorooshi, R., M.T. Morch, T.H. Holm, et al., Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol, 2015. 130(1): p. 107–18.PubMedPubMedCentralCrossRef Khorooshi, R., M.T. Morch, T.H. Holm, et al., Induction of endogenous Type I interferon within the central nervous system plays a protective role in experimental autoimmune encephalomyelitis. Acta Neuropathol, 2015. 130(1): p. 107–18.PubMedPubMedCentralCrossRef
42.
go back to reference Blackburn, D., S. Sargsyan, P.N. Monk, et al., Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia, 2009. 57(12): p. 1251–64.PubMedCrossRef Blackburn, D., S. Sargsyan, P.N. Monk, et al., Astrocyte function and role in motor neuron disease: a future therapeutic target? Glia, 2009. 57(12): p. 1251–64.PubMedCrossRef
43.
go back to reference Jha, M.K., W.H. Lee, and K. Suk, Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol, 2015. Jha, M.K., W.H. Lee, and K. Suk, Functional polarization of neuroglia: Implications in neuroinflammation and neurological disorders. Biochem Pharmacol, 2015.
44.
go back to reference Rama Rao, K.V. and T. Kielian, Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin Exp Neuroimmunol, 2015. 6(3): p. 245–263.PubMedPubMedCentralCrossRef Rama Rao, K.V. and T. Kielian, Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. Clin Exp Neuroimmunol, 2015. 6(3): p. 245–263.PubMedPubMedCentralCrossRef
45.
go back to reference Gliem, M., K. Krammes, L. Liaw, et al., Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia, 2015. 63(12): p. 2198–207.PubMedCrossRef Gliem, M., K. Krammes, L. Liaw, et al., Macrophage-derived osteopontin induces reactive astrocyte polarization and promotes re-establishment of the blood brain barrier after ischemic stroke. Glia, 2015. 63(12): p. 2198–207.PubMedCrossRef
46.
go back to reference Ejlerskov, P., J.G. Hultberg, J. Wang, et al., Lack of Neuronal IFN-beta-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell, 2015. 163(2): p. 324–39.PubMedPubMedCentralCrossRef Ejlerskov, P., J.G. Hultberg, J. Wang, et al., Lack of Neuronal IFN-beta-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell, 2015. 163(2): p. 324–39.PubMedPubMedCentralCrossRef
47.
go back to reference Murphy, K., P. Travers, M. Walport, et al., Janeway’s immunobiology. 2012, New York: Garland Science. Murphy, K., P. Travers, M. Walport, et al., Janeway’s immunobiology. 2012, New York: Garland Science.
48.
go back to reference Marsh, B.J. and M.P. Stenzel-Poore, Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol, 2008. 8(1): p. 8–13. Marsh, B.J. and M.P. Stenzel-Poore, Toll-like receptors: novel pharmacological targets for the treatment of neurological diseases. Curr Opin Pharmacol, 2008. 8(1): p. 8–13.
49.
50.
go back to reference Lehnardt, S., E. Schott, T. Trimbuch, et al., A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci, 2008. 28(10): p. 2320–31.PubMedCrossRef Lehnardt, S., E. Schott, T. Trimbuch, et al., A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci, 2008. 28(10): p. 2320–31.PubMedCrossRef
51.
go back to reference Zhan, X., C. Kim, and F.R. Sharp, Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res, 2008. 1234: p. 183–97.PubMedPubMedCentralCrossRef Zhan, X., C. Kim, and F.R. Sharp, Very brief focal ischemia simulating transient ischemic attacks (TIAs) can injure brain and induce Hsp70 protein. Brain Res, 2008. 1234: p. 183–97.PubMedPubMedCentralCrossRef
52.
go back to reference Venna, V.R., J. Li, S.E. Benashski, et al., Preconditioning induces sustained neuroprotection by downregulation of adenosine 5′-monophosphate-activated protein kinase. Neuroscience, 2012. 201: p. 280–7.PubMedCrossRef Venna, V.R., J. Li, S.E. Benashski, et al., Preconditioning induces sustained neuroprotection by downregulation of adenosine 5′-monophosphate-activated protein kinase. Neuroscience, 2012. 201: p. 280–7.PubMedCrossRef
53.
go back to reference Bahjat, F.R., R.L. Williams-Karnesky, S.G. Kohama, et al., Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab, 2011. 31(5): p. 1229–42.PubMedPubMedCentralCrossRef Bahjat, F.R., R.L. Williams-Karnesky, S.G. Kohama, et al., Proof of concept: pharmacological preconditioning with a Toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab, 2011. 31(5): p. 1229–42.PubMedPubMedCentralCrossRef
54.
go back to reference Makela, S.M., P. Osterlund, and I. Julkunen, TLR ligands induce synergistic interferon-beta and interferon-lambda1 gene expression in human monocyte-derived dendritic cells. Mol Immunol, 2011. 48(4): p. 505–15.PubMedCrossRef Makela, S.M., P. Osterlund, and I. Julkunen, TLR ligands induce synergistic interferon-beta and interferon-lambda1 gene expression in human monocyte-derived dendritic cells. Mol Immunol, 2011. 48(4): p. 505–15.PubMedCrossRef
55.
go back to reference Malmgaard, L., Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res, 2004. 24(8): p. 439–54.PubMedCrossRef Malmgaard, L., Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res, 2004. 24(8): p. 439–54.PubMedCrossRef
56.
go back to reference Caso, J.R., J.M. Pradillo, O. Hurtado, et al., Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 2007. 115(12): p. 1599–608.PubMedCrossRef Caso, J.R., J.M. Pradillo, O. Hurtado, et al., Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 2007. 115(12): p. 1599–608.PubMedCrossRef
57.
go back to reference Cao, C.X., Q.W. Yang, F.L. Lv, et al., Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun, 2007. 353(2): p. 509–14.PubMedCrossRef Cao, C.X., Q.W. Yang, F.L. Lv, et al., Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun, 2007. 353(2): p. 509–14.PubMedCrossRef
58.
go back to reference Hayakawa, K., J. Qiu, and E.H. Lo, Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci, 2010. 1207: p. 50–7.PubMedPubMedCentralCrossRef Hayakawa, K., J. Qiu, and E.H. Lo, Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke. Ann N Y Acad Sci, 2010. 1207: p. 50–7.PubMedPubMedCentralCrossRef
59.
go back to reference Yu, S., T. Zhao, M. Guo, et al., Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res, 2008. 1211: p. 22–9.PubMedCrossRef Yu, S., T. Zhao, M. Guo, et al., Hypoxic preconditioning up-regulates glucose transport activity and glucose transporter (GLUT1 and GLUT3) gene expression after acute anoxic exposure in the cultured rat hippocampal neurons and astrocytes. Brain Res, 2008. 1211: p. 22–9.PubMedCrossRef
60.
go back to reference Liu, M. and N.J. Alkayed, Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab, 2005. 25(8): p. 939–48.PubMedCrossRef Liu, M. and N.J. Alkayed, Hypoxic preconditioning and tolerance via hypoxia inducible factor (HIF) 1alpha-linked induction of P450 2C11 epoxygenase in astrocytes. J Cereb Blood Flow Metab, 2005. 25(8): p. 939–48.PubMedCrossRef
61.
62.
go back to reference Weinstein, J.R., I.P. Koerner, and T. Moller, Microglia in ischemic brain injury. Futur Neurol, 2010. 5(2): p. 227–246.CrossRef Weinstein, J.R., I.P. Koerner, and T. Moller, Microglia in ischemic brain injury. Futur Neurol, 2010. 5(2): p. 227–246.CrossRef
64.
go back to reference Trendelenburg, G. and U. Dirnagl, Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia, 2005. 50(4): p. 307–20.PubMedCrossRef Trendelenburg, G. and U. Dirnagl, Neuroprotective role of astrocytes in cerebral ischemia: focus on ischemic preconditioning. Glia, 2005. 50(4): p. 307–20.PubMedCrossRef
65.
go back to reference Norden, D.M., P.J. Trojanowski, E. Villanueva, et al., Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia, 2016. 64(2): p. 300–16.PubMedCrossRef Norden, D.M., P.J. Trojanowski, E. Villanueva, et al., Sequential activation of microglia and astrocyte cytokine expression precedes increased iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia, 2016. 64(2): p. 300–16.PubMedCrossRef
66.
go back to reference Kaushal, V. and L.C. Schlichter, Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci, 2008. 28(9): p. 2221–30.PubMedCrossRef Kaushal, V. and L.C. Schlichter, Mechanisms of microglia-mediated neurotoxicity in a new model of the stroke penumbra. J Neurosci, 2008. 28(9): p. 2221–30.PubMedCrossRef
67.
go back to reference Amantea, D., G. Micieli, C. Tassorelli, et al., Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci, 2015. 9: p. 147.PubMedPubMedCentralCrossRef Amantea, D., G. Micieli, C. Tassorelli, et al., Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci, 2015. 9: p. 147.PubMedPubMedCentralCrossRef
68.
go back to reference Rosenzweig, H.L., M. Minami, N.S. Lessov, et al., Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab, 2007. 27(10): p. 1663–74.PubMedCrossRef Rosenzweig, H.L., M. Minami, N.S. Lessov, et al., Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab, 2007. 27(10): p. 1663–74.PubMedCrossRef
69.
go back to reference Stevens, S.L., T.M. Ciesielski, B.J. Marsh, et al., Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab, 2008. 28(5): p. 1040–7.PubMedPubMedCentralCrossRef Stevens, S.L., T.M. Ciesielski, B.J. Marsh, et al., Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab, 2008. 28(5): p. 1040–7.PubMedPubMedCentralCrossRef
70.
go back to reference Gliem, M., A.K. Mausberg, J.I. Lee, et al., Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol, 2012. 71(6): p. 743–52.PubMedCrossRef Gliem, M., A.K. Mausberg, J.I. Lee, et al., Macrophages prevent hemorrhagic infarct transformation in murine stroke models. Ann Neurol, 2012. 71(6): p. 743–52.PubMedCrossRef
71.
go back to reference Macrez, R., C. Ali, O. Toutirais, et al., Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol, 2011. 10(5): p. 471–80.PubMedCrossRef Macrez, R., C. Ali, O. Toutirais, et al., Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol, 2011. 10(5): p. 471–80.PubMedCrossRef
72.
go back to reference Dirnagl, U., Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci, 2012. 1268: p. 21–5.PubMedCrossRef Dirnagl, U., Pathobiology of injury after stroke: the neurovascular unit and beyond. Ann N Y Acad Sci, 2012. 1268: p. 21–5.PubMedCrossRef
73.
go back to reference Maki, T., K. Hayakawa, L.D. Pham, et al., Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets, 2013. 12(3): p. 302–15.PubMedPubMedCentralCrossRef Maki, T., K. Hayakawa, L.D. Pham, et al., Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets, 2013. 12(3): p. 302–15.PubMedPubMedCentralCrossRef
74.
go back to reference Benarroch, E.E., Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Neurology, 2013. 81(12): p. 1079–88.PubMedCrossRef Benarroch, E.E., Microglia: Multiple roles in surveillance, circuit shaping, and response to injury. Neurology, 2013. 81(12): p. 1079–88.PubMedCrossRef
75.
go back to reference Michell-Robinson, M.A., H. Touil, L.M. Healy, et al., Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015. 138(Pt 5): p. 1138–59.PubMedCrossRef Michell-Robinson, M.A., H. Touil, L.M. Healy, et al., Roles of microglia in brain development, tissue maintenance and repair. Brain, 2015. 138(Pt 5): p. 1138–59.PubMedCrossRef
76.
go back to reference Ginhoux, F., M. Greter, M. Leboeuf, et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010. 330(6005): p. 841–5.PubMedPubMedCentralCrossRef Ginhoux, F., M. Greter, M. Leboeuf, et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010. 330(6005): p. 841–5.PubMedPubMedCentralCrossRef
77.
go back to reference Sedgwick, J.D., S. Schwender, H. Imrich, et al., Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A, 1991. 88(16): p. 7438–42.PubMedPubMedCentralCrossRef Sedgwick, J.D., S. Schwender, H. Imrich, et al., Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A, 1991. 88(16): p. 7438–42.PubMedPubMedCentralCrossRef
78.
go back to reference Butovsky, O., M.P. Jedrychowski, C.S. Moore, et al., Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci, 2014. 17(1): p. 131–43.PubMedCrossRef Butovsky, O., M.P. Jedrychowski, C.S. Moore, et al., Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci, 2014. 17(1): p. 131–43.PubMedCrossRef
79.
go back to reference Garden, G.A. and T. Moller, Microglia biology in health and disease. J Neuroimmune Pharmacol, 2006. 1(2): p. 127–37.PubMedCrossRef Garden, G.A. and T. Moller, Microglia biology in health and disease. J Neuroimmune Pharmacol, 2006. 1(2): p. 127–37.PubMedCrossRef
80.
go back to reference Olson, J.K. and S.D. Miller, Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol, 2004. 173(6): p. 3916–24.PubMedCrossRef Olson, J.K. and S.D. Miller, Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol, 2004. 173(6): p. 3916–24.PubMedCrossRef
81.
go back to reference Lalancette-Hebert, M., G. Gowing, A. Simard, et al., Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci, 2007. 27(10): p. 2596–605.PubMedCrossRef Lalancette-Hebert, M., G. Gowing, A. Simard, et al., Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci, 2007. 27(10): p. 2596–605.PubMedCrossRef
82.
go back to reference Nedergaard, M. and U. Dirnagl, Role of glial cells in cerebral ischemia. Glia, 2005. 50(4): p. 281–6.PubMedCrossRef Nedergaard, M. and U. Dirnagl, Role of glial cells in cerebral ischemia. Glia, 2005. 50(4): p. 281–6.PubMedCrossRef
83.
84.
go back to reference Cunningham, L.A., M. Wetzel, and G.A. Rosenberg, Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005. 50(4): p. 329–39.PubMedCrossRef Cunningham, L.A., M. Wetzel, and G.A. Rosenberg, Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia, 2005. 50(4): p. 329–39.PubMedCrossRef
85.
go back to reference Umekawa, T., A.M. Osman, W. Han, et al., Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia, 2015. 63(12): p. 2220–30.PubMedPubMedCentralCrossRef Umekawa, T., A.M. Osman, W. Han, et al., Resident microglia, rather than blood-derived macrophages, contribute to the earlier and more pronounced inflammatory reaction in the immature compared with the adult hippocampus after hypoxia-ischemia. Glia, 2015. 63(12): p. 2220–30.PubMedPubMedCentralCrossRef
86.
go back to reference Prinz, M., H. Schmidt, A. Mildner, et al., Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity, 2008. 28(5): p. 675–86.PubMedCrossRef Prinz, M., H. Schmidt, A. Mildner, et al., Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity, 2008. 28(5): p. 675–86.PubMedCrossRef
87.
go back to reference Owens, T., R. Khorooshi, A. Wlodarczyk, et al., Interferons in the central nervous system: a few instruments play many tunes. Glia, 2014. 62(3): p. 339–55.PubMedCrossRef Owens, T., R. Khorooshi, A. Wlodarczyk, et al., Interferons in the central nervous system: a few instruments play many tunes. Glia, 2014. 62(3): p. 339–55.PubMedCrossRef
88.
go back to reference Costello, D.A. and M.A. Lynch, Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-beta. Hippocampus, 2013. 23(8): p. 696–707.PubMedCrossRef Costello, D.A. and M.A. Lynch, Toll-like receptor 3 activation modulates hippocampal network excitability, via glial production of interferon-beta. Hippocampus, 2013. 23(8): p. 696–707.PubMedCrossRef
89.
go back to reference Tarassishin, L., H.S. Suh, and S.C. Lee, Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation, 2011. 8: p. 187.PubMedPubMedCentralCrossRef Tarassishin, L., H.S. Suh, and S.C. Lee, Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation, 2011. 8: p. 187.PubMedPubMedCentralCrossRef
90.
go back to reference Brendecke, S.M. and M. Prinz, How type I interferons shape myeloid cell function in CNS autoimmunity. J Leukoc Biol, 2012. 92(3): p. 479–88.PubMedCrossRef Brendecke, S.M. and M. Prinz, How type I interferons shape myeloid cell function in CNS autoimmunity. J Leukoc Biol, 2012. 92(3): p. 479–88.PubMedCrossRef
91.
go back to reference Teige, I., Y. Liu, and S. Issazadeh-Navikas, IFN-beta inhibits T cell activation capacity of central nervous system APCs. J Immunol, 2006. 177(6): p. 3542–53.PubMedCrossRef Teige, I., Y. Liu, and S. Issazadeh-Navikas, IFN-beta inhibits T cell activation capacity of central nervous system APCs. J Immunol, 2006. 177(6): p. 3542–53.PubMedCrossRef
92.
go back to reference Kim, M.O., Q. Si, J.N. Zhou, et al., Interferon-beta activates multiple signaling cascades in primary human microglia. J Neurochem, 2002. 81(6): p. 1361–71.PubMedCrossRef Kim, M.O., Q. Si, J.N. Zhou, et al., Interferon-beta activates multiple signaling cascades in primary human microglia. J Neurochem, 2002. 81(6): p. 1361–71.PubMedCrossRef
93.
go back to reference Jin, S., J. Kawanokuchi, T. Mizuno, et al., Interferon-beta is neuroprotective against the toxicity induced by activated microglia. Brain Res, 2007. 1179: p. 140–6.PubMedCrossRef Jin, S., J. Kawanokuchi, T. Mizuno, et al., Interferon-beta is neuroprotective against the toxicity induced by activated microglia. Brain Res, 2007. 1179: p. 140–6.PubMedCrossRef
94.
go back to reference Kawanokuchi, J., T. Mizuno, H. Kato, et al., Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology, 2004. 46(5): p. 734–42.PubMedCrossRef Kawanokuchi, J., T. Mizuno, H. Kato, et al., Effects of interferon-beta on microglial functions as inflammatory and antigen presenting cells in the central nervous system. Neuropharmacology, 2004. 46(5): p. 734–42.PubMedCrossRef
95.
go back to reference Tanaka, T., K. Murakami, Y. Bando, et al., Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia, 2015. 63(4): p. 595–610.PubMedCrossRef Tanaka, T., K. Murakami, Y. Bando, et al., Interferon regulatory factor 7 participates in the M1-like microglial polarization switch. Glia, 2015. 63(4): p. 595–610.PubMedCrossRef
96.
go back to reference Satoh, T., O. Takeuchi, A. Vandenbon, et al., The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol, 2010. 11(10): p. 936–44.PubMedCrossRef Satoh, T., O. Takeuchi, A. Vandenbon, et al., The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol, 2010. 11(10): p. 936–44.PubMedCrossRef
97.
go back to reference Salem, M., J.T. Mony, M. Lobner, et al., Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice. J Neuroinflammation, 2011. 8: p. 181.PubMedPubMedCentralCrossRef Salem, M., J.T. Mony, M. Lobner, et al., Interferon regulatory factor-7 modulates experimental autoimmune encephalomyelitis in mice. J Neuroinflammation, 2011. 8: p. 181.PubMedPubMedCentralCrossRef
98.
go back to reference Chan, A., R. Seguin, T. Magnus, et al., Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 2003. 43(3): p. 231–42.PubMedCrossRef Chan, A., R. Seguin, T. Magnus, et al., Phagocytosis of apoptotic inflammatory cells by microglia and its therapeutic implications: termination of CNS autoimmune inflammation and modulation by interferon-beta. Glia, 2003. 43(3): p. 231–42.PubMedCrossRef
99.
go back to reference Pang, Y., C.R. Chai, K. Gao, et al., Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3gamma. J Neurosci Res, 2015. 93(10): p. 1507–18.PubMedCrossRef Pang, Y., C.R. Chai, K. Gao, et al., Ischemia preconditioning protects astrocytes from ischemic injury through 14-3-3gamma. J Neurosci Res, 2015. 93(10): p. 1507–18.PubMedCrossRef
100.
go back to reference Li, L., A. Lundkvist, D. Andersson, et al., Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab, 2008. 28(3): p. 468–81.PubMedCrossRef Li, L., A. Lundkvist, D. Andersson, et al., Protective role of reactive astrocytes in brain ischemia. J Cereb Blood Flow Metab, 2008. 28(3): p. 468–81.PubMedCrossRef
101.
go back to reference Hossain, M.Z., J. Peeling, G.R. Sutherland, et al., Ischemia-induced cellular redistribution of the astrocytic gap junctional protein connexin43 in rat brain. Brain Res, 1994. 652(2): p. 311–22.PubMedCrossRef Hossain, M.Z., J. Peeling, G.R. Sutherland, et al., Ischemia-induced cellular redistribution of the astrocytic gap junctional protein connexin43 in rat brain. Brain Res, 1994. 652(2): p. 311–22.PubMedCrossRef
102.
go back to reference Nakase, T., S. Fushiki, G. Sohl, et al., Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes, 2003. 10(4–6): p. 413–7.PubMedCrossRef Nakase, T., S. Fushiki, G. Sohl, et al., Neuroprotective role of astrocytic gap junctions in ischemic stroke. Cell Commun Adhes, 2003. 10(4–6): p. 413–7.PubMedCrossRef
103.
go back to reference Chen, Y. and R.A. Swanson, Astrocytes and brain injury. J Cereb Blood Flow Metab, 2003. 23(2): p. 137–49.PubMedCrossRef Chen, Y. and R.A. Swanson, Astrocytes and brain injury. J Cereb Blood Flow Metab, 2003. 23(2): p. 137–49.PubMedCrossRef
104.
go back to reference Freitas-Andrade, M. and C.C. Naus, Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience, 2016. 323: p. 207–21.PubMedCrossRef Freitas-Andrade, M. and C.C. Naus, Astrocytes in neuroprotection and neurodegeneration: The role of connexin43 and pannexin1. Neuroscience, 2016. 323: p. 207–21.PubMedCrossRef
105.
go back to reference Norden, D.M., A.M. Fenn, A. Dugan, et al., TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia, 2014. 62(6): p. 881–95.PubMedPubMedCentralCrossRef Norden, D.M., A.M. Fenn, A. Dugan, et al., TGFbeta produced by IL-10 redirected astrocytes attenuates microglial activation. Glia, 2014. 62(6): p. 881–95.PubMedPubMedCentralCrossRef
106.
go back to reference Gorina, R., M. Font-Nieves, L. Marquez-Kisinousky, et al., Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia, 2011. 59(2): p. 242–55.PubMedCrossRef Gorina, R., M. Font-Nieves, L. Marquez-Kisinousky, et al., Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia, 2011. 59(2): p. 242–55.PubMedCrossRef
107.
go back to reference Hung, C.C., C.H. Lin, H. Chang, et al., Astrocytic GAP43 Induced by the TLR4/NF-kappaB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci, 2016. 36(6): p. 2027–43.PubMedCrossRef Hung, C.C., C.H. Lin, H. Chang, et al., Astrocytic GAP43 Induced by the TLR4/NF-kappaB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci, 2016. 36(6): p. 2027–43.PubMedCrossRef
108.
go back to reference Pan, L.N., W. Zhu, Y. Li, et al., Astrocytic Toll-like receptor 3 is associated with ischemic preconditioning-induced protection against brain ischemia in rodents. PLoS One, 2014. 9(6): p. e99526.PubMedPubMedCentralCrossRef Pan, L.N., W. Zhu, Y. Li, et al., Astrocytic Toll-like receptor 3 is associated with ischemic preconditioning-induced protection against brain ischemia in rodents. PLoS One, 2014. 9(6): p. e99526.PubMedPubMedCentralCrossRef
109.
go back to reference Lian, H., A. Litvinchuk, A.C. Chiang, et al., Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci, 2016. 36(2): p. 577–89.PubMedPubMedCentralCrossRef Lian, H., A. Litvinchuk, A.C. Chiang, et al., Astrocyte-Microglia Cross Talk through Complement Activation Modulates Amyloid Pathology in Mouse Models of Alzheimer's Disease. J Neurosci, 2016. 36(2): p. 577–89.PubMedPubMedCentralCrossRef
110.
go back to reference Weinstein, J.R., Y. Quan, J.F. Hanson, et al., IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcalpha/mu Receptor. J Immunol, 2015. 195(11): p. 5309–17.PubMedPubMedCentralCrossRef Weinstein, J.R., Y. Quan, J.F. Hanson, et al., IgM-Dependent Phagocytosis in Microglia Is Mediated by Complement Receptor 3, Not Fcalpha/mu Receptor. J Immunol, 2015. 195(11): p. 5309–17.PubMedPubMedCentralCrossRef
111.
go back to reference Hong, S., V.F. Beja-Glasser, B.M. Nfonoyim, et al., Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016. Hong, S., V.F. Beja-Glasser, B.M. Nfonoyim, et al., Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016.
112.
go back to reference Benarroch, E.E., Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005. 80(10): p. 1326–38.PubMedCrossRef Benarroch, E.E., Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005. 80(10): p. 1326–38.PubMedCrossRef
113.
go back to reference Nakase, T. and C.C. Naus, Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta, 2004. 1662(1–2): p. 149–58.PubMedCrossRef Nakase, T. and C.C. Naus, Gap junctions and neurological disorders of the central nervous system. Biochim Biophys Acta, 2004. 1662(1–2): p. 149–58.PubMedCrossRef
114.
go back to reference Wallraff, A., R. Kohling, U. Heinemann, et al., The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci, 2006. 26(20): p. 5438–47.PubMedCrossRef Wallraff, A., R. Kohling, U. Heinemann, et al., The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J Neurosci, 2006. 26(20): p. 5438–47.PubMedCrossRef
115.
go back to reference Guitart, K., G. Loers, F. Buck, et al., Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia, 2016. 64(6): p. 896–910.PubMed Guitart, K., G. Loers, F. Buck, et al., Improvement of neuronal cell survival by astrocyte-derived exosomes under hypoxic and ischemic conditions depends on prion protein. Glia, 2016. 64(6): p. 896–910.PubMed
116.
go back to reference Dodson, R.F., L.W. Chu, K.M. Welch, et al., Acute tissue response to cerebral ischemia in the gerbil. An ultrastructural study. J Neurol Sci, 1977. 33(1–2): p. 161–70.PubMedCrossRef Dodson, R.F., L.W. Chu, K.M. Welch, et al., Acute tissue response to cerebral ischemia in the gerbil. An ultrastructural study. J Neurol Sci, 1977. 33(1–2): p. 161–70.PubMedCrossRef
117.
go back to reference del Zoppo, G.J., Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience, 2009. 158(3): p. 972–82.PubMedCrossRef del Zoppo, G.J., Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience, 2009. 158(3): p. 972–82.PubMedCrossRef
118.
go back to reference Rosenberg, G.A., E.Y. Estrada, and J.E. Dencoff, Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke, 1998. 29(10): p. 2189–95.PubMedCrossRef Rosenberg, G.A., E.Y. Estrada, and J.E. Dencoff, Matrix metalloproteinases and TIMPs are associated with blood–brain barrier opening after reperfusion in rat brain. Stroke, 1998. 29(10): p. 2189–95.PubMedCrossRef
119.
go back to reference Filosa, J.A., H.W. Morrison, J.A. Iddings, et al., Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience, 2016. 323: p. 96–109.PubMedCrossRef Filosa, J.A., H.W. Morrison, J.A. Iddings, et al., Beyond neurovascular coupling, role of astrocytes in the regulation of vascular tone. Neuroscience, 2016. 323: p. 96–109.PubMedCrossRef
120.
go back to reference Hayakawa, K., T. Nakano, K. Irie, et al., Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2010. 30(4): p. 871–82.PubMedCrossRef Hayakawa, K., T. Nakano, K. Irie, et al., Inhibition of reactive astrocytes with fluorocitrate retards neurovascular remodeling and recovery after focal cerebral ischemia in mice. J Cereb Blood Flow Metab, 2010. 30(4): p. 871–82.PubMedCrossRef
121.
go back to reference Nawashiro, H., M. Brenner, S. Fukui, et al., High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab, 2000. 20(7): p. 1040–4.PubMedCrossRef Nawashiro, H., M. Brenner, S. Fukui, et al., High susceptibility to cerebral ischemia in GFAP-null mice. J Cereb Blood Flow Metab, 2000. 20(7): p. 1040–4.PubMedCrossRef
122.
go back to reference Wang, X., K. Kang, S. Wang, et al., Focal cerebral ischemic tolerance and change in blood–brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model. J Neurosurg, 2016: p. 1–10. Wang, X., K. Kang, S. Wang, et al., Focal cerebral ischemic tolerance and change in blood–brain barrier permeability after repetitive pure oxygen exposure preconditioning in a rodent model. J Neurosurg, 2016: p. 1–10.
123.
go back to reference Jin, K., X.O. Mao, M.W. Eshoo, et al., cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem Res, 2002. 27(10): p. 1105–12.PubMedCrossRef Jin, K., X.O. Mao, M.W. Eshoo, et al., cDNA microarray analysis of changes in gene expression induced by neuronal hypoxia in vitro. Neurochem Res, 2002. 27(10): p. 1105–12.PubMedCrossRef
124.
go back to reference Shen, M., T.M. Piser, V.S. Seybold, et al., Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci, 1996. 16(14): p. 4322–34.PubMed Shen, M., T.M. Piser, V.S. Seybold, et al., Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. J Neurosci, 1996. 16(14): p. 4322–34.PubMed
125.
go back to reference Nagayama, T., A.D. Sinor, R.P. Simon, et al., Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci, 1999. 19(8): p. 2987–95.PubMed Nagayama, T., A.D. Sinor, R.P. Simon, et al., Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci, 1999. 19(8): p. 2987–95.PubMed
126.
go back to reference Bickler, P.E., J.P. Clark, P. Gabatto, et al., Hypoxic preconditioning and cell death from oxygen/glucose deprivation co-opt a subset of the unfolded protein response in hippocampal neurons. Neuroscience, 2015. 310: p. 306–21.PubMedCrossRef Bickler, P.E., J.P. Clark, P. Gabatto, et al., Hypoxic preconditioning and cell death from oxygen/glucose deprivation co-opt a subset of the unfolded protein response in hippocampal neurons. Neuroscience, 2015. 310: p. 306–21.PubMedCrossRef
127.
go back to reference Cardona, A.E., E.P. Pioro, M.E. Sasse, et al., Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci, 2006. 9(7): p. 917–24.PubMedCrossRef Cardona, A.E., E.P. Pioro, M.E. Sasse, et al., Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci, 2006. 9(7): p. 917–24.PubMedCrossRef
128.
go back to reference Tang, Z., Y. Gan, Q. Liu, et al., CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation, 2014. 11: p. 26.PubMedPubMedCentralCrossRef Tang, Z., Y. Gan, Q. Liu, et al., CX3CR1 deficiency suppresses activation and neurotoxicity of microglia/macrophage in experimental ischemic stroke. J Neuroinflammation, 2014. 11: p. 26.PubMedPubMedCentralCrossRef
129.
go back to reference Fumagalli, S., C. Perego, F. Ortolano, et al., CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia, 2013. 61(6): p. 827–42.PubMedCrossRef Fumagalli, S., C. Perego, F. Ortolano, et al., CX3CR1 deficiency induces an early protective inflammatory environment in ischemic mice. Glia, 2013. 61(6): p. 827–42.PubMedCrossRef
130.
go back to reference Helley, M.P., W. Abate, S.K. Jackson, et al., The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons. Neuroscience, 2015. 310: p. 686–98.PubMedCrossRef Helley, M.P., W. Abate, S.K. Jackson, et al., The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons. Neuroscience, 2015. 310: p. 686–98.PubMedCrossRef
131.
go back to reference Lafon, M., F. Megret, M. Lafage, et al., The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci, 2006. 29(3): p. 185–94.PubMedCrossRef Lafon, M., F. Megret, M. Lafage, et al., The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci, 2006. 29(3): p. 185–94.PubMedCrossRef
132.
go back to reference Mishra, B.B., P.K. Mishra, and J.M. Teale, Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol, 2006. 181(1–2): p. 46–56.PubMedPubMedCentralCrossRef Mishra, B.B., P.K. Mishra, and J.M. Teale, Expression and distribution of Toll-like receptors in the brain during murine neurocysticercosis. J Neuroimmunol, 2006. 181(1–2): p. 46–56.PubMedPubMedCentralCrossRef
133.
go back to reference Wadachi, R. and K.M. Hargreaves, Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res, 2006. 85(1): p. 49–53.PubMedPubMedCentralCrossRef Wadachi, R. and K.M. Hargreaves, Trigeminal nociceptors express TLR-4 and CD14: a mechanism for pain due to infection. J Dent Res, 2006. 85(1): p. 49–53.PubMedPubMedCentralCrossRef
134.
go back to reference Marlier, Q., S. Verteneuil, R. Vandenbosch, et al., Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci, 2015. 9: p. 458.PubMedPubMedCentralCrossRef Marlier, Q., S. Verteneuil, R. Vandenbosch, et al., Mechanisms and Functional Significance of Stroke-Induced Neurogenesis. Front Neurosci, 2015. 9: p. 458.PubMedPubMedCentralCrossRef
135.
go back to reference Maysami, S., J.Q. Lan, M. Minami, et al., Proliferating progenitor cells: a required cellular element for induction of ischemic tolerance in the brain. J Cereb Blood Flow Metab, 2008. 28(6): p. 1104–13.PubMedCrossRef Maysami, S., J.Q. Lan, M. Minami, et al., Proliferating progenitor cells: a required cellular element for induction of ischemic tolerance in the brain. J Cereb Blood Flow Metab, 2008. 28(6): p. 1104–13.PubMedCrossRef
136.
go back to reference Naylor, M., K.K. Bowen, K.A. Sailor, et al., Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int, 2005. 47(8): p. 565-72.PubMedCrossRef Naylor, M., K.K. Bowen, K.A. Sailor, et al., Preconditioning-induced ischemic tolerance stimulates growth factor expression and neurogenesis in adult rat hippocampus. Neurochem Int, 2005. 47(8): p. 565-72.PubMedCrossRef
137.
go back to reference Nakagomi, T., S. Kubo, A. Nakano-Doi, et al., Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells, 2015. 33(6): p. 1962–74.PubMedCrossRef Nakagomi, T., S. Kubo, A. Nakano-Doi, et al., Brain vascular pericytes following ischemia have multipotential stem cell activity to differentiate into neural and vascular lineage cells. Stem Cells, 2015. 33(6): p. 1962–74.PubMedCrossRef
138.
go back to reference Lang, B., H.L. Liu, R. Liu, et al., Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience, 2004. 128(4): p. 775–83.PubMedCrossRef Lang, B., H.L. Liu, R. Liu, et al., Astrocytes in injured adult rat spinal cord may acquire the potential of neural stem cells. Neuroscience, 2004. 128(4): p. 775–83.PubMedCrossRef
139.
go back to reference Offner, H., S. Subramanian, S.M. Parker, et al., Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol, 2006. 176(11): p. 6523–31.PubMedCrossRef Offner, H., S. Subramanian, S.M. Parker, et al., Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol, 2006. 176(11): p. 6523–31.PubMedCrossRef
140.
go back to reference Vendrame, M., C. Gemma, K.R. Pennypacker, et al., Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol, 2006. 199(1): p. 191–200.PubMedCrossRef Vendrame, M., C. Gemma, K.R. Pennypacker, et al., Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol, 2006. 199(1): p. 191–200.PubMedCrossRef
141.
go back to reference Gelderblom, M., F. Leypoldt, K. Steinbach, et al., Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 2009. 40(5): p. 1849–57.PubMedCrossRef Gelderblom, M., F. Leypoldt, K. Steinbach, et al., Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 2009. 40(5): p. 1849–57.PubMedCrossRef
142.
go back to reference Ajmo, C.T., Jr., D.O. Vernon, L. Collier, et al., The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res, 2008. 86(10): p. 2227–34.PubMedPubMedCentralCrossRef Ajmo, C.T., Jr., D.O. Vernon, L. Collier, et al., The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res, 2008. 86(10): p. 2227–34.PubMedPubMedCentralCrossRef
143.
go back to reference Das, M., C.C. Leonardo, S. Rangooni, et al., Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation, 2011. 8: p. 148.PubMedPubMedCentralCrossRef Das, M., C.C. Leonardo, S. Rangooni, et al., Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation, 2011. 8: p. 148.PubMedPubMedCentralCrossRef
144.
go back to reference Jin, R., X. Zhu, L. Liu, et al., Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke, 2013. 44(4): p. 1135–43.PubMedPubMedCentralCrossRef Jin, R., X. Zhu, L. Liu, et al., Simvastatin attenuates stroke-induced splenic atrophy and lung susceptibility to spontaneous bacterial infection in mice. Stroke, 2013. 44(4): p. 1135–43.PubMedPubMedCentralCrossRef
145.
go back to reference Seifert, H.A., C.C. Leonardo, A.A. Hall, et al., The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis, 2012. 27(2): p. 131–41.PubMedPubMedCentralCrossRef Seifert, H.A., C.C. Leonardo, A.A. Hall, et al., The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis, 2012. 27(2): p. 131–41.PubMedPubMedCentralCrossRef
146.
148.
go back to reference Shichita, T., Y. Sugiyama, H. Ooboshi, et al., Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med, 2009. 15(8): p. 946–50.PubMedCrossRef Shichita, T., Y. Sugiyama, H. Ooboshi, et al., Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med, 2009. 15(8): p. 946–50.PubMedCrossRef
149.
go back to reference Swirski, F.K., M. Nahrendorf, M. Etzrodt, et al., Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009. 325(5940): p. 612–6.PubMedPubMedCentralCrossRef Swirski, F.K., M. Nahrendorf, M. Etzrodt, et al., Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009. 325(5940): p. 612–6.PubMedPubMedCentralCrossRef
150.
go back to reference Gliem, M., D. Hermsen, N. van Rooijen, et al., Secondary intracerebral hemorrhage due to early initiation of oral anticoagulation after ischemic stroke: an experimental study in mice. Stroke, 2012. 43(12): p. 3352–7.PubMedCrossRef Gliem, M., D. Hermsen, N. van Rooijen, et al., Secondary intracerebral hemorrhage due to early initiation of oral anticoagulation after ischemic stroke: an experimental study in mice. Stroke, 2012. 43(12): p. 3352–7.PubMedCrossRef
151.
go back to reference Huang, J., U.M. Upadhyay, and R.J. Tamargo, Inflammation in stroke and focal cerebral ischemia. Surg Neurol, 2006. 66(3): p. 232–45.PubMedCrossRef Huang, J., U.M. Upadhyay, and R.J. Tamargo, Inflammation in stroke and focal cerebral ischemia. Surg Neurol, 2006. 66(3): p. 232–45.PubMedCrossRef
152.
go back to reference Su, W., S. Hopkins, N.K. Nesser, et al., The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol, 2014. 192(1): p. 358–66.PubMedCrossRef Su, W., S. Hopkins, N.K. Nesser, et al., The p53 transcription factor modulates microglia behavior through microRNA-dependent regulation of c-Maf. J Immunol, 2014. 192(1): p. 358–66.PubMedCrossRef
153.
go back to reference Gliem, M., M. Schwaninger, and S. Jander, Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta, 2016. 1862(3): p. 329–38.PubMedCrossRef Gliem, M., M. Schwaninger, and S. Jander, Protective features of peripheral monocytes/macrophages in stroke. Biochim Biophys Acta, 2016. 1862(3): p. 329–38.PubMedCrossRef
Metadata
Title
Neuroimmune Response in Ischemic Preconditioning
Authors
Ashley McDonough
Jonathan R. Weinstein
Publication date
01-10-2016
Publisher
Springer US
Published in
Neurotherapeutics / Issue 4/2016
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0465-z

Other articles of this Issue 4/2016

Neurotherapeutics 4/2016 Go to the issue