Skip to main content
Top
Published in: Tumor Biology 7/2016

01-07-2016 | Review

Major apoptotic mechanisms and genes involved in apoptosis

Authors: Yağmur Kiraz, Aysun Adan, Melis Kartal Yandim, Yusuf Baran

Published in: Tumor Biology | Issue 7/2016

Login to get access

Abstract

As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Literature
1.
go back to reference Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2013;35:495–516.CrossRef Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2013;35:495–516.CrossRef
2.
go back to reference Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedPubMedCentralCrossRef Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57.PubMedPubMedCentralCrossRef
4.
go back to reference Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 1999;59:1701–6. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 1999;59:1701–6.
5.
go back to reference Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;10:1456–62.CrossRef Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;10:1456–62.CrossRef
6.
go back to reference Krauss G. Biochemistry of signal transduction and regulation. Ed:VCH Wiley, 3rd Edition. 2003;511–531. Krauss G. Biochemistry of signal transduction and regulation. Ed:VCH Wiley, 3rd Edition. 2003;511–531.
7.
go back to reference Power C, Fanning N, Redmond HP. Cellular apoptosis and organ injury in sepsis: a review. Shoch. 2002;18:197–211.CrossRef Power C, Fanning N, Redmond HP. Cellular apoptosis and organ injury in sepsis: a review. Shoch. 2002;18:197–211.CrossRef
8.
9.
go back to reference Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol. 2011;11:1847–57.CrossRef Rosenblatt J, Raff MC, Cramer LP. An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol. 2011;11:1847–57.CrossRef
10.
go back to reference Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3:255–63.CrossRef Ferri KF, Kroemer G. Organelle-specific initiation of cell death pathways. Nat Cell Biol. 2001;3:255–63.CrossRef
11.
12.
go back to reference Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–6.PubMedPubMedCentralCrossRef Liu X, Li P, Widlak P, et al. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc Natl Acad Sci U S A. 1998;95:8461–6.PubMedPubMedCentralCrossRef
13.
go back to reference Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don’t-eat-me and come-get-me signals. Trends Cell Biol. 2003;13:648–56.PubMedCrossRef Grimsley C, Ravichandran KS. Cues for apoptotic cell engulfment: eat-me, don’t-eat-me and come-get-me signals. Trends Cell Biol. 2003;13:648–56.PubMedCrossRef
14.
go back to reference Mashima T, Naito M, Noguchi K, Miller DK, Nicholson DW, Tsuruo T. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene. 1997;14:1007–12.PubMedCrossRef Mashima T, Naito M, Noguchi K, Miller DK, Nicholson DW, Tsuruo T. Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene. 1997;14:1007–12.PubMedCrossRef
15.
go back to reference Ziegler U, Groscurth P. Morphological features of cell death. Physiology. 2004;10:124–8.CrossRef Ziegler U, Groscurth P. Morphological features of cell death. Physiology. 2004;10:124–8.CrossRef
16.
go back to reference Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15:2922–33.PubMed Wang X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001;15:2922–33.PubMed
18.
19.
go back to reference Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.PubMedCrossRef Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55:178–94.PubMedCrossRef
20.
go back to reference Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23:2861–74.PubMedCrossRef Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene. 2004;23:2861–74.PubMedCrossRef
21.
go back to reference Du C, Fang M, Li Y, Li L, Wang X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRef Du C, Fang M, Li Y, Li L, Wang X. SMAC, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 2000;102:33–42.PubMedCrossRef
23.
go back to reference Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J. 2004;23:2134–45.PubMedPubMedCentralCrossRef Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ. Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. Embo J. 2004;23:2134–45.PubMedPubMedCentralCrossRef
25.
go back to reference Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.PubMedCrossRef Cory S, Adams JM. The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer. 2002;2:647–56.PubMedCrossRef
26.
go back to reference Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.PubMedCrossRef Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001;104:487–501.PubMedCrossRef
27.
go back to reference Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81:495–50.PubMedCrossRef Hsu H, Xiong J, Goeddel DV. The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 1995;81:495–50.PubMedCrossRef
29.
go back to reference Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4:842–9.PubMedCrossRef Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, El-Deiry WS. BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol. 2002;4:842–9.PubMedCrossRef
30.
go back to reference Hitoshi Y, Lorens J, Kitada SI, et al. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity. 1998;8:461–71.PubMedCrossRef Hitoshi Y, Lorens J, Kitada SI, et al. Toso, a cell surface, specific regulator of Fas-induced apoptosis in T cells. Immunity. 1998;8:461–71.PubMedCrossRef
31.
go back to reference Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. 1999;274:1541–8.PubMedCrossRef Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. 1999;274:1541–8.PubMedCrossRef
32.
go back to reference Kuranaga E. Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells. 2012;17:83–97.PubMedCrossRef Kuranaga E. Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells. 2012;17:83–97.PubMedCrossRef
33.
go back to reference Yuan J, Shaham S, Ledoux S, Ellis HM, The HHR. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993;75:641–52.PubMedCrossRef Yuan J, Shaham S, Ledoux S, Ellis HM, The HHR. The C. elegans cell death gene Ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell. 1993;75:641–52.PubMedCrossRef
34.
go back to reference Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–29.PubMedCrossRef Ellis HM, Horvitz HR. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986;44:817–29.PubMedCrossRef
35.
go back to reference Shi Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol Cell. 2002;9:459–70.PubMedCrossRef Shi Y. Mechanisms of caspase inhibition and activation during apoptosis. Mol Cell. 2002;9:459–70.PubMedCrossRef
36.
go back to reference Chowdhury I, Tharakan B, Bhat GK. Caspases—an update. Comp Biochem Physiol. 2008;151:10–27.CrossRef Chowdhury I, Tharakan B, Bhat GK. Caspases—an update. Comp Biochem Physiol. 2008;151:10–27.CrossRef
37.
go back to reference Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol. 2005;21:35–56.PubMedCrossRef Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol. 2005;21:35–56.PubMedCrossRef
38.
go back to reference Los M, Stroh C, Janicke RU, Schulze-Osthoff K. Caspases: more than just killers? Trends Immunol. 2001;22:31–4.PubMedCrossRef Los M, Stroh C, Janicke RU, Schulze-Osthoff K. Caspases: more than just killers? Trends Immunol. 2001;22:31–4.PubMedCrossRef
39.
go back to reference Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561–74.PubMedCrossRef Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117:561–74.PubMedCrossRef
40.
go back to reference Los M, van de Craen M, Penning CL, et al. Requirement of an ICE/CED-3 protease for Fas/APO-1-1 mediated apoptosis. Nature. 1995;37:81–3.CrossRef Los M, van de Craen M, Penning CL, et al. Requirement of an ICE/CED-3 protease for Fas/APO-1-1 mediated apoptosis. Nature. 1995;37:81–3.CrossRef
41.
go back to reference Fantuzzi G, Puren AJ, Harding MW, Livingston DJ, Dinarello CA. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood. 1998;91:2118–25.PubMed Fantuzzi G, Puren AJ, Harding MW, Livingston DJ, Dinarello CA. Interleukin-18 regulation of interferon gamma production and cell proliferation as shown in interleukin-1beta-converting enzyme (caspase-1)-deficient mice. Blood. 1998;91:2118–25.PubMed
42.
go back to reference Vakifahmetoglu-Norberg H, Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol. 2010;20:150–9.PubMedCrossRef Vakifahmetoglu-Norberg H, Zhivotovsky B. The unpredictable caspase-2: what can it do? Trends Cell Biol. 2010;20:150–9.PubMedCrossRef
43.
go back to reference Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem. 2001;276:21907–15.PubMedCrossRef Paroni G, Henderson C, Schneider C, Brancolini C. Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem. 2001;276:21907–15.PubMedCrossRef
44.
go back to reference Van de Craen M, Declercq W. Van den brande I, Fiers W, Vandenabeele P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 1999;6:1117–24.PubMedCrossRef Van de Craen M, Declercq W. Van den brande I, Fiers W, Vandenabeele P. The proteolytic procaspase activation network: an in vitro analysis. Cell Death Differ. 1999;6:1117–24.PubMedCrossRef
45.
go back to reference Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304:843–6.PubMedCrossRef Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science. 2004;304:843–6.PubMedCrossRef
47.
go back to reference Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.PubMedCrossRef Porter AG, Janicke RU. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104.PubMedCrossRef
48.
go back to reference Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276:7320–6.PubMedCrossRef Slee EA, Adrain C, Martin SJ. Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem. 2001;276:7320–6.PubMedCrossRef
50.
go back to reference Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42:21–4.PubMedCrossRef Lamkanfi M, Kanneganti TD. Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol. 2010;42:21–4.PubMedCrossRef
51.
go back to reference Ghavami S, Eshraghi M, Kadkhoda K, et al. Role of BNIP3 in TNF-induced cell death—TNF upregulates BNIP3 expression. Biochim Biophys Acta. 1793;2009:546–60. Ghavami S, Eshraghi M, Kadkhoda K, et al. Role of BNIP3 in TNF-induced cell death—TNF upregulates BNIP3 expression. Biochim Biophys Acta. 1793;2009:546–60.
52.
go back to reference Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with procaspase-8. Mol Cell. 2006;22:599–610.PubMedCrossRef Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with procaspase-8. Mol Cell. 2006;22:599–610.PubMedCrossRef
53.
go back to reference Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46:497–510.PubMedCrossRef Ghavami S, Hashemi M, Ande SR, et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet. 2009;46:497–510.PubMedCrossRef
54.
go back to reference Micheau O, Thome M, Schneider P, et al. Gr ̈utter MG. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002;277:45162–71.PubMedCrossRef Micheau O, Thome M, Schneider P, et al. Gr ̈utter MG. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. 2002;277:45162–71.PubMedCrossRef
55.
go back to reference Irmler M, Thome M, Hahne M, et al. Inhibition of death receptors signals by cellular FLIP. Nature. 1997;388:190–5.PubMedCrossRef Irmler M, Thome M, Hahne M, et al. Inhibition of death receptors signals by cellular FLIP. Nature. 1997;388:190–5.PubMedCrossRef
57.
go back to reference Pop C, Oberst A, Drag M, et al. FLIP (L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433:447–57.PubMedPubMedCentralCrossRef Pop C, Oberst A, Drag M, et al. FLIP (L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J. 2011;433:447–57.PubMedPubMedCentralCrossRef
58.
go back to reference Chang DW, Xing Z, Pan Y, et al. c-FLIP8(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21:3704–14.PubMedPubMedCentralCrossRef Chang DW, Xing Z, Pan Y, et al. c-FLIP8(L) is a dual function regulator for caspase-8 activation and CD95-mediated apoptosis. EMBO J. 2002;21:3704–14.PubMedPubMedCentralCrossRef
60.
go back to reference Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature. 1999;399:549–57.PubMedCrossRef Qin H, Srinivasula SM, Wu G, Fernandes-Alnemri T, Alnemri ES, Shi Y. Structural basis of procaspase-9 recruitment by the apoptotic protease-activating factor 1. Nature. 1999;399:549–57.PubMedCrossRef
61.
go back to reference Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67:2168–74.PubMedPubMedCentral Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67:2168–74.PubMedPubMedCentral
62.
go back to reference Kaiser WJ, Vucic D, Miller LK. The Drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett. 1998;440:243–8.PubMedCrossRef Kaiser WJ, Vucic D, Miller LK. The Drosophila inhibitor of apoptosis D-IAP1 suppresses cell death induced by the caspase drICE. FEBS Lett. 1998;440:243–8.PubMedCrossRef
63.
go back to reference Eckelman BP, Salvesen GS. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem. 2006;281:3254–60.PubMedCrossRef Eckelman BP, Salvesen GS. The human anti-apoptotic proteins cIAP1 and cIAP2 bind but do not inhibit caspases. J Biol Chem. 2006;281:3254–60.PubMedCrossRef
64.
go back to reference Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–22.PubMedCrossRef Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3:917–22.PubMedCrossRef
65.
go back to reference Banks DP, Plescia J, Altieri DC, et al. Survivin does not inhibit caspase-3 activity. Blood. 2000;96:4002–3.PubMed Banks DP, Plescia J, Altieri DC, et al. Survivin does not inhibit caspase-3 activity. Blood. 2000;96:4002–3.PubMed
66.
go back to reference Saleem M, Qadir MI, Perveen N, et al. Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des. 2013;82:243–51.PubMedCrossRef Saleem M, Qadir MI, Perveen N, et al. Inhibitors of apoptotic proteins: new targets for anticancer therapy. Chem Biol Drug Des. 2013;82:243–51.PubMedCrossRef
67.
go back to reference Sun C, Cai M, Gunasekera AH, et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature. 1999;401:818–21.PubMedCrossRef Sun C, Cai M, Gunasekera AH, et al. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature. 1999;401:818–21.PubMedCrossRef
68.
go back to reference Sun CH, Cai ML, Meadows RP, et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem. 2000;275:33777–81.PubMedCrossRef Sun CH, Cai ML, Meadows RP, et al. NMR structure and mutagenesis of the third Bir domain of the inhibitor of apoptosis protein XIAP. J Biol Chem. 2000;275:33777–81.PubMedCrossRef
69.
70.
go back to reference Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2000;3:401–10.CrossRef Salvesen GS, Duckett CS. IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2000;3:401–10.CrossRef
71.
go back to reference Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by SMAC/DIABLO. Nature. 2000;406:855–62.PubMedCrossRef Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by SMAC/DIABLO. Nature. 2000;406:855–62.PubMedCrossRef
72.
go back to reference Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP- interaction motif in caspase-9 and SMAC/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410:112–6.PubMedCrossRef Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP- interaction motif in caspase-9 and SMAC/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410:112–6.PubMedCrossRef
73.
go back to reference Yoo NJ, Kim HS, Kim SY, et al. Immunohistochemical analysis of SMAC/DIABLO expression in human carcinomas and sarcomas. APMIS. 2003;111:382–8.PubMedCrossRef Yoo NJ, Kim HS, Kim SY, et al. Immunohistochemical analysis of SMAC/DIABLO expression in human carcinomas and sarcomas. APMIS. 2003;111:382–8.PubMedCrossRef
74.
go back to reference Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis [IAP] irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17:1487–96.PubMedPubMedCentralCrossRef Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis [IAP] irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 2003;17:1487–96.PubMedPubMedCentralCrossRef
75.
go back to reference Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol. 2001;3:28–133.CrossRef Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol. 2001;3:28–133.CrossRef
76.
go back to reference Ma TL, Ni PH, Zhong J, Tan JH, Qiao MM, Jiang SH. Low expression of XIAP- associated factor 1 in human colorectal cancers. Chin J Dig Dis. 2005;6:10–4.PubMedCrossRef Ma TL, Ni PH, Zhong J, Tan JH, Qiao MM, Jiang SH. Low expression of XIAP- associated factor 1 in human colorectal cancers. Chin J Dig Dis. 2005;6:10–4.PubMedCrossRef
77.
go back to reference Gross A, Mcdonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.PubMedCrossRef Gross A, Mcdonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13:1899–911.PubMedCrossRef
78.
go back to reference Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;5:49–63. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the Bcl-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;5:49–63.
79.
go back to reference Pepper C, Bently P. The role of the Bcl-2 family in the modulation of apoptosis. Symp Soc Exp Biol. 2000;52:43–53.PubMed Pepper C, Bently P. The role of the Bcl-2 family in the modulation of apoptosis. Symp Soc Exp Biol. 2000;52:43–53.PubMed
80.
81.
82.
go back to reference Camisasca DR, Honorato J, Bernardo V, et al. Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45:225–33.PubMedCrossRef Camisasca DR, Honorato J, Bernardo V, et al. Expression of Bcl-2 family proteins and associated clinicopathologic factors predict survival outcome in patients with oral squamous cell carcinoma. Oral Oncol. 2009;45:225–33.PubMedCrossRef
83.
go back to reference Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:126–1132.CrossRef Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15:126–1132.CrossRef
84.
go back to reference Lessene G, Czabotar PE, Colman PM. Bcl-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7:989–1000.PubMedCrossRef Lessene G, Czabotar PE, Colman PM. Bcl-2 family antagonists for cancer therapy. Nat Rev Drug Discov. 2008;7:989–1000.PubMedCrossRef
85.
go back to reference Hwang JJ, Kuruvilla J, Mendelson D, et al. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res. 2010;16:4038–45.PubMedPubMedCentralCrossRef Hwang JJ, Kuruvilla J, Mendelson D, et al. Phase I dose finding studies of obatoclax (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced solid tumors or lymphoma. Clin Cancer Res. 2010;16:4038–45.PubMedPubMedCentralCrossRef
86.
go back to reference Anderson MA, Huang D, Roberts A. Targeting Bcl2 for the treatment of lymphoid malignancies. Semin Hematol. 2014;51:219–27.PubMedCrossRef Anderson MA, Huang D, Roberts A. Targeting Bcl2 for the treatment of lymphoid malignancies. Semin Hematol. 2014;51:219–27.PubMedCrossRef
87.
88.
go back to reference Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317–32.PubMedCrossRef Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317–32.PubMedCrossRef
89.
go back to reference Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Sciences. 1998;281:1305–8.CrossRef Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Sciences. 1998;281:1305–8.CrossRef
90.
go back to reference Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–65.PubMedPubMedCentralCrossRef Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–65.PubMedPubMedCentralCrossRef
91.
92.
go back to reference Fulda S, Debatin KM. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta. 1705;2004:27–41. Fulda S, Debatin KM. Exploiting death receptor signaling pathways for tumor therapy. Biochim Biophys Acta. 1705;2004:27–41.
93.
go back to reference Bremer E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol. 2013;2013:371854.PubMedPubMedCentral Bremer E. Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN Oncol. 2013;2013:371854.PubMedPubMedCentral
94.
go back to reference Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000;256:58–66.PubMedCrossRef Walczak H, Krammer PH. The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res. 2000;256:58–66.PubMedCrossRef
95.
go back to reference Behrmann I, Walczak H, Krammer PH. Structure of the human APO-1 gene. Eur J Immunol. 1994;24:3057–62.PubMedCrossRef Behrmann I, Walczak H, Krammer PH. Structure of the human APO-1 gene. Eur J Immunol. 1994;24:3057–62.PubMedCrossRef
96.
go back to reference Tauzin S, Debure L, Moreau JF, Legembre P. CD95-mediated cell signaling in cancer: mutations and posttranslational modulations. Cell Mol Life Sci. 2012;69:1261–77.PubMedCrossRef Tauzin S, Debure L, Moreau JF, Legembre P. CD95-mediated cell signaling in cancer: mutations and posttranslational modulations. Cell Mol Life Sci. 2012;69:1261–77.PubMedCrossRef
97.
go back to reference Scholl V, Stefanoff CG, Hassan R, Spector N, Renault IZ. Mutations within the 5′ region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma. Leuk Lymphoma. 2007;48:957–63.PubMedCrossRef Scholl V, Stefanoff CG, Hassan R, Spector N, Renault IZ. Mutations within the 5′ region of FAS/CD95 gene in nodal diffuse large B-cell lymphoma. Leuk Lymphoma. 2007;48:957–63.PubMedCrossRef
98.
go back to reference Ivanov VN, Ronai Z, Hei TK. Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem. 2006;281:1840–52.PubMedCrossRef Ivanov VN, Ronai Z, Hei TK. Opposite roles of FAP-1 and dynamin in the regulation of Fas (CD95) translocation to the cell surface and susceptibility to Fas ligand-mediated apoptosis. J Biol Chem. 2006;281:1840–52.PubMedCrossRef
99.
go back to reference Tourneur L, Mistou S, Michiels FM, et al. Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene. 2003;22:2795–280.PubMedCrossRef Tourneur L, Mistou S, Michiels FM, et al. Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene. 2003;22:2795–280.PubMedCrossRef
100.
go back to reference Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001;20:5865–77.PubMedCrossRef Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM. Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001;20:5865–77.PubMedCrossRef
101.
go back to reference Yang T, Shi R, Chang L, et al. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF-alpha/TNFR1 pathway in vitro and in vivo. J Exp Clin Cancer Res. 2015;34:1–10.CrossRef Yang T, Shi R, Chang L, et al. Huachansu suppresses human bladder cancer cell growth through the Fas/Fasl and TNF-alpha/TNFR1 pathway in vitro and in vivo. J Exp Clin Cancer Res. 2015;34:1–10.CrossRef
102.
go back to reference Zhong W, Qin S, Zhu B, et al. Oxysterol-binding protein-related protein 8 [ORP8] increases sensitivity of hepatocellular carcinoma cells to Fas-mediated apoptosis. J Biol Chem. 2015;290:8876–87.PubMedPubMedCentralCrossRef Zhong W, Qin S, Zhu B, et al. Oxysterol-binding protein-related protein 8 [ORP8] increases sensitivity of hepatocellular carcinoma cells to Fas-mediated apoptosis. J Biol Chem. 2015;290:8876–87.PubMedPubMedCentralCrossRef
103.
go back to reference Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.PubMedCrossRef Pitti RM, Marsters SA, Ruppert S, Donahue CJ, Moore A, Ashkenazi A. Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem. 1996;271:12687–90.PubMedCrossRef
104.
go back to reference Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev. 2009;35:280–8.PubMedCrossRef Mahalingam D, Szegezdi E, Keane M, de Jong S, Samali A. TRAIL receptor signalling and modulation: are we on the right TRAIL? Cancer Treat Rev. 2009;35:280–8.PubMedCrossRef
106.
go back to reference O’Leary L, van der Sloot AM, Reis CR, et al. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene. 2015. doi:10.1038/onc.2015.180.PubMed O’Leary L, van der Sloot AM, Reis CR, et al. Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene. 2015. doi:10.​1038/​onc.​2015.​180.PubMed
107.
go back to reference Woo JK, Kang JH, Jang YS, et al. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL. Oncol Rep. 2015;3:1947–55. Woo JK, Kang JH, Jang YS, et al. Evaluation of preventive and therapeutic activity of novel non-steroidal anti-inflammatory drug, CG100649, in colon cancer: increased expression of TNF-related apoptosis-inducing ligand receptors enhance the apoptotic response to combination treatment with TRAIL. Oncol Rep. 2015;3:1947–55.
108.
go back to reference Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.PubMedCrossRef Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–7.PubMedCrossRef
110.
go back to reference Lane D, Matte I, Rancourt C, Piché A. Osteoprotegerin [OPG] protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovarian Res. 2012;5:34.PubMedPubMedCentralCrossRef Lane D, Matte I, Rancourt C, Piché A. Osteoprotegerin [OPG] protects ovarian cancer cells from TRAIL-induced apoptosis but does not contribute to malignant ascites-mediated attenuation of TRAIL-induced apoptosis. J Ovarian Res. 2012;5:34.PubMedPubMedCentralCrossRef
111.
go back to reference Merino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets. 2007;11:1299–314.PubMedPubMedCentralCrossRef Merino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: present and future challenges. Expert Opin Ther Targets. 2007;11:1299–314.PubMedPubMedCentralCrossRef
112.
go back to reference Gong B, Almasan A. Genomic organization and transcriptional regulation of human APO2/TRAIL gene. Biochem Biophys Res Commun. 2000;278:747–52.PubMedCrossRef Gong B, Almasan A. Genomic organization and transcriptional regulation of human APO2/TRAIL gene. Biochem Biophys Res Commun. 2000;278:747–52.PubMedCrossRef
113.
go back to reference Krieg A, Krieg T, Wenzel M, et al. TRAIL-beta and TRAIL-gamma: two novel splice variants of the human TNF-related apoptosis- inducing ligand (TRAIL) without apoptotic potential. Br J Cancer. 2003;88:918–27.PubMedPubMedCentralCrossRef Krieg A, Krieg T, Wenzel M, et al. TRAIL-beta and TRAIL-gamma: two novel splice variants of the human TNF-related apoptosis- inducing ligand (TRAIL) without apoptotic potential. Br J Cancer. 2003;88:918–27.PubMedPubMedCentralCrossRef
114.
go back to reference Pal R, Gochhait S, Chattopadhyay S, et al. Functional implication of TRAIL-716 C/T promoter polymorphism on its in vitro and in vivo expression and the susceptibility to sporadic breast tumor. Breast Cancer Res Treat. 2012;126:333–43.CrossRef Pal R, Gochhait S, Chattopadhyay S, et al. Functional implication of TRAIL-716 C/T promoter polymorphism on its in vitro and in vivo expression and the susceptibility to sporadic breast tumor. Breast Cancer Res Treat. 2012;126:333–43.CrossRef
117.
go back to reference Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets. 2015;25:1–15.CrossRef Lim B, Allen JE, Prabhu VV, Talekar MK, Finnberg NK, El-Deiry WS. Targeting TRAIL in the treatment of cancer: new developments. Expert Opin Ther Targets. 2015;25:1–15.CrossRef
119.
go back to reference Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.PubMedCrossRef Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10:45–65.PubMedCrossRef
120.
go back to reference Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.PubMedCrossRef Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72.PubMedCrossRef
121.
go back to reference Wachter T, Sprick M, Hausmann D, et al. cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem. 2004;279:52824–34.PubMedCrossRef Wachter T, Sprick M, Hausmann D, et al. cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem. 2004;279:52824–34.PubMedCrossRef
122.
go back to reference Ebach DR, Riehl TE, Stenson WF. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock. 2005;23:311–8.PubMedCrossRef Ebach DR, Riehl TE, Stenson WF. Opposing effects of tumor necrosis factor receptor 1 and 2 in sepsis due to cecal ligation and puncture. Shock. 2005;23:311–8.PubMedCrossRef
123.
go back to reference Yun HM, Park KR, Kim EC, Han SB, Yoon do Y, Hong JT. IL-32α suppresses colorectal cancer development via TNFR1-mediated death signaling. Oncotarget. 2015;6:9061–72.PubMedPubMedCentralCrossRef Yun HM, Park KR, Kim EC, Han SB, Yoon do Y, Hong JT. IL-32α suppresses colorectal cancer development via TNFR1-mediated death signaling. Oncotarget. 2015;6:9061–72.PubMedPubMedCentralCrossRef
124.
go back to reference Yu S, Hou D, Chen P, et al. Adenosine induces apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells. Biochem Biophys Res Commun. 2015;460:759–65.PubMedCrossRef Yu S, Hou D, Chen P, et al. Adenosine induces apoptosis through TNFR1/RIPK1/P38 axis in colon cancer cells. Biochem Biophys Res Commun. 2015;460:759–65.PubMedCrossRef
125.
go back to reference Bake V, Roesler S, Eckhardt I, Belz K, Fulda S. Synergistic interaction of SMAC mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells. Cancer Lett. 2014;355:224–31.PubMedCrossRef Bake V, Roesler S, Eckhardt I, Belz K, Fulda S. Synergistic interaction of SMAC mimetic and IFNα to trigger apoptosis in acute myeloid leukemia cells. Cancer Lett. 2014;355:224–31.PubMedCrossRef
126.
go back to reference Tao YF, Lu J, Du XJ, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;26(12):619.CrossRef Tao YF, Lu J, Du XJ, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;26(12):619.CrossRef
128.
go back to reference Chaturvedi MM, LaPushin R, Aggarwal BB. Tumor necrosis factor and lymphotoxin. Qualitative and quantitative differences in the mediation of early and late cellular response. J Biol Chem. 1994;269:14575–83.PubMed Chaturvedi MM, LaPushin R, Aggarwal BB. Tumor necrosis factor and lymphotoxin. Qualitative and quantitative differences in the mediation of early and late cellular response. J Biol Chem. 1994;269:14575–83.PubMed
129.
go back to reference Etemadi N, Holien JK, Chau D, et al. Lymphotoxin α induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS J. 2013;280:5283–97.PubMedCrossRef Etemadi N, Holien JK, Chau D, et al. Lymphotoxin α induces apoptosis, necroptosis and inflammatory signals with the same potency as tumour necrosis factor. FEBS J. 2013;280:5283–97.PubMedCrossRef
130.
go back to reference de Oliveira JG, Rossi AF, Nizato DM, et al. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol. 2015 (Epub ahead of print). de Oliveira JG, Rossi AF, Nizato DM, et al. Influence of functional polymorphisms in TNF-α, IL-8, and IL-10 cytokine genes on mRNA expression levels and risk of gastric cancer. Tumour Biol. 2015 (Epub ahead of print).
131.
go back to reference Kang YJ, Kim WJ, Bae HU, et al. Involvement of TL1A and DR3 in induction of proinflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005;29:229–35.PubMedCrossRef Kang YJ, Kim WJ, Bae HU, et al. Involvement of TL1A and DR3 in induction of proinflammatory cytokines and matrix metalloproteinase-9 in atherogenesis. Cytokine. 2005;29:229–35.PubMedCrossRef
132.
go back to reference Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol. 2013;60:439–47.PubMedCrossRef Lee SY, Debnath T, Kim SK, Lim BO. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol. 2013;60:439–47.PubMedCrossRef
133.
go back to reference Oh SB, Hwang CJ, Song SY, et al. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. 2014;353:95–103.PubMedCrossRef Oh SB, Hwang CJ, Song SY, et al. Anti-cancer effect of tectochrysin in NSCLC cells through overexpression of death receptor and inactivation of STAT3. Cancer Lett. 2014;353:95–103.PubMedCrossRef
135.
go back to reference Surget S, Khoury MP, Bourdon J. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57–68.PubMedPubMedCentral Surget S, Khoury MP, Bourdon J. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco Targets Ther. 2013;7:57–68.PubMedPubMedCentral
140.
go back to reference Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis—the p53 network. J Cell Sci. 2003;116:4077–85.PubMedCrossRef Haupt S, Berger M, Goldberg Z, Haupt Y. Apoptosis—the p53 network. J Cell Sci. 2003;116:4077–85.PubMedCrossRef
143.
go back to reference Jansson MD, Damas ND, Lees M, Jacobsen A, Lund AH. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene. 2014;34:1908–18.PubMedCrossRef Jansson MD, Damas ND, Lees M, Jacobsen A, Lund AH. miR-339-5p regulates the p53 tumor-suppressor pathway by targeting MDM2. Oncogene. 2014;34:1908–18.PubMedCrossRef
144.
go back to reference Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene Suppl. 1998;1:S71–83. Yu J, Zhang L. PUMA, a potent killer with or without p53. Oncogene Suppl. 1998;1:S71–83.
145.
go back to reference Hikisz P, Kiliańska ZM. PUMA, a critical mediator of cell death—one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–69.PubMedCrossRef Hikisz P, Kiliańska ZM. PUMA, a critical mediator of cell death—one decade on from its discovery. Cell Mol Biol Lett. 2012;17:646–69.PubMedCrossRef
146.
go back to reference Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002;277:3247–57.PubMedCrossRef Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M. Transcriptional repression of the anti-apoptotic survivin gene by wild type p53. J Biol Chem. 2002;277:3247–57.PubMedCrossRef
147.
148.
go back to reference Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11:577–90.PubMedCrossRef
149.
go back to reference Ha JH, Shin JS, Yoon MK, et al. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem. 2013;288:7387–98.PubMedPubMedCentralCrossRef Ha JH, Shin JS, Yoon MK, et al. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem. 2013;288:7387–98.PubMedPubMedCentralCrossRef
150.
go back to reference Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.PubMedCrossRef Chipuk JE, Kuwana T, Bouchier-Hayes L, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 2004;303:1010–4.PubMedCrossRef
151.
go back to reference Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1complex. Nat Cell Biol. 2004;6:443–50.PubMedCrossRef Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1complex. Nat Cell Biol. 2004;6:443–50.PubMedCrossRef
152.
go back to reference Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinicaluse. Cold Spring Harb Perspect Biol. 2010;2:a001008.PubMedPubMedCentralCrossRef Olivier M, Hollstein M, Hainaut P. TP53 mutations in human cancers: origins, consequences, and clinicaluse. Cold Spring Harb Perspect Biol. 2010;2:a001008.PubMedPubMedCentralCrossRef
153.
go back to reference Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.PubMed Brosh R, Rotter V. When mutants gain new powers: news from the mutant p53 field. Nat Rev Cancer. 2009;9:701–13.PubMed
154.
go back to reference Saleem S, Abbasi ZA, Hameed A, Qureshi NR, Khan MA, Azhar A. Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol. 2014;35:7945–50.PubMedCrossRef Saleem S, Abbasi ZA, Hameed A, Qureshi NR, Khan MA, Azhar A. Novel p53 codon 240 Ser > Thr coding region mutation in the patients of oral squamous cell carcinoma (OSCC). Tumour Biol. 2014;35:7945–50.PubMedCrossRef
155.
go back to reference Trbusek M, Smardova J, Malcikova J, et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol. 2011;29:2703–8.PubMedCrossRef Trbusek M, Smardova J, Malcikova J, et al. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia. J Clin Oncol. 2011;29:2703–8.PubMedCrossRef
156.
go back to reference Wang S, Zhou M, Ouyang J, Geng Z, Wang Z. Tetraarsenictetrasulfide and arsenic trioxide exert synergistic effects on induction of apoptosis and differentiation in acute promyelocytic leukemia cells. PLoS One. 2015;10:e0130343.PubMedPubMedCentralCrossRef Wang S, Zhou M, Ouyang J, Geng Z, Wang Z. Tetraarsenictetrasulfide and arsenic trioxide exert synergistic effects on induction of apoptosis and differentiation in acute promyelocytic leukemia cells. PLoS One. 2015;10:e0130343.PubMedPubMedCentralCrossRef
157.
go back to reference Gu ZT, Li L, Wu F, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca[2+] dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep. 2015;5:11497.PubMedPubMedCentralCrossRef Gu ZT, Li L, Wu F, et al. Heat stress induced apoptosis is triggered by transcription-independent p53, Ca[2+] dyshomeostasis and the subsequent Bax mitochondrial translocation. Sci Rep. 2015;5:11497.PubMedPubMedCentralCrossRef
158.
go back to reference Sosin AM, Burger AM, Siddiqi A, Abrams J, Mohammad RM, Al-Katib AM. HDM2 antagonist MI-219 [spiro-oxindole], but not Nutlin-3 [cis-imidazoline], regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas. J Hematol Oncol. 2012;5:57.PubMedPubMedCentralCrossRef Sosin AM, Burger AM, Siddiqi A, Abrams J, Mohammad RM, Al-Katib AM. HDM2 antagonist MI-219 [spiro-oxindole], but not Nutlin-3 [cis-imidazoline], regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas. J Hematol Oncol. 2012;5:57.PubMedPubMedCentralCrossRef
159.
go back to reference Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A. 2008;105:10360–5.PubMedPubMedCentralCrossRef Boeckler FM, Joerger AC, Jaggi G, Rutherford TJ, Veprintsev DB, Fersht AR. Targeted rescue of a destabilized mutant of p53 by an in silico screened drug. Proc Natl Acad Sci U S A. 2008;105:10360–5.PubMedPubMedCentralCrossRef
160.
go back to reference Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol. 2011;2011:702146.PubMedPubMedCentralCrossRef Vermeij R, Leffers N, van der Burg SH, Melief CJ, Daemen T, Nijman HW. Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol. 2011;2011:702146.PubMedPubMedCentralCrossRef
161.
go back to reference Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47:163–74.PubMedCrossRef Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer. 2011;47:163–74.PubMedCrossRef
162.
go back to reference Chen Y, Fu LL, Wen X, et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 2014;19:1177–89.PubMedCrossRef Chen Y, Fu LL, Wen X, et al. Oncogenic and tumor suppressive roles of microRNAs in apoptosis and autophagy. Apoptosis. 2014;19:1177–89.PubMedCrossRef
163.
go back to reference Acunzo M, Visone R, Romano G, et al. Mir-130a targets MET and induces trail-sensitivity in NSCLC by downregulating mir-221 and 222. Oncogene. 2012;31:634–42.PubMed Acunzo M, Visone R, Romano G, et al. Mir-130a targets MET and induces trail-sensitivity in NSCLC by downregulating mir-221 and 222. Oncogene. 2012;31:634–42.PubMed
164.
go back to reference Hao J, Zhang C, Zhang A, et al. miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep. 2012;27:1504–10.PubMed Hao J, Zhang C, Zhang A, et al. miR-221/222 is the regulator of Cx43 expression in human glioblastoma cells. Oncol Rep. 2012;27:1504–10.PubMed
165.
go back to reference Wang P, Zhuang L, Zhang J, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7:334–45.PubMedCrossRef Wang P, Zhuang L, Zhang J, et al. The serum miR-21 level serves as a predictor for the chemosensitivity of advanced pancreatic cancer, and miR-21 expression confers chemoresistance by targeting FasL. Mol Oncol. 2013;7:334–45.PubMedCrossRef
166.
go back to reference Qin W, Shi Y, Zhao B, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE. 2010;5:e9429.PubMedPubMedCentralCrossRef Qin W, Shi Y, Zhao B, et al. miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS ONE. 2010;5:e9429.PubMedPubMedCentralCrossRef
167.
go back to reference Satzger I, Mattern A, Kuettler U, et al. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21:509–14.PubMedCrossRef Satzger I, Mattern A, Kuettler U, et al. microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells. Exp Dermatol. 2012;21:509–14.PubMedCrossRef
168.
go back to reference Eto K, Iwatsuki M, Watanabe M, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2013;21:343–50.PubMedCrossRef Eto K, Iwatsuki M, Watanabe M, et al. The microRNA-21/PTEN pathway regulates the sensitivity of HER2-positive gastric cancer cells to trastuzumab. Ann Surg Oncol. 2013;21:343–50.PubMedCrossRef
169.
170.
go back to reference Li JH, Xiao X, Zhang YN, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011;120:145–51.PubMedCrossRef Li JH, Xiao X, Zhang YN, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells. Gynecol Oncol. 2011;120:145–51.PubMedCrossRef
171.
go back to reference Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.PubMedPubMedCentralCrossRef Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem. 2010;285:21496–507.PubMedPubMedCentralCrossRef
172.
go back to reference Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.PubMed Zhang H, Zuo Z, Lu X, Wang L, Wang H, Zhu Z. MiR-25 regulates apoptosis by targeting Bim in human ovarian cancer. Oncol Rep. 2012;27:594–8.PubMed
173.
go back to reference Gocek E, Wang X, Liu X, Liu CG, Studzinski GP. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 2011;71:6230–9.PubMedCrossRef Gocek E, Wang X, Liu X, Liu CG, Studzinski GP. MicroRNA-32 upregulation by 1,25-dihydroxyvitamin D3 in human myeloid leukemia cells leads to Bim targeting and inhibition of AraC-induced apoptosis. Cancer Res. 2011;71:6230–9.PubMedCrossRef
175.
go back to reference Tanaka N, Toyooka S, Soh J, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.PubMed Tanaka N, Toyooka S, Soh J, et al. Downregulation of microRNA-34 induces cell proliferation and invasion of human mesothelial cells. Oncol Rep. 2013;29:2169–74.PubMed
176.
go back to reference Shen J, Wan R, Hu G, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 2012;12:91–9.PubMedCrossRef Shen J, Wan R, Hu G, et al. miR-15b and miR-16 induce the apoptosis of rat activated pancreatic stellate cells by targeting Bcl-2 in vitro. Pancreatology. 2012;12:91–9.PubMedCrossRef
177.
go back to reference Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer. 2010;126:1029–35.PubMed Xu J, Liao X, Wong C. Downregulations of B-cell lymphoma 2 and myeloid cell leukemia sequence 1 by microRNA 153 induce apoptosis in a glioblastoma cell line DBTRG-05MG. Int J Cancer. 2010;126:1029–35.PubMed
178.
go back to reference Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.PubMedCrossRef Nakano H, Miyazawa T, Kinoshita K, Yamada Y, Yoshida T. Functional screening identifies a microRNA, miR-491 that induces apoptosis by targeting Bcl-X(L) in colorectal cancer cells. Int J Cancer. 2010;127:1072–80.PubMedCrossRef
179.
go back to reference Shang J, Yang F, Wang Y, et al. Sun S MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115:772–84.PubMedCrossRef Shang J, Yang F, Wang Y, et al. Sun S MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115:772–84.PubMedCrossRef
181.
go back to reference Wu JH, Yao YL, Gu T, et al. MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev. 2014;15:5463–8.PubMedCrossRef Wu JH, Yao YL, Gu T, et al. MiR-421 regulates apoptosis of BGC-823 gastric cancer cells by targeting caspase-3. Asian Pac J Cancer Prev. 2014;15:5463–8.PubMedCrossRef
182.
go back to reference Hudson RS, Yi M, Esposito D, et al. Microrna-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32:4139–47.PubMedCrossRef Hudson RS, Yi M, Esposito D, et al. Microrna-106b-25 cluster expression is associated with early disease recurrence and targets caspase-7 and focal adhesion in human prostate cancer. Oncogene. 2013;32:4139–47.PubMedCrossRef
183.
go back to reference Floyd DH, Zhang Y, Dey BK, et al. Novel anti-apoptotic microRNAs 582–5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One. 2014;9:e96239.PubMedPubMedCentralCrossRef Floyd DH, Zhang Y, Dey BK, et al. Novel anti-apoptotic microRNAs 582–5p and 363 promote human glioblastoma stem cell survival via direct inhibition of caspase 3, caspase 9, and Bim. PLoS One. 2014;9:e96239.PubMedPubMedCentralCrossRef
184.
go back to reference Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 2008;13:1215–22.PubMedCrossRef Tsang WP, Kwok TT. Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis. 2008;13:1215–22.PubMedCrossRef
185.
go back to reference Zhang J, Du Y, Wu C, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186 signaling pathway. Oncol Rep. 2010;24:1217–23.PubMed Zhang J, Du Y, Wu C, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186 signaling pathway. Oncol Rep. 2010;24:1217–23.PubMed
186.
go back to reference Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.PubMedCrossRef Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–50.PubMedCrossRef
187.
go back to reference Barth BM, Cabot MC, Kester M. Ceramide-based therapeutics for the treatment of cancer. Anti Cancer Agents Med Chem. 2011;11:911–9.CrossRef Barth BM, Cabot MC, Kester M. Ceramide-based therapeutics for the treatment of cancer. Anti Cancer Agents Med Chem. 2011;11:911–9.CrossRef
188.
go back to reference Senchenkov A, Litvak DA, Cabot MC. Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst. 2001;93:347–57.PubMedCrossRef Senchenkov A, Litvak DA, Cabot MC. Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst. 2001;93:347–57.PubMedCrossRef
189.
go back to reference Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002;277:26796–803.PubMedPubMedCentralCrossRef Siskind LJ, Kolesnick RN, Colombini M. Ceramide channels increase the permeability of the mitochondrial outer membrane to small proteins. J Biol Chem. 2002;277:26796–803.PubMedPubMedCentralCrossRef
190.
191.
go back to reference von Haefen C, Wieder T, Gillissen B, et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002;21:4009–19.CrossRef von Haefen C, Wieder T, Gillissen B, et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002;21:4009–19.CrossRef
192.
go back to reference Dumitru CA, Sandalcioglu IE, Wagner M, Weller M, Gulbins E. Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med. 2009;87:1123–32.PubMedCrossRef Dumitru CA, Sandalcioglu IE, Wagner M, Weller M, Gulbins E. Lysosomal ceramide mediates gemcitabine-induced death of glioma cells. J Mol Med. 2009;87:1123–32.PubMedCrossRef
193.
go back to reference Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer: pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.PubMedCrossRef Ogretmen B, Hannun YA. Biologically active sphingolipids in cancer: pathogenesis and treatment. Nat Rev Cancer. 2004;4:604–16.PubMedCrossRef
194.
go back to reference Liu F, Verin AD, Wang P, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24:711–9.PubMedCrossRef Liu F, Verin AD, Wang P, et al. Differential regulation of sphingosine-1-phosphate- and VEGF-induced endothelial cell chemotaxis. Involvement of G(ialpha2)-linked Rho kinase activity. Am J Respir Cell Mol Biol. 2001;24:711–9.PubMedCrossRef
195.
go back to reference Radin NS. The development of aggressive cancer: a possible role for sphingolipids. Cancer Investig. 2002;20:779–86.CrossRef Radin NS. The development of aggressive cancer: a possible role for sphingolipids. Cancer Investig. 2002;20:779–86.CrossRef
196.
go back to reference Pchejetski D, Golzio M, Bonhoure E, et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res. 2005;65:11667–75.PubMedCrossRef Pchejetski D, Golzio M, Bonhoure E, et al. Sphingosine kinase-1 as a chemotherapy sensor in prostate adenocarcinoma cell and mouse models. Cancer Res. 2005;65:11667–75.PubMedCrossRef
197.
go back to reference Beckham TH, Lu P, Jones EE, et al. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther. 2013;344(1):167–78.PubMedPubMedCentralCrossRef Beckham TH, Lu P, Jones EE, et al. LCL124, a cationic analog of ceramide, selectively induces pancreatic cancer cell death by accumulating in mitochondria. J Pharmacol Exp Ther. 2013;344(1):167–78.PubMedPubMedCentralCrossRef
198.
go back to reference Jiang Y, DiVittore NA, Kaiser JM, et al. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther. 2011;12(7):574–85.PubMedPubMedCentralCrossRef Jiang Y, DiVittore NA, Kaiser JM, et al. Combinatorial therapies improve the therapeutic efficacy of nanoliposomal ceramide for pancreatic cancer. Cancer Biol Ther. 2011;12(7):574–85.PubMedPubMedCentralCrossRef
199.
go back to reference Sorli SC, Colié S, Albinet V, et al. The nonlysosomal β-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J. 2013;27(2):489–98.PubMedCrossRef Sorli SC, Colié S, Albinet V, et al. The nonlysosomal β-glucosidase GBA2 promotes endoplasmic reticulum stress and impairs tumorigenicity of human melanoma cells. FASEB J. 2013;27(2):489–98.PubMedCrossRef
200.
go back to reference Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res. 2005;11(9):3465–74.PubMedCrossRef Stover TC, Sharma A, Robertson GP, Kester M. Systemic delivery of liposomal short-chain ceramide limits solid tumor growth in murine models of breast adenocarcinoma. Clin Cancer Res. 2005;11(9):3465–74.PubMedCrossRef
201.
go back to reference Beljanski V, Lewis CS, Smith CD. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther. 2011;11(5):524–34.PubMedPubMedCentralCrossRef Beljanski V, Lewis CS, Smith CD. Antitumor activity of sphingosine kinase 2 inhibitor ABC294640 and sorafenib in hepatocellular carcinoma xenografts. Cancer Biol Ther. 2011;11(5):524–34.PubMedPubMedCentralCrossRef
202.
go back to reference Adan-Gokbulut A, Kartal-Yandim M, Iskender G, Baran Y. Novel agents targeting bioactive sphingolipids for the treatment of cancer. Curr Med Chem. 2013;20(1):108–22.PubMedCrossRef Adan-Gokbulut A, Kartal-Yandim M, Iskender G, Baran Y. Novel agents targeting bioactive sphingolipids for the treatment of cancer. Curr Med Chem. 2013;20(1):108–22.PubMedCrossRef
203.
go back to reference Coward J, Ambrosini G, Musi E, Truman JP, Haimovitz-Friedman A, Allegood JC. Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy. 2009;5:184–93.PubMedCrossRef Coward J, Ambrosini G, Musi E, Truman JP, Haimovitz-Friedman A, Allegood JC. Safingol (L-threo-sphinganine) induces autophagy in solid tumor cells through inhibition of PKC and the PI3-kinase pathway. Autophagy. 2009;5:184–93.PubMedCrossRef
204.
205.
go back to reference Taouji S, Higa A, Delom F, et al. Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem. 2013;288(24):17190–201.PubMedPubMedCentralCrossRef Taouji S, Higa A, Delom F, et al. Phosphorylation of serine palmitoyltransferase long chain-1 (SPTLC1) on tyrosine 164 inhibits its activity and promotes cell survival. J Biol Chem. 2013;288(24):17190–201.PubMedPubMedCentralCrossRef
206.
go back to reference Huang WC, Tsai CC, Chen CL, et al. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 2011;25(10):3661–73.PubMedCrossRef Huang WC, Tsai CC, Chen CL, et al. Glucosylceramide synthase inhibitor PDMP sensitizes chronic myeloid leukemia T315I mutant to Bcr-Abl inhibitor and cooperatively induces glycogen synthase kinase-3-regulated apoptosis. FASEB J. 2011;25(10):3661–73.PubMedCrossRef
207.
go back to reference Nica AF, Tsao CC, Watt JC, et al. Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle. 2008;7(21):3362–70.PubMedPubMedCentralCrossRef Nica AF, Tsao CC, Watt JC, et al. Ceramide promotes apoptosis in chronic myelogenous leukemia-derived K562 cells by a mechanism involving caspase-8 and JNK. Cell Cycle. 2008;7(21):3362–70.PubMedPubMedCentralCrossRef
208.
go back to reference Camgoz A, Gencer EB, Ural AU, Baran Y. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leukemia Lymphoma. 2013;54:1279–87.PubMedCrossRef Camgoz A, Gencer EB, Ural AU, Baran Y. Mechanisms responsible for nilotinib resistance in human chronic myeloid leukemia cells and reversal of resistance. Leukemia Lymphoma. 2013;54:1279–87.PubMedCrossRef
209.
go back to reference Baran Y, Bielawski J, Gunduz U, Ogretmen B. Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol. 2011;137:1535–44.PubMedCrossRef Baran Y, Bielawski J, Gunduz U, Ogretmen B. Targeting glucosylceramide synthase sensitizes imatinib-resistant chronic myeloid leukemia cells via endogenous ceramide accumulation. J Cancer Res Clin Oncol. 2011;137:1535–44.PubMedCrossRef
210.
go back to reference Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer. 2011;63(4):637–44.PubMedCrossRef Kartal M, Saydam G, Sahin F, Baran Y. Resveratrol triggers apoptosis through regulating ceramide metabolizing genes in human K562 chronic myeloid leukemia cells. Nutr Cancer. 2011;63(4):637–44.PubMedCrossRef
211.
go back to reference Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol. 2011;137(2):279–86.PubMedCrossRef Cakir Z, Saydam G, Sahin F, Baran Y. The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60: acute myeloid leukemia cells. J Cancer Res Clin Oncol. 2011;137(2):279–86.PubMedCrossRef
212.
go back to reference Camgoz A, Gencer EB, Ural AU, Avcu F, Baran Y. Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leukemia Lymphoma. 2011;52:1574–84.PubMedCrossRef Camgoz A, Gencer EB, Ural AU, Avcu F, Baran Y. Roles of ceramide synthase and ceramide clearence genes in nilotinib-induced cell death in chronic myeloid leukemia cells. Leukemia Lymphoma. 2011;52:1574–84.PubMedCrossRef
213.
go back to reference Gencer EB, Ural AU, Avcu F, Baran Y. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol. 2011;90:1265–75.PubMedCrossRef Gencer EB, Ural AU, Avcu F, Baran Y. A novel mechanism of dasatinib-induced apoptosis in chronic myeloid leukemia; ceramide synthase and ceramide clearance genes. Ann Hematol. 2011;90:1265–75.PubMedCrossRef
Metadata
Title
Major apoptotic mechanisms and genes involved in apoptosis
Authors
Yağmur Kiraz
Aysun Adan
Melis Kartal Yandim
Yusuf Baran
Publication date
01-07-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 7/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5035-9

Other articles of this Issue 7/2016

Tumor Biology 7/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine