Skip to main content
Top
Published in: Diabetes Therapy 1/2017

Open Access 01-02-2017 | Original Research

Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial

Authors: Thomas Haak, Hélène Hanaire, Ramzi Ajjan, Norbert Hermanns, Jean-Pierre Riveline, Gerry Rayman

Published in: Diabetes Therapy | Issue 1/2017

Login to get access

Abstract

Introduction

Glycemic control in participants with insulin-treated diabetes remains challenging. We assessed safety and efficacy of new flash glucose-sensing technology to replace self-monitoring of blood glucose (SMBG).

Methods

This open-label randomized controlled study (ClinicalTrials.gov, NCT02082184) enrolled adults with type 2 diabetes on intensive insulin therapy from 26 European diabetes centers. Following 2 weeks of blinded sensor wear, 2:1 (intervention/control) randomization (centrally, using biased-coin minimization dependant on study center and insulin administration) was to control (SMBG) or intervention (glucose-sensing technology). Participants and investigators were not masked to group allocation. Primary outcome was difference in HbA1c at 6 months in the full analysis set. Prespecified secondary outcomes included time in hypoglycemia, effect of age, and patient satisfaction.

Results

Participants (n = 224) were randomized (149 intervention, 75 controls). At 6 months, there was no difference in the change in HbA1c between intervention and controls: −3.1 ± 0.75 mmol/mol, [−0.29 ± 0.07% (mean ± SE)] and −3.4 ± 1.04 mmol/mol (−0.31 ± 0.09%) respectively; p = 0.8222. A difference was detected in participants aged <65 years [−5.7 ± 0.96 mmol/mol (−0.53 ± 0.09%) and −2.2 ± 1.31 mmol/mol (−0.20 ± 0.12%), respectively; p = 0.0301]. Time in hypoglycemia <3.9 mmol/L (70 mg/dL) reduced by 0.47 ± 0.13 h/day [mean ± SE (p = 0.0006)], and <3.1 mmol/L (55 mg/dL) reduced by 0.22 ± 0.07 h/day (p = 0.0014) for intervention participants compared with controls; reductions of 43% and 53%, respectively. SMBG frequency, similar at baseline, decreased in intervention participants from 3.8 ± 1.4 tests/day (mean ± SD) to 0.3 ± 0.7, remaining unchanged in controls. Treatment satisfaction was higher in intervention compared with controls (DTSQ 13.1 ± 0.50 (mean ± SE) and 9.0 ± 0.72, respectively; p < 0.0001). No serious adverse events or severe hypoglycemic events were reported related to sensor data use. Forty-two serious events [16 (10.7%) intervention participants, 12 (16.0%) controls] were not device-related. Six intervention participants reported nine adverse events for sensor-wear reactions (two severe, six moderate, one mild).

Conclusion

Flash glucose-sensing technology use in type 2 diabetes with intensive insulin therapy results in no difference in HbA1c change and reduced hypoglycemia, thus offering a safe, effective replacement for SMBG.

Trial registration

ClinicalTrials.gov identifier: NCT02082184.

Funding

Abbott Diabetes Care.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chiu C-J, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. Prev Chronic Dis. 2010;7(1):A08.PubMed Chiu C-J, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. Prev Chronic Dis. 2010;7(1):A08.PubMed
2.
go back to reference Nichols GA, Hillier TA, Javor K, Brown JB. Predictors of glycemic control in insulin-using adults with type 2 diabetes. Diabetes Care. 2000;23(3):273–7.CrossRefPubMed Nichols GA, Hillier TA, Javor K, Brown JB. Predictors of glycemic control in insulin-using adults with type 2 diabetes. Diabetes Care. 2000;23(3):273–7.CrossRefPubMed
3.
go back to reference Holman RR, Paul SK, Bethel MA, et al. 10-year follow up of intensive glucose control in type 2 diabetes. N Eng J Med. 2008;359:577–89. Holman RR, Paul SK, Bethel MA, et al. 10-year follow up of intensive glucose control in type 2 diabetes. N Eng J Med. 2008;359:577–89.
4.
go back to reference UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.CrossRef UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998;352:837–53.CrossRef
5.
go back to reference Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.CrossRefPubMedPubMedCentral Bonds DE, Miller ME, Bergenstal RM, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ. 2010;340:b4909.CrossRefPubMedPubMedCentral
6.
go back to reference Alvarez-Guisasola F, Yin DD, Nocea G, Qui Y, Mavros P. Association of hypoglycemic symptoms with patients’ rating of their health-related quality of life state: a cross sectional study. Health Qual Life Outcomes. 2010;8:86.CrossRefPubMedPubMedCentral Alvarez-Guisasola F, Yin DD, Nocea G, Qui Y, Mavros P. Association of hypoglycemic symptoms with patients’ rating of their health-related quality of life state: a cross sectional study. Health Qual Life Outcomes. 2010;8:86.CrossRefPubMedPubMedCentral
8.
go back to reference Lin CC, Li CI, Yang SY, et al. Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am J Med. 2012;125(416):e9–18. Lin CC, Li CI, Yang SY, et al. Variation of fasting plasma glucose: a predictor of mortality in patients with type 2 diabetes. Am J Med. 2012;125(416):e9–18.
9.
go back to reference Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A. Glucose oscillations, more than constant high glucose, induce activation and a metabolic memory in human endothelial cells. Diabetologia. 2011;54:1219–26.CrossRefPubMed Schisano B, Tripathi G, McGee K, McTernan PG, Ceriello A. Glucose oscillations, more than constant high glucose, induce activation and a metabolic memory in human endothelial cells. Diabetologia. 2011;54:1219–26.CrossRefPubMed
10.
go back to reference Ong WM, Chua SS, Ng CJ. Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study. Patient Prefer Adherence. 2014;8:237–46.PubMedPubMedCentral Ong WM, Chua SS, Ng CJ. Barriers and facilitators to self-monitoring of blood glucose in people with type 2 diabetes using insulin: a qualitative study. Patient Prefer Adherence. 2014;8:237–46.PubMedPubMedCentral
11.
go back to reference Hortensius J, Kars MC, Wierenga WS, Kleefstra N, Bilo HJ, van der Bijl JJ. Perspectives of patients with type1 or insulin treated type 2 diabetes on self-monitoring of blood glucose: a qualitative study. BMC Public Health. 2012;12:167–77.CrossRefPubMedPubMedCentral Hortensius J, Kars MC, Wierenga WS, Kleefstra N, Bilo HJ, van der Bijl JJ. Perspectives of patients with type1 or insulin treated type 2 diabetes on self-monitoring of blood glucose: a qualitative study. BMC Public Health. 2012;12:167–77.CrossRefPubMedPubMedCentral
13.
go back to reference ADA. Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabet Care. 2005;28:1245–9.CrossRef ADA. Defining and reporting hypoglycemia in diabetes: a report from the American Diabetes Association Workgroup on Hypoglycemia. Diabet Care. 2005;28:1245–9.CrossRef
14.
go back to reference Polonsky WH, Fisher L, Earles J, et al. Assessing psychosocial distress in diabetes: development of the diabetes distress scale. Diabet Care. 2005;28:626–31.CrossRef Polonsky WH, Fisher L, Earles J, et al. Assessing psychosocial distress in diabetes: development of the diabetes distress scale. Diabet Care. 2005;28:626–31.CrossRef
15.
go back to reference The DCCT. Research group reliability and validity of a diabetes quality-of-life measure for the diabetes and complications trial (DCCT). Diabet Care. 1988;11:725–32.CrossRef The DCCT. Research group reliability and validity of a diabetes quality-of-life measure for the diabetes and complications trial (DCCT). Diabet Care. 1988;11:725–32.CrossRef
16.
go back to reference Bradley C. Diabetes treatment satisfaction questionnaire. In: Bradley C, editor. Handbook of psychology and diabetes. Chur: Harwood Academic; 1994. Bradley C. Diabetes treatment satisfaction questionnaire. In: Bradley C, editor. Handbook of psychology and diabetes. Chur: Harwood Academic; 1994.
17.
go back to reference Kovatchev BP, Clarke WL, Breton M, Brayman K, McCall A. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technol Ther. 2005;7:849–62.CrossRefPubMed Kovatchev BP, Clarke WL, Breton M, Brayman K, McCall A. Quantifying temporal glucose variability in diabetes via continuous glucose monitoring: mathematical methods and clinical application. Diabetes Technol Ther. 2005;7:849–62.CrossRefPubMed
18.
go back to reference McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005;7(2):253–63.CrossRefPubMed McDonnell CM, Donath SM, Vidmar SI, Werther GA, Cameron FJ. A novel approach to continuous glucose analysis utilizing glycemic variation. Diabetes Technol Ther. 2005;7(2):253–63.CrossRefPubMed
19.
go back to reference Clarke W, Kovatchev B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol Ther. 2009;11(S1):S45–54.CrossRefPubMed Clarke W, Kovatchev B. Statistical tools to analyze continuous glucose monitor data. Diabetes Technol Ther. 2009;11(S1):S45–54.CrossRefPubMed
20.
go back to reference Abbott Diabetes Care. Randomised controlled study to evaluate the impact of novel glucose sensing technology on HbA1c in type 2 diabetes (REPLACE) ADC-CI-APO 12018. Data on file. 2015. Abbott Diabetes Care. Randomised controlled study to evaluate the impact of novel glucose sensing technology on HbA1c in type 2 diabetes (REPLACE) ADC-CI-APO 12018. Data on file. 2015.
22.
go back to reference The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76.CrossRef The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76.CrossRef
23.
go back to reference Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 2001;10(323, 7321):1123–4. Vickers AJ, Altman DG. Statistics notes: analysing controlled trials with baseline and follow up measurements. BMJ 2001;10(323, 7321):1123–4.
24.
go back to reference Ehrhardt NM, Chellappa M, Walker SM, Fonda SJ, Vigersky RA. The effect of real-time continuous glucose monitoring on glycaemic control in patients with type 2 diabetes. J Diabet Sci Technol. 2011;5(3):668–75.CrossRef Ehrhardt NM, Chellappa M, Walker SM, Fonda SJ, Vigersky RA. The effect of real-time continuous glucose monitoring on glycaemic control in patients with type 2 diabetes. J Diabet Sci Technol. 2011;5(3):668–75.CrossRef
25.
go back to reference Vigersky RA, Fonda SJ, Chellappa M, Walker SM, Ehrhardt NM. Sort and long term effect of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabet Care. 2012;35:32–8.CrossRef Vigersky RA, Fonda SJ, Chellappa M, Walker SM, Ehrhardt NM. Sort and long term effect of real-time continuous glucose monitoring in patients with type 2 diabetes. Diabet Care. 2012;35:32–8.CrossRef
26.
go back to reference Fonda SJ, Salkind SJ, Walker SM, Chellappa M, Ehrhardt N, Vigersky RA. Heterogeneity of responses to real-time continuous glucose monitoring (RT_CGM) in patients with type 2 diabetes and its implications for application. Diabet Care. 2013;36:786–92.CrossRef Fonda SJ, Salkind SJ, Walker SM, Chellappa M, Ehrhardt N, Vigersky RA. Heterogeneity of responses to real-time continuous glucose monitoring (RT_CGM) in patients with type 2 diabetes and its implications for application. Diabet Care. 2013;36:786–92.CrossRef
27.
go back to reference McCoy RG, Kasia MS, Lipska J, et al. Intensive treatment and severe hypoglycemia among adults with type 2 diabetes. JAMA Intern Med. 2016;176(7):969–78.CrossRefPubMed McCoy RG, Kasia MS, Lipska J, et al. Intensive treatment and severe hypoglycemia among adults with type 2 diabetes. JAMA Intern Med. 2016;176(7):969–78.CrossRefPubMed
28.
go back to reference American Diabetes Association Standards of Medical Care in. Diabetes. Diabete, Care. 2016;39:1.CrossRef American Diabetes Association Standards of Medical Care in. Diabetes. Diabete, Care. 2016;39:1.CrossRef
29.
go back to reference Battelino T, Conget I, Olsen B, et al, for the SWITCH Study Group. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 2012;55:3155–62. Battelino T, Conget I, Olsen B, et al, for the SWITCH Study Group. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial. Diabetologia 2012;55:3155–62.
30.
go back to reference Kovatchev BP, Cox DJ, Farhy LS, Straume M, Gonder-Frederick L, Clarke WL. Episodes of severe hypoglycemia in type 1 diabetes are preceded and followed within 48 hours by measurable disturbances in blood glucose. J Clin Endocrinol Metab. 2000;85:4287–92.PubMed Kovatchev BP, Cox DJ, Farhy LS, Straume M, Gonder-Frederick L, Clarke WL. Episodes of severe hypoglycemia in type 1 diabetes are preceded and followed within 48 hours by measurable disturbances in blood glucose. J Clin Endocrinol Metab. 2000;85:4287–92.PubMed
31.
go back to reference Qu Y, Jacober SJ, Zhang Q, Wolka LL, Hans DeVries J. Rate of hypoglycemia in insulin-treated patients with type 2 diabetes can be predicted from glycemic variability data. Diabetes Technol Ther. 2012;14(11):1008–12.CrossRefPubMed Qu Y, Jacober SJ, Zhang Q, Wolka LL, Hans DeVries J. Rate of hypoglycemia in insulin-treated patients with type 2 diabetes can be predicted from glycemic variability data. Diabetes Technol Ther. 2012;14(11):1008–12.CrossRefPubMed
32.
go back to reference Ward JEF, Stetson BA, Mokshagundam SPL. Patient perspectives on self-monitoring of blood glucose: perceived recommendations, behaviours and barriers in a clinic sample of adults with type 2 diabetes. J Diabetes Metab Disord. 2015;14(43):1–7. Ward JEF, Stetson BA, Mokshagundam SPL. Patient perspectives on self-monitoring of blood glucose: perceived recommendations, behaviours and barriers in a clinic sample of adults with type 2 diabetes. J Diabetes Metab Disord. 2015;14(43):1–7.
33.
go back to reference Polonsky WH, Hassler D. What are the quality of life-related benefits and losses associated with real-time continuous glucose monitoring? A survey of current users. Diabetes Technol Ther. 2013;15:295–301.CrossRefPubMed Polonsky WH, Hassler D. What are the quality of life-related benefits and losses associated with real-time continuous glucose monitoring? A survey of current users. Diabetes Technol Ther. 2013;15:295–301.CrossRefPubMed
34.
go back to reference Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kroeger J, Weitgasser R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016. doi:10.1016/S0140-6736(16)31535-5. Bolinder J, Antuna R, Geelhoed-Duijvestijn P, Kroeger J, Weitgasser R. Novel glucose-sensing technology and hypoglycaemia in type 1 diabetes: a multicentre, non-masked, randomised controlled trial. Lancet. 2016. doi:10.​1016/​S0140-6736(16)31535-5.
35.
go back to reference Maahs DM, Buckingham B, Castle J, et al. Outcome measures for artificial pancreas clinical trials: a consensus report. Diabet Care. 2016;39:1175–9.CrossRef Maahs DM, Buckingham B, Castle J, et al. Outcome measures for artificial pancreas clinical trials: a consensus report. Diabet Care. 2016;39:1175–9.CrossRef
Metadata
Title
Flash Glucose-Sensing Technology as a Replacement for Blood Glucose Monitoring for the Management of Insulin-Treated Type 2 Diabetes: a Multicenter, Open-Label Randomized Controlled Trial
Authors
Thomas Haak
Hélène Hanaire
Ramzi Ajjan
Norbert Hermanns
Jean-Pierre Riveline
Gerry Rayman
Publication date
01-02-2017
Publisher
Springer Healthcare
Published in
Diabetes Therapy / Issue 1/2017
Print ISSN: 1869-6953
Electronic ISSN: 1869-6961
DOI
https://doi.org/10.1007/s13300-016-0223-6

Other articles of this Issue 1/2017

Diabetes Therapy 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.