Skip to main content
Top
Published in: Tumor Biology 5/2016

01-05-2016 | Original Article

Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53

Authors: Guoqiang Ai, Rakesh Dachineni, D. Ramesh Kumar, Srinivasan Marimuthu, Lloyd F. Alfonso, G. Jayarama Bhat

Published in: Tumor Biology | Issue 5/2016

Login to get access

Abstract

Aspirin’s ability to inhibit cell proliferation and induce apoptosis in cancer cell lines is considered to be an important mechanism for its anti-cancer effects. We previously demonstrated that aspirin acetylated the tumor suppressor protein p53 at lysine 382 in MDA-MB-231 human breast cancer cells. Here, we extended these observations to human colon cancer cells, HCT 116 harboring wild type p53, and HT-29 containing mutant p53. We demonstrate that aspirin induced acetylation of p53 in both cell lines in a concentration-dependent manner. Aspirin-acetylated p53 was localized to the nucleus. In both cell lines, aspirin induced p21CIP1. Aspirin also acetylated recombinant p53 (rp53) in vitro suggesting that it occurs through a non-enzymatic chemical reaction. Mass spectrometry analysis and immunoblotting identified 10 acetylated lysines on rp53, and molecular modeling showed that all lysines targeted by aspirin are surface exposed. Five of these lysines are localized to the DNA-binding domain, four to the nuclear localization signal domain, and one to the C-terminal regulatory domain. Our results suggest that aspirin’s anti-cancer effect may involve acetylation and activation of wild type and mutant p53 and induction of target gene expression. This is the first report attempting to characterize p53 acetylation sites targeted by aspirin.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9.CrossRefPubMed Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–9.CrossRefPubMed
2.
go back to reference Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New England Journal of Medicine. 2003;348:883–90.CrossRefPubMed Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. New England Journal of Medicine. 2003;348:883–90.CrossRefPubMed
3.
go back to reference Benamouzig R, Deyra J, Martin A, Girard B, Jullian E, Piednoir B, et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the apacc trial. Gastroenterology. 2003;125:328–36.CrossRefPubMed Benamouzig R, Deyra J, Martin A, Girard B, Jullian E, Piednoir B, et al. Daily soluble aspirin and prevention of colorectal adenoma recurrence: one-year results of the apacc trial. Gastroenterology. 2003;125:328–36.CrossRefPubMed
4.
go back to reference Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 2012;379:1591–601.CrossRef Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. The Lancet. 2012;379:1591–601.CrossRef
5.
go back to reference Bousserouel S, Gosse F, Bouhadjar M, Soler L, Marescaux J, Raul F. Long-term administration of aspirin inhibits tumour formation and triggers anti-neoplastic molecular changes in a pre-clinical model of colon carcinogenesis. Oncology reports. 2010;23:511–7.PubMed Bousserouel S, Gosse F, Bouhadjar M, Soler L, Marescaux J, Raul F. Long-term administration of aspirin inhibits tumour formation and triggers anti-neoplastic molecular changes in a pre-clinical model of colon carcinogenesis. Oncology reports. 2010;23:511–7.PubMed
6.
go back to reference Reddy BS, Rao CV, Rivenson A, Kelloff G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in f344 rats. Carcinogenesis. 1993;14:1493–7.CrossRefPubMed Reddy BS, Rao CV, Rivenson A, Kelloff G. Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in f344 rats. Carcinogenesis. 1993;14:1493–7.CrossRefPubMed
7.
go back to reference Wargovich MJ, Chen CD, Harris C, Yang E, Velasco M. Inhibition of aberrant crypt growth by non-steroidal anti-inflammatory agents and differentiation agents in the rat colon. International journal of cancer Journal international du cancer. 1995;60:515–9.CrossRefPubMed Wargovich MJ, Chen CD, Harris C, Yang E, Velasco M. Inhibition of aberrant crypt growth by non-steroidal anti-inflammatory agents and differentiation agents in the rat colon. International journal of cancer Journal international du cancer. 1995;60:515–9.CrossRefPubMed
8.
go back to reference Shpitz B, Bomstein Y, Kariv N, Shalev M, Buklan G, Bernheim J. Chemopreventive effect of aspirin on growth of aberrant crypt foci in rats. International journal of colorectal disease. 1998;13:169–72.CrossRefPubMed Shpitz B, Bomstein Y, Kariv N, Shalev M, Buklan G, Bernheim J. Chemopreventive effect of aspirin on growth of aberrant crypt foci in rats. International journal of colorectal disease. 1998;13:169–72.CrossRefPubMed
9.
go back to reference Zhou XM, Wong BC, Fan XM, Zhang HB, Lin MC, Kung HF, et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis. 2001;22:1393–7.CrossRefPubMed Zhou XM, Wong BC, Fan XM, Zhang HB, Lin MC, Kung HF, et al. Non-steroidal anti-inflammatory drugs induce apoptosis in gastric cancer cells through up-regulation of bax and bak. Carcinogenesis. 2001;22:1393–7.CrossRefPubMed
10.
go back to reference Gu Q, Wang JD, Xia HH, Lin MC, He H, Zou B, et al. Activation of the caspase-8/bid and bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis. 2005;26:541–6.CrossRefPubMed Gu Q, Wang JD, Xia HH, Lin MC, He H, Zou B, et al. Activation of the caspase-8/bid and bax pathways in aspirin-induced apoptosis in gastric cancer. Carcinogenesis. 2005;26:541–6.CrossRefPubMed
11.
go back to reference Gao J, Niwa K, Sun W, Takemura M, Lian Z, Onogi K, et al. Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and upregulate cyclooxygenase-2 protein expression in endometrial cancer cells. Cancer science. 2004;95:901–7.CrossRefPubMed Gao J, Niwa K, Sun W, Takemura M, Lian Z, Onogi K, et al. Non-steroidal anti-inflammatory drugs inhibit cellular proliferation and upregulate cyclooxygenase-2 protein expression in endometrial cancer cells. Cancer science. 2004;95:901–7.CrossRefPubMed
12.
go back to reference Piqué M, Barragán M, Dalmau M, Bellosillo B, Pons G, Gil J. Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS letters. 2000;480:193–6.CrossRefPubMed Piqué M, Barragán M, Dalmau M, Bellosillo B, Pons G, Gil J. Aspirin induces apoptosis through mitochondrial cytochrome c release. FEBS letters. 2000;480:193–6.CrossRefPubMed
13.
go back to reference Bellosillo B, Piqué M, Barragán M, Castaño E, Villamor N, Colomer D, et al. Aspirin and salicylate induce apoptosis and activation of caspases in b-cell chronic lymphocytic leukemia cells. Blood. 1998;92:1406–14.PubMed Bellosillo B, Piqué M, Barragán M, Castaño E, Villamor N, Colomer D, et al. Aspirin and salicylate induce apoptosis and activation of caspases in b-cell chronic lymphocytic leukemia cells. Blood. 1998;92:1406–14.PubMed
14.
go back to reference Zimmermann KC, Waterhouse NJ, Goldstein JC, Schuler M, Green DR. Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia. 2000;2:505–13.CrossRefPubMedPubMedCentral Zimmermann KC, Waterhouse NJ, Goldstein JC, Schuler M, Green DR. Aspirin induces apoptosis through release of cytochrome c from mitochondria. Neoplasia. 2000;2:505–13.CrossRefPubMedPubMedCentral
15.
go back to reference Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. The Journal of biological chemistry. 2006;281:29228–35.CrossRefPubMed Dikshit P, Chatterjee M, Goswami A, Mishra A, Jana NR. Aspirin induces apoptosis through the inhibition of proteasome function. The Journal of biological chemistry. 2006;281:29228–35.CrossRefPubMed
16.
go back to reference Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nature reviews Clinical oncology. 2012;9:259–67.CrossRefPubMed Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nature reviews Clinical oncology. 2012;9:259–67.CrossRefPubMed
17.
go back to reference Kopp E, Ghosh S. Inhibition of nf-kappa b by sodium salicylate and aspirin. Science. 1994;265:956–9.CrossRefPubMed Kopp E, Ghosh S. Inhibition of nf-kappa b by sodium salicylate and aspirin. Science. 1994;265:956–9.CrossRefPubMed
18.
go back to reference Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, et al. Effect of aspirin on the wnt/β-catenin pathway is mediated via protein phosphatase 2a. Oncogene. 2006;25:6447–56.CrossRefPubMed Bos CL, Kodach LL, van den Brink GR, Diks SH, van Santen MM, Richel DJ, et al. Effect of aspirin on the wnt/β-catenin pathway is mediated via protein phosphatase 2a. Oncogene. 2006;25:6447–56.CrossRefPubMed
19.
go back to reference Ai G, Dachineni R, Muley P, Tummala H, Bhat GJ. Aspirin and salicylic acid decrease c-myc expression in cancer cells: a potential role in chemoprevention. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;1–12. Ai G, Dachineni R, Muley P, Tummala H, Bhat GJ. Aspirin and salicylic acid decrease c-myc expression in cancer cells: a potential role in chemoprevention. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;1–12.
20.
go back to reference Pathi S, Jutooru I, Chadalapaka G, Nair V, Lee SO, Safe S. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (sp) transcription factors. PloS one. 2012;7, e48208.CrossRefPubMedPubMedCentral Pathi S, Jutooru I, Chadalapaka G, Nair V, Lee SO, Safe S. Aspirin inhibits colon cancer cell and tumor growth and downregulates specificity protein (sp) transcription factors. PloS one. 2012;7, e48208.CrossRefPubMedPubMedCentral
21.
go back to reference Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, et al. Aspirin inhibits mTOR signaling, activates amp-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15 e3.CrossRefPubMedPubMedCentral Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, et al. Aspirin inhibits mTOR signaling, activates amp-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142:1504–15 e3.CrossRefPubMedPubMedCentral
22.
go back to reference Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K, et al. Aspirin prevents colorectal cancer by normalizing egfr expression. EBioMedicine. 2015;2:447–55.CrossRefPubMedPubMedCentral Li H, Zhu F, Boardman LA, Wang L, Oi N, Liu K, et al. Aspirin prevents colorectal cancer by normalizing egfr expression. EBioMedicine. 2015;2:447–55.CrossRefPubMedPubMedCentral
23.
go back to reference Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. British journal of cancer 2014 Alfonso L, Ai G, Spitale RC, Bhat GJ. Molecular targets of aspirin and cancer prevention. British journal of cancer 2014
24.
go back to reference Dovizio M, Bruno A, Tacconelli S, Patrignani P. Mode of action of aspirin as a chemopreventive agent. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 2013;191:39–65. Dovizio M, Bruno A, Tacconelli S, Patrignani P. Mode of action of aspirin as a chemopreventive agent. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer 2013;191:39–65.
25.
go back to reference Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899–908.CrossRefPubMed Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene. 2005;24:2899–908.CrossRefPubMed
26.
go back to reference Slee EA, O’Connor DJ, Lu X. To die or not to die: how does p53 decide? Oncogene. 2004;23:2809–18.CrossRefPubMed Slee EA, O’Connor DJ, Lu X. To die or not to die: how does p53 decide? Oncogene. 2004;23:2809–18.CrossRefPubMed
27.
go back to reference Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nature Reviews Cancer. 2004;4:793–805.CrossRefPubMed Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nature Reviews Cancer. 2004;4:793–805.CrossRefPubMed
28.
go back to reference Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 c-terminal domain. Cell. 1997;90:595–606.CrossRefPubMed Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 c-terminal domain. Cell. 1997;90:595–606.CrossRefPubMed
30.
go back to reference Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA, Bhat GJ. Aspirin inhibits camptothecin-induced p21cip1 levels and potentiates apoptosis in human breast cancer cells. International journal of oncology. 2009;34:597–608.PubMed Alfonso LF, Srivenugopal KS, Arumugam TV, Abbruscato TJ, Weidanz JA, Bhat GJ. Aspirin inhibits camptothecin-induced p21cip1 levels and potentiates apoptosis in human breast cancer cells. International journal of oncology. 2009;34:597–608.PubMed
31.
go back to reference Huang L, Wong CC, Cheng KW, Rigas B. Phospho-aspirin-2 (mdc-22) inhibits estrogen receptor positive breast cancer growth both in vitro and in vivo by a redox-dependent effect. 2014. Huang L, Wong CC, Cheng KW, Rigas B. Phospho-aspirin-2 (mdc-22) inhibits estrogen receptor positive breast cancer growth both in vitro and in vivo by a redox-dependent effect. 2014.
32.
go back to reference Huang L, Wong CC, Mackenzie GG, Sun Y, Cheng KW, Vrankova K, et al. Phospho-aspirin (mdc-22) inhibits breast cancer in preclinical animal models: an effect mediated by egfr inhibition, p53 acetylation and oxidative stress. BMC cancer. 2014;14:141.CrossRefPubMedPubMedCentral Huang L, Wong CC, Mackenzie GG, Sun Y, Cheng KW, Vrankova K, et al. Phospho-aspirin (mdc-22) inhibits breast cancer in preclinical animal models: an effect mediated by egfr inhibition, p53 acetylation and oxidative stress. BMC cancer. 2014;14:141.CrossRefPubMedPubMedCentral
33.
go back to reference O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the national cancer institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer research. 1997;57:4285–300.PubMed O’Connor PM, Jackman J, Bae I, Myers TG, Fan S, Mutoh M, et al. Characterization of the p53 tumor suppressor pathway in cell lines of the national cancer institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer research. 1997;57:4285–300.PubMed
35.
go back to reference Carter S, Vousden KH. Modifications of p53: competing for the lysines. Current opinion in genetics & development. 2009;19:18–24.CrossRef Carter S, Vousden KH. Modifications of p53: competing for the lysines. Current opinion in genetics & development. 2009;19:18–24.CrossRef
36.
go back to reference Alzate O, Parker CE, Mocanu V, Mocanu M, Dicheva N, Warren MR. Mass spectrometry for post-translational modifications. 2010. Alzate O, Parker CE, Mocanu V, Mocanu M, Dicheva N, Warren MR. Mass spectrometry for post-translational modifications. 2010.
37.
go back to reference Pinckard RN, Hawkins D, Farr RS. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature. 1968;219:68–9.CrossRefPubMed Pinckard RN, Hawkins D, Farr RS. In vitro acetylation of plasma proteins, enzymes and DNA by aspirin. Nature. 1968;219:68–9.CrossRefPubMed
38.
go back to reference Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a cox-independent mechanism. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2006;20:2009–16.CrossRef Borthwick GM, Johnson AS, Partington M, Burn J, Wilson R, Arthur HM. Therapeutic levels of aspirin and salicylate directly inhibit a model of angiogenesis through a cox-independent mechanism. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2006;20:2009–16.CrossRef
40.
go back to reference Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple c-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Molecular and cellular biology. 2000;20:8458–67.CrossRefPubMedPubMedCentral Rodriguez MS, Desterro JM, Lain S, Lane DP, Hay RT. Multiple c-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Molecular and cellular biology. 2000;20:8458–67.CrossRefPubMedPubMedCentral
41.
go back to reference Lee J, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death & Differentiation. 2010;17:86–92.CrossRef Lee J, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death & Differentiation. 2010;17:86–92.CrossRef
42.
go back to reference Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. The Journal of cell biology. 2006;173:533–44.CrossRefPubMedPubMedCentral Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, et al. Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. The Journal of cell biology. 2006;173:533–44.CrossRefPubMedPubMedCentral
43.
go back to reference Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Molecular cell. 2006;6:841–51.CrossRef Sykes SM, Mellert HS, Holbert MA, Li K, Marmorstein R, Lane WS, et al. Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Molecular cell. 2006;6:841–51.CrossRef
44.
go back to reference Ho CC, Yang X, Lee TL, Liao PH, Yang SH, Tsai CH, et al. Activation of p53 signalling in acetylsalicylic acid‐induced apoptosis in oc2 human oral cancer cells. European journal of clinical investigation. 2003;33:875–82.CrossRefPubMed Ho CC, Yang X, Lee TL, Liao PH, Yang SH, Tsai CH, et al. Activation of p53 signalling in acetylsalicylic acid‐induced apoptosis in oc2 human oral cancer cells. European journal of clinical investigation. 2003;33:875–82.CrossRefPubMed
45.
go back to reference Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B, et al. P53 mutants can often transactivate promoters containing a p21 but not bax or pig3 responsive elements. Oncogene. 2001;20:3573–9.CrossRefPubMed Campomenosi P, Monti P, Aprile A, Abbondandolo A, Frebourg T, Gold B, et al. P53 mutants can often transactivate promoters containing a p21 but not bax or pig3 responsive elements. Oncogene. 2001;20:3573–9.CrossRefPubMed
47.
go back to reference Wiman K. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene. 2010;29:4245–52.CrossRefPubMed Wiman K. Pharmacological reactivation of mutant p53: from protein structure to the cancer patient. Oncogene. 2010;29:4245–52.CrossRefPubMed
48.
go back to reference Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nature reviews Clinical oncology. 2011;8:25–37.CrossRefPubMed Cheok CF, Verma CS, Baselga J, Lane DP. Translating p53 into the clinic. Nature reviews Clinical oncology. 2011;8:25–37.CrossRefPubMed
49.
go back to reference Wang W, El-Deiry WS. Restoration of p53 to limit tumor growth. Current opinion in oncology. 2008;20:90–6.CrossRefPubMed Wang W, El-Deiry WS. Restoration of p53 to limit tumor growth. Current opinion in oncology. 2008;20:90–6.CrossRefPubMed
50.
go back to reference Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. Journal of Biological Chemistry. 2005;280:30384–91.CrossRefPubMed Bykov VJ, Issaeva N, Zache N, Shilov A, Hultcrantz M, Bergman J, et al. Reactivation of mutant p53 and induction of apoptosis in human tumor cells by maleimide analogs. Journal of Biological Chemistry. 2005;280:30384–91.CrossRefPubMed
51.
go back to reference Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, et al. Restoration of DNA‐binding and growth‐suppressive activity of mutant forms of p53 via a pcaf‐mediated acetylation pathway. Journal of cellular physiology. 2010;225:394–405.CrossRefPubMedPubMedCentral Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D, et al. Restoration of DNA‐binding and growth‐suppressive activity of mutant forms of p53 via a pcaf‐mediated acetylation pathway. Journal of cellular physiology. 2010;225:394–405.CrossRefPubMedPubMedCentral
52.
go back to reference Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ. Aspirin acetylates multiple cellular proteins in hct-116 colon cancer cells: Identification of novel targets. International journal of oncology. 2011;39:1273–83.PubMed Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ. Aspirin acetylates multiple cellular proteins in hct-116 colon cancer cells: Identification of novel targets. International journal of oncology. 2011;39:1273–83.PubMed
53.
go back to reference Bateman LA, Zaro BW, Miller SM, Pratt MR. An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. Journal of the American Chemical Society. 2013;135:14568–73.CrossRefPubMed Bateman LA, Zaro BW, Miller SM, Pratt MR. An alkyne-aspirin chemical reporter for the detection of aspirin-dependent protein modification in living cells. Journal of the American Chemical Society. 2013;135:14568–73.CrossRefPubMed
54.
go back to reference Wang J, Zhang C-J, Zhang J, He Y, Lee YM, Chen S, Lim TK, Ng S, Shen H-M, Lin Q. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (qa-abpp). Scientific reports 2015;5. Wang J, Zhang C-J, Zhang J, He Y, Lee YM, Chen S, Lim TK, Ng S, Shen H-M, Lin Q. Mapping sites of aspirin-induced acetylations in live cells by quantitative acid-cleavable activity-based protein profiling (qa-abpp). Scientific reports 2015;5.
Metadata
Title
Aspirin acetylates wild type and mutant p53 in colon cancer cells: identification of aspirin acetylated sites on recombinant p53
Authors
Guoqiang Ai
Rakesh Dachineni
D. Ramesh Kumar
Srinivasan Marimuthu
Lloyd F. Alfonso
G. Jayarama Bhat
Publication date
01-05-2016
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2016
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-4438-3

Other articles of this Issue 5/2016

Tumor Biology 5/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine