Skip to main content
Top
Published in: Tumor Biology 12/2016

01-12-2016 | Original Article

Snail-activated long non-coding RNA PCA3 up-regulates PRKD3 expression by miR-1261 sponging, thereby promotes invasion and migration of prostate cancer cells

Authors: Jin-Hua He, Bao-Xia Li, Ze-Ping Han, Mao-Xian Zou, Li Wang, Yu-Bing Lv, Jia-Bin Zhou, Ming-Rong Cao, Yu-Guang Li, Jing-zhi Zhang

Published in: Tumor Biology | Issue 12/2016

Login to get access

Abstract

Rapidly accumulated evidence has shown that long non-coding RNA (lncRNAs) disregulation is involved in human tumorigenesis in many cancers, including prostate cancer (PCa). LncRNAs can regulate essential pathways that contribute to tumor initiation and progression with tissue specificity, which suggests that lncRNAs could be valuable biomarkers and therapeutic targets. Prostate cancer antigen 3 (PCA3), also known as differential display code 3 (DD3), is one such lncRNA that maps to chromosome 9q21–22. PCA3 expression is highly specific to PCa. In the present study, the level of PCA3 expression in prostate cancer cells was reduced by small interfering RNA (siRNA). Subsequently, the ability of LNCaP cell proliferation, invasion, and migration of PCa was compromised both in vivo and in vitro with the occurrence of cell autophagy. Recently, a novel regulatory mechanism has been proposed in which RNAs cross talk via competing with the shared microRNAs (miRNAs). In addition, lncRNAs can directly interact with RNA-binding proteins and then bind to the gene promoter region to further regulate gene expression. The proposed competitive endogenous RNAs mediate the bioavailability of miRNAs on their targets, thus imposing another level of post-transcriptional regulation. Here, we demonstrated that binding of Snail to the promoter region of PCA3 could activate the expression of PCA3. Down-regulation of PCA3 by silencing could increase the expression of the miRNA-1261, which then targeted at the PRKD3 gene (protein kinase D3) through competitive sponging. In summary, these results suggest that the transcription factor, Snail, activated the expression of lncRNA PCA3, which could inhibit the translation of PRKD3 protein via competitive miR-1261 sponging, and thus high expression of PRKD3 further promoted invasion and migration of prostate cancer.
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA. 2013;63:11–30. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA. 2013;63:11–30.
2.
go back to reference Roberts WB, Han M. Clinical significance and treatment of biochemical recurrence after definitive therapy for localized prostate cancer. Surgic Oncol. 2009;18:268–74.CrossRef Roberts WB, Han M. Clinical significance and treatment of biochemical recurrence after definitive therapy for localized prostate cancer. Surgic Oncol. 2009;18:268–74.CrossRef
3.
go back to reference Han M, Partin AW, Pound CR, et al. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15 year Johns Hopkins experience. Urologic Clin North America. 2001;28:555–65.CrossRef Han M, Partin AW, Pound CR, et al. Long-term biochemical disease-free and cancer-specific survival following anatomic radical retropubic prostatectomy. The 15 year Johns Hopkins experience. Urologic Clin North America. 2001;28:555–65.CrossRef
5.
go back to reference Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983–6.CrossRefPubMed Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 2013;41:D983–6.CrossRefPubMed
6.
7.
go back to reference Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 2014;1843:372–86.CrossRefPubMed Ellis BC, Graham LD, Molloy PL. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochim Biophys Acta. 2014;1843:372–86.CrossRefPubMed
9.
go back to reference Avgeris M, Stravodimos K, Fragoulis EG, et al. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Brit J Cancer. 2013;108:2573–81.CrossRefPubMedPubMedCentral Avgeris M, Stravodimos K, Fragoulis EG, et al. The loss of the tumour-suppressor miR-145 results in the shorter disease-free survival of prostate cancer patients. Brit J Cancer. 2013;108:2573–81.CrossRefPubMedPubMedCentral
10.
go back to reference Juan L, Wang G, Radovich M, et al. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genet. 2013;6:S7. Juan L, Wang G, Radovich M, et al. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. BMC Med Genet. 2013;6:S7.
12.
go back to reference He JH, Zhang JZ, Han ZP, Wang L, Lv Y, Li YG. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res. 2014;33:72–7.CrossRefPubMedPubMedCentral He JH, Zhang JZ, Han ZP, Wang L, Lv Y, Li YG. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J Exp Clin Cancer Res. 2014;33:72–7.CrossRefPubMedPubMedCentral
13.
go back to reference Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol. 2013;190:2278–87.CrossRefPubMed Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol. 2013;190:2278–87.CrossRefPubMed
14.
go back to reference Popa I, Fradet Y, Beaudry G, et al. Identification of PCA3 (DD3) in prostatic carcinoma by in situ hybridization. Modern Pathol. 2007;20:1121–7.CrossRef Popa I, Fradet Y, Beaudry G, et al. Identification of PCA3 (DD3) in prostatic carcinoma by in situ hybridization. Modern Pathol. 2007;20:1121–7.CrossRef
15.
go back to reference Bonfim-Silva R, Pimentel T, Valera ET, et al. Gene expression profile of long non-coding RNA EVF-2 in medulloblastoma cell lines and tissue samples. BMC Proc. 2013;7:61.CrossRef Bonfim-Silva R, Pimentel T, Valera ET, et al. Gene expression profile of long non-coding RNA EVF-2 in medulloblastoma cell lines and tissue samples. BMC Proc. 2013;7:61.CrossRef
16.
go back to reference Wierzbicki AT. The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol. 2012;15:517–22.CrossRefPubMed Wierzbicki AT. The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol. 2012;15:517–22.CrossRefPubMed
17.
go back to reference He JH, Li YM, Li YG, et al. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med. 2013;5:1315–21.PubMedPubMedCentral He JH, Li YM, Li YG, et al. hsa-miR-203 enhances the sensitivity of leukemia cells to arsenic trioxide. Exp Ther Med. 2013;5:1315–21.PubMedPubMedCentral
18.
go back to reference Zhang C, Fang X, Li W, et al. Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biocher Radiopharm. 2013;29:405–11. Zhang C, Fang X, Li W, et al. Influence of recombinant lentiviral vector encoding miR-15a/16-1 in biological features of human nasopharyngeal carcinoma CNE-2Z cells. Cancer Biocher Radiopharm. 2013;29:405–11.
19.
20.
go back to reference Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.CrossRefPubMed Pankiv S, Clausen TH, Lamark T, et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem. 2007;282:24131–45.CrossRefPubMed
21.
go back to reference Alali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One. 2013;8:e53823.CrossRef Alali S, Bhartiya D, Lalwani MK, Sivasubbu S, Scaria V. Systematic transcriptome wide analysis of lncRNA-miRNA interactions. PLoS One. 2013;8:e53823.CrossRef
22.
go back to reference Chen J, Deng F, Singh SV, et al. Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCepsilon/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res. 2008;58:3844–53.CrossRef Chen J, Deng F, Singh SV, et al. Protein kinase D3 (PKD3) contributes to prostate cancer cell growth and survival through a PKCepsilon/PKD3 pathway downstream of Akt and ERK 1/2. Cancer Res. 2008;58:3844–53.CrossRef
23.
go back to reference Li JH, Liu S, Zhou H, LH Q, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.CrossRefPubMed Li JH, Liu S, Zhou H, LH Q, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.CrossRefPubMed
24.
go back to reference Tao T, Li G, Dong Q, et al. Loss of SNAIL inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-/PKM2 signaling pathway in prostate cancer cells. Tumour Biol. 2014;35:8543–50.CrossRefPubMed Tao T, Li G, Dong Q, et al. Loss of SNAIL inhibits cellular growth and metabolism through the miR-128-mediated RPS6KB1/HIF-/PKM2 signaling pathway in prostate cancer cells. Tumour Biol. 2014;35:8543–50.CrossRefPubMed
25.
go back to reference Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.CrossRefPubMed Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339:159–66.CrossRefPubMed
26.
27.
go back to reference Schalken JA, Hessels D, Verhaegh G. New target S for therapy in prostate cancer: differential display code 3(DD3 PCA3), a highly prostate cancer-specific gene. Urology. 2003;62:34–43.CrossRefPubMed Schalken JA, Hessels D, Verhaegh G. New target S for therapy in prostate cancer: differential display code 3(DD3 PCA3), a highly prostate cancer-specific gene. Urology. 2003;62:34–43.CrossRefPubMed
28.
go back to reference Gandini O, Luci L, Stigliano A, et al. Is DD3 a new prostate specific gene? Anticancer Res. 2003;23:305–8.PubMed Gandini O, Luci L, Stigliano A, et al. Is DD3 a new prostate specific gene? Anticancer Res. 2003;23:305–8.PubMed
29.
go back to reference Jacques B, de Kok, Gerald W, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8. Jacques B, de Kok, Gerald W, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.
30.
go back to reference Hessels D, Klein Gunnewiek JM, Van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44:8–16.CrossRefPubMed Hessels D, Klein Gunnewiek JM, Van Oort I, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44:8–16.CrossRefPubMed
31.
go back to reference Tinz M, Marberger M, Horvath S, et al. DD3PCA3 RNA analysis in urine: a new perspective for detecting prostate cancer. Eur Urol. 2004;46:182–7.CrossRef Tinz M, Marberger M, Horvath S, et al. DD3PCA3 RNA analysis in urine: a new perspective for detecting prostate cancer. Eur Urol. 2004;46:182–7.CrossRef
32.
go back to reference De Kok JB, Verhaegh JW, Roelofs RW, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.PubMed De Kok JB, Verhaegh JW, Roelofs RW, et al. DD3PCA3, a very sensitive and specific marker to detect prostate tumors. Cancer Res. 2002;62:2695–8.PubMed
33.
go back to reference Javan B, Zlotta A, Remzi M, et al. Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1051 men. J Urol. 2000;163:1144–9.CrossRef Javan B, Zlotta A, Remzi M, et al. Optimal predictors of prostate cancer on repeat prostate biopsy: a prospective study of 1051 men. J Urol. 2000;163:1144–9.CrossRef
34.
go back to reference Verhaegh GW, van Bokhoven A, Smit F, et al. Isolation and characterization of the promoter of the human prostate cancer specific DD3 gene. J Biol Chem. 2000;275:37496–503.CrossRefPubMed Verhaegh GW, van Bokhoven A, Smit F, et al. Isolation and characterization of the promoter of the human prostate cancer specific DD3 gene. J Biol Chem. 2000;275:37496–503.CrossRefPubMed
35.
go back to reference Cui Z, Ren S, Lu J, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol. 2013;31:1117–23.CrossRefPubMed Cui Z, Ren S, Lu J, et al. The prostate cancer-up-regulated long noncoding RNA PlncRNA-1 modulates apoptosis and proliferation through reciprocal regulation of androgen receptor. Urol Oncol. 2013;31:1117–23.CrossRefPubMed
36.
go back to reference Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;32:1–15. Ferreira LB, Palumbo A, de Mello KD, et al. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer. 2012;32:1–15.
37.
go back to reference Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.CrossRefPubMed Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013;52:101–12.CrossRefPubMed
38.
go back to reference Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.CrossRefPubMedPubMedCentral Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147:358–69.CrossRefPubMedPubMedCentral
39.
go back to reference Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377–88.CrossRefPubMed Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014;114:1377–88.CrossRefPubMed
40.
go back to reference Braconi C, Kogure T, Valeri N, et al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30:4750–6.CrossRefPubMedPubMedCentral Braconi C, Kogure T, Valeri N, et al. MicroRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene. 2011;30:4750–6.CrossRefPubMedPubMedCentral
41.
43.
go back to reference Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.CrossRefPubMedPubMedCentral Huarte M, Guttman M, Feldser D, et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell. 2010;142:409–19.CrossRefPubMedPubMedCentral
44.
go back to reference Augoff K, McCue B, Plow EF, Sossey-Alaoui K. MiR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5–11.CrossRefPubMedPubMedCentral Augoff K, McCue B, Plow EF, Sossey-Alaoui K. MiR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol Cancer. 2012;11:5–11.CrossRefPubMedPubMedCentral
45.
go back to reference Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer. 2013;12:131–5.CrossRefPubMedPubMedCentral Feldstein O, Nizri T, Doniger T, Jacob J, Rechavi G, Ginsberg D. The long non-coding RNA ERIC is regulated by E2F and modulates the cellular response to DNA damage. Mol Cancer. 2013;12:131–5.CrossRefPubMedPubMedCentral
46.
go back to reference Sun M, Liu XH, KH L, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4- IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.CrossRefPubMedPubMedCentral Sun M, Liu XH, KH L, et al. EZH2-mediated epigenetic suppression of long noncoding RNA SPRY4- IT1 promotes NSCLC cell proliferation and metastasis by affecting the epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1298.CrossRefPubMedPubMedCentral
47.
go back to reference He X, Tan X, Wang X, et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014;35:12181–8.CrossRef He X, Tan X, Wang X, et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014;35:12181–8.CrossRef
Metadata
Title
Snail-activated long non-coding RNA PCA3 up-regulates PRKD3 expression by miR-1261 sponging, thereby promotes invasion and migration of prostate cancer cells
Authors
Jin-Hua He
Bao-Xia Li
Ze-Ping Han
Mao-Xian Zou
Li Wang
Yu-Bing Lv
Jia-Bin Zhou
Ming-Rong Cao
Yu-Guang Li
Jing-zhi Zhang
Publication date
01-12-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 12/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5450-y

Other articles of this Issue 12/2016

Tumor Biology 12/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine