Skip to main content
Top
Published in: BMC Cancer 1/2014

Open Access 01-12-2014 | Research article

Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress

Authors: Liqun Huang, Chi C Wong, Gerardo G Mackenzie, Yu Sun, Ka Wing Cheng, Kvetoslava Vrankova, Ninche Alston, Nengtai Ouyang, Basil Rigas

Published in: BMC Cancer | Issue 1/2014

Login to get access

Abstract

Background

The anticancer properties of aspirin are restricted by its gastrointestinal toxicity and its limited efficacy. Therefore, we synthesized phospho-aspirin (PA-2; MDC-22), a novel derivative of aspirin, and evaluated its chemotherapeutic and chemopreventive efficacy in preclinical models of triple negative breast cancer (TNBC).

Methods

Efficacy of PA-2 was evaluated in human breast cancer cells in vitro, and in orthotopic and subcutaneous TNBC xenografts in nude mice. Mechanistic studies were also carried out to elucidate the mechanism of action of PA-2.

Results

PA-2 inhibited the growth of TNBC cells in vitro more potently than aspirin. Treatment of established subcutaneous TNBC xenografts (MDA-MB-231 and BT-20) with PA-2 induced a strong growth inhibitory effect, resulting in tumor stasis (79% and 90% inhibition, respectively). PA-2, but not aspirin, significantly prevented the development of orthotopic MDA-MB-231 xenografts (62% inhibition). Mechanistically, PA-2: 1) inhibited the activation of epidermal growth factor receptor (EGFR) and suppressed its downstream signaling cascades, including PI3K/AKT/mTOR and STAT3; 2) induced acetylation of p53 at multiple lysine residues and enhanced its DNA binding activity, leading to cell cycle arrest; and 3) induced oxidative stress by suppressing the thioredoxin system, consequently inhibiting the activation of the redox sensitive transcription factor NF-κB. These molecular alterations were observed in vitro and in vivo, demonstrating their relevance to the anticancer effect of PA-2.

Conclusions

Our findings demonstrate that PA-2 possesses potent chemotherapeutic efficacy against TNBC, and is also effective in its chemoprevention, warranting further evaluation as an anticancer agent.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62 (1): 10-29. 10.3322/caac.20138.CrossRefPubMed Siegel R, Naishadham D, Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 2012, 62 (1): 10-29. 10.3322/caac.20138.CrossRefPubMed
3.
go back to reference Stanley P, Hegedus R: Aspirin–the first hundred years. Biologist (London). 2000, 47 (5): 269-271. Stanley P, Hegedus R: Aspirin–the first hundred years. Biologist (London). 2000, 47 (5): 269-271.
4.
go back to reference Baron JA: What now for aspirin and cancer prevention?. J Natl Cancer Inst. 2004, 96 (1): 4-5. 10.1093/jnci/djh027.CrossRefPubMed Baron JA: What now for aspirin and cancer prevention?. J Natl Cancer Inst. 2004, 96 (1): 4-5. 10.1093/jnci/djh027.CrossRefPubMed
5.
go back to reference Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU: A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003, 348 (10): 891-899. 10.1056/NEJMoa021735.CrossRefPubMed Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU: A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003, 348 (10): 891-899. 10.1056/NEJMoa021735.CrossRefPubMed
6.
go back to reference Marshall SF, Bernstein L, Anton-Culver H, Deapen D, Horn-Ross PL, Mohrenweiser H, Peel D, Pinder R, Purdie DM, Reynolds P, Stram D, West D, Wright WE, Ziogas A, Ross RK: Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst. 2005, 97 (11): 805-812. 10.1093/jnci/dji140.CrossRefPubMed Marshall SF, Bernstein L, Anton-Culver H, Deapen D, Horn-Ross PL, Mohrenweiser H, Peel D, Pinder R, Purdie DM, Reynolds P, Stram D, West D, Wright WE, Ziogas A, Ross RK: Nonsteroidal anti-inflammatory drug use and breast cancer risk by stage and hormone receptor status. J Natl Cancer Inst. 2005, 97 (11): 805-812. 10.1093/jnci/dji140.CrossRefPubMed
7.
go back to reference Piazza GA, Keeton AB, Tinsley HN, Gary BD, Whitt JD, Mathew B, Thaiparambil J, Coward L, Gorman G, Li Y, Sani B, Hobrath JV, Maxuitenko YY, Reynolds RC: A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res (Phila). 2009, 2 (6): 572-580. 10.1158/1940-6207.CAPR-09-0001.CrossRef Piazza GA, Keeton AB, Tinsley HN, Gary BD, Whitt JD, Mathew B, Thaiparambil J, Coward L, Gorman G, Li Y, Sani B, Hobrath JV, Maxuitenko YY, Reynolds RC: A novel sulindac derivative that does not inhibit cyclooxygenases but potently inhibits colon tumor cell growth and induces apoptosis with antitumor activity. Cancer Prev Res (Phila). 2009, 2 (6): 572-580. 10.1158/1940-6207.CAPR-09-0001.CrossRef
8.
go back to reference Wong CC, Cheng KW, Xie G, Zhou D, Zhu CH, Constantinides PP, Rigas B: Carboxylesterases 1 and 2 hydrolyze phospho-nonsteroidal anti-inflammatory drugs: relevance to their pharmacological activity. J Pharmacol Exp Ther. 2012, 340 (2): 422-432. 10.1124/jpet.111.188508.CrossRefPubMedPubMedCentral Wong CC, Cheng KW, Xie G, Zhou D, Zhu CH, Constantinides PP, Rigas B: Carboxylesterases 1 and 2 hydrolyze phospho-nonsteroidal anti-inflammatory drugs: relevance to their pharmacological activity. J Pharmacol Exp Ther. 2012, 340 (2): 422-432. 10.1124/jpet.111.188508.CrossRefPubMedPubMedCentral
9.
go back to reference Huang L, Mackenzie G, Ouyang N, Sun Y, Xie G, Johnson F, Komninou D, Rigas B: The novel phospho-non-steroidal anti-inflammatory drugs, OXT-328, MDC-22 and MDC-917, inhibit adjuvant-induced arthritis in rats. Br J Pharmacol. 2011, 162 (7): 1521-1533. 10.1111/j.1476-5381.2010.01162.x.CrossRefPubMedPubMedCentral Huang L, Mackenzie G, Ouyang N, Sun Y, Xie G, Johnson F, Komninou D, Rigas B: The novel phospho-non-steroidal anti-inflammatory drugs, OXT-328, MDC-22 and MDC-917, inhibit adjuvant-induced arthritis in rats. Br J Pharmacol. 2011, 162 (7): 1521-1533. 10.1111/j.1476-5381.2010.01162.x.CrossRefPubMedPubMedCentral
11.
go back to reference Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW: Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res. 1999, 59 (21): 5475-5478.PubMed Price JT, Tiganis T, Agarwal A, Djakiew D, Thompson EW: Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res. 1999, 59 (21): 5475-5478.PubMed
12.
go back to reference Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490 (7418): 61-70. 10.1038/nature11412.CrossRef Cancer Genome Atlas Network: Comprehensive molecular portraits of human breast tumours. Nature. 2012, 490 (7418): 61-70. 10.1038/nature11412.CrossRef
13.
go back to reference Dancey JE, Freidlin B: Targeting epidermal growth factor receptor–are we missing the mark?. Lancet. 2003, 362 (9377): 62-64. 10.1016/S0140-6736(03)13810-X.CrossRefPubMed Dancey JE, Freidlin B: Targeting epidermal growth factor receptor–are we missing the mark?. Lancet. 2003, 362 (9377): 62-64. 10.1016/S0140-6736(03)13810-X.CrossRefPubMed
14.
go back to reference Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell. 2009, 137 (3): 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed Vousden KH, Prives C: Blinded by the light: the growing complexity of p53. Cell. 2009, 137 (3): 413-431. 10.1016/j.cell.2009.04.037.CrossRefPubMed
15.
go back to reference Zhao W, Mackenzie GG, Murray OT, Zhang Z, Rigas B: Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis. 2009, 30 (3): 512-519. 10.1093/carcin/bgp015.CrossRefPubMedPubMedCentral Zhao W, Mackenzie GG, Murray OT, Zhang Z, Rigas B: Phosphoaspirin (MDC-43), a novel benzyl ester of aspirin, inhibits the growth of human cancer cell lines more potently than aspirin: a redox-dependent effect. Carcinogenesis. 2009, 30 (3): 512-519. 10.1093/carcin/bgp015.CrossRefPubMedPubMedCentral
16.
go back to reference Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, Johnson F, Komninou D, Kopelovich L, Rigas B: Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology. 2010, 139 (4): 1320-1332. 10.1053/j.gastro.2010.06.044.CrossRefPubMedPubMedCentral Mackenzie GG, Sun Y, Huang L, Xie G, Ouyang N, Gupta RC, Johnson F, Komninou D, Kopelovich L, Rigas B: Phospho-sulindac (OXT-328), a novel sulindac derivative, is safe and effective in colon cancer prevention in mice. Gastroenterology. 2010, 139 (4): 1320-1332. 10.1053/j.gastro.2010.06.044.CrossRefPubMedPubMedCentral
17.
go back to reference Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA: Kit and FcepsilonRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood. 2004, 104 (8): 2410-2417. 10.1182/blood-2004-02-0631.CrossRefPubMed Hundley TR, Gilfillan AM, Tkaczyk C, Andrade MV, Metcalfe DD, Beaven MA: Kit and FcepsilonRI mediate unique and convergent signals for release of inflammatory mediators from human mast cells. Blood. 2004, 104 (8): 2410-2417. 10.1182/blood-2004-02-0631.CrossRefPubMed
18.
go back to reference Ouyang N, Williams JL, Rigas B: NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR){delta} expression in APCmin/+ mice proportionally to their tumor inhibitory effect: Implications for the role of PPAR{delta} in carcinogenesis. Carcinogenesis. 2006, 27 (2): 232-239. 10.1093/carcin/bgi221.CrossRefPubMed Ouyang N, Williams JL, Rigas B: NO-donating aspirin isomers downregulate peroxisome proliferator-activated receptor (PPAR){delta} expression in APCmin/+ mice proportionally to their tumor inhibitory effect: Implications for the role of PPAR{delta} in carcinogenesis. Carcinogenesis. 2006, 27 (2): 232-239. 10.1093/carcin/bgi221.CrossRefPubMed
19.
go back to reference Rigas B, Kozoni V: The novel phenylester anticancer compounds: Study of a derivative of aspirin (phoshoaspirin). Int J Oncol. 2008, 32 (1): 97-100.PubMed Rigas B, Kozoni V: The novel phenylester anticancer compounds: Study of a derivative of aspirin (phoshoaspirin). Int J Oncol. 2008, 32 (1): 97-100.PubMed
20.
go back to reference Likhite V: Aspirin and Breast Cancer: Studies In Mice. Central Reginoal Meeting of the American Chemical Society. 2009, Cleveland, Ohio Likhite V: Aspirin and Breast Cancer: Studies In Mice. Central Reginoal Meeting of the American Chemical Society. 2009, Cleveland, Ohio
21.
go back to reference Baumgart A, Seidl S, Vlachou P, Michel L, Mitova N, Schatz N, Specht K, Koch I, Schuster T, Grundler R, Kremer M, Fend F, Siveke JT, Peschel C, Duyster J, Dechow T: ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Res. 2010, 70 (13): 5368-5378. 10.1158/0008-5472.CAN-09-3763.CrossRefPubMed Baumgart A, Seidl S, Vlachou P, Michel L, Mitova N, Schatz N, Specht K, Koch I, Schuster T, Grundler R, Kremer M, Fend F, Siveke JT, Peschel C, Duyster J, Dechow T: ADAM17 regulates epidermal growth factor receptor expression through the activation of Notch1 in non-small cell lung cancer. Cancer Res. 2010, 70 (13): 5368-5378. 10.1158/0008-5472.CAN-09-3763.CrossRefPubMed
22.
go back to reference Soussi T, Lozano G: p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005, 331 (3): 834-842. 10.1016/j.bbrc.2005.03.190.CrossRefPubMed Soussi T, Lozano G: p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun. 2005, 331 (3): 834-842. 10.1016/j.bbrc.2005.03.190.CrossRefPubMed
23.
go back to reference Meek DW, Anderson CW: Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. 2009, 1 (6): a000950-CrossRefPubMedPubMedCentral Meek DW, Anderson CW: Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb Perspect Biol. 2009, 1 (6): a000950-CrossRefPubMedPubMedCentral
24.
25.
go back to reference Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ: Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: identification of novel targets. Int J Oncol. 2011, 39 (5): 1273-1283.PubMed Marimuthu S, Chivukula RS, Alfonso LF, Moridani M, Hagen FK, Bhat GJ: Aspirin acetylates multiple cellular proteins in HCT-116 colon cancer cells: identification of novel targets. Int J Oncol. 2011, 39 (5): 1273-1283.PubMed
26.
go back to reference Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP: MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002, 21 (22): 6236-6245. 10.1093/emboj/cdf616.CrossRefPubMedPubMedCentral Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP: MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J. 2002, 21 (22): 6236-6245. 10.1093/emboj/cdf616.CrossRefPubMedPubMedCentral
27.
go back to reference Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ: Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006, 26 (1): 28-38. 10.1128/MCB.26.1.28-38.2006.CrossRefPubMedPubMedCentral Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ: Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006, 26 (1): 28-38. 10.1128/MCB.26.1.28-38.2006.CrossRefPubMedPubMedCentral
28.
go back to reference Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP, Willingham MC, Inoue K: Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development. Cancer Res. 2010, 70 (22): 9084-9094. 10.1158/0008-5472.CAN-10-0159.CrossRefPubMedPubMedCentral Taneja P, Maglic D, Kai F, Sugiyama T, Kendig RD, Frazier DP, Willingham MC, Inoue K: Critical roles of DMP1 in human epidermal growth factor receptor 2/neu-Arf-p53 signaling and breast cancer development. Cancer Res. 2010, 70 (22): 9084-9094. 10.1158/0008-5472.CAN-10-0159.CrossRefPubMedPubMedCentral
29.
go back to reference Sun Y, Huang L, Mackenzie GG, Rigas B: Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents. J Pharmacol Exp Ther. 2011, 338 (3): 775-783. 10.1124/jpet.111.183533.CrossRefPubMedPubMedCentral Sun Y, Huang L, Mackenzie GG, Rigas B: Oxidative stress mediates through apoptosis the anticancer effect of phospho-nonsteroidal anti-inflammatory drugs: implications for the role of oxidative stress in the action of anticancer agents. J Pharmacol Exp Ther. 2011, 338 (3): 775-783. 10.1124/jpet.111.183533.CrossRefPubMedPubMedCentral
30.
go back to reference Basu S: F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal. 2008, 10 (8): 1405-1434. 10.1089/ars.2007.1956.CrossRefPubMed Basu S: F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal. 2008, 10 (8): 1405-1434. 10.1089/ars.2007.1956.CrossRefPubMed
31.
go back to reference Tacconelli S, Capone ML, Patrignani P: Measurement of 8-iso-prostaglandin F2alpha in biological fluids as a measure of lipid peroxidation. Methods Mol Biol. 2010, 644: 165-178. 10.1007/978-1-59745-364-6_14.CrossRefPubMed Tacconelli S, Capone ML, Patrignani P: Measurement of 8-iso-prostaglandin F2alpha in biological fluids as a measure of lipid peroxidation. Methods Mol Biol. 2010, 644: 165-178. 10.1007/978-1-59745-364-6_14.CrossRefPubMed
32.
go back to reference Mukherjee A, Martin SG: The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol. 2008, 81 (Spec No 1): S57-S68.CrossRefPubMed Mukherjee A, Martin SG: The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol. 2008, 81 (Spec No 1): S57-S68.CrossRefPubMed
33.
go back to reference Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT: Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992, 20 (15): 3821-3830. 10.1093/nar/20.15.3821.CrossRefPubMedPubMedCentral Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT: Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992, 20 (15): 3821-3830. 10.1093/nar/20.15.3821.CrossRefPubMedPubMedCentral
34.
go back to reference Wong CC, Cheng KW, Rigas B: Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther. 2012, 341 (3): 572-578. 10.1124/jpet.112.191957.CrossRefPubMedPubMedCentral Wong CC, Cheng KW, Rigas B: Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther. 2012, 341 (3): 572-578. 10.1124/jpet.112.191957.CrossRefPubMedPubMedCentral
35.
go back to reference Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, Jankowski J, La Vecchia C, Meyskens F, Senn HJ, Thun M: Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009, 10 (5): 501-507. 10.1016/S1470-2045(09)70035-X.CrossRefPubMed Cuzick J, Otto F, Baron JA, Brown PH, Burn J, Greenwald P, Jankowski J, La Vecchia C, Meyskens F, Senn HJ, Thun M: Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. Lancet Oncol. 2009, 10 (5): 501-507. 10.1016/S1470-2045(09)70035-X.CrossRefPubMed
36.
go back to reference Tsutsui S, Kataoka A, Ohno S, Murakami S, Kinoshita J, Hachitanda Y: Prognostic and predictive value of epidermal growth factor receptor in recurrent breast cancer. Clin Cancer Res. 2002, 8 (11): 3454-3460.PubMed Tsutsui S, Kataoka A, Ohno S, Murakami S, Kinoshita J, Hachitanda Y: Prognostic and predictive value of epidermal growth factor receptor in recurrent breast cancer. Clin Cancer Res. 2002, 8 (11): 3454-3460.PubMed
37.
go back to reference Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S: Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat. 2002, 71 (1): 67-75. 10.1023/A:1013397232011.CrossRefPubMed Tsutsui S, Ohno S, Murakami S, Hachitanda Y, Oda S: Prognostic value of epidermal growth factor receptor (EGFR) and its relationship to the estrogen receptor status in 1029 patients with breast cancer. Breast Cancer Res Treat. 2002, 71 (1): 67-75. 10.1023/A:1013397232011.CrossRefPubMed
38.
go back to reference Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004, 10 (16): 5367-5374. 10.1158/1078-0432.CCR-04-0220.CrossRefPubMed Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L, Akslen LA, Ragaz J, Gown AM, Gilks CB, van de Rijn M, Perou CM: Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004, 10 (16): 5367-5374. 10.1158/1078-0432.CCR-04-0220.CrossRefPubMed
39.
go back to reference Sternlicht MD, Sunnarborg SW: The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2008, 13 (2): 181-194. 10.1007/s10911-008-9084-6.CrossRefPubMedPubMedCentral Sternlicht MD, Sunnarborg SW: The ADAM17-amphiregulin-EGFR axis in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2008, 13 (2): 181-194. 10.1007/s10911-008-9084-6.CrossRefPubMedPubMedCentral
40.
go back to reference Walerych D, Napoli M, Collavin L, Del Sal G: The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 2012, 33 (11): 2007-2017. 10.1093/carcin/bgs232.CrossRefPubMedPubMedCentral Walerych D, Napoli M, Collavin L, Del Sal G: The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis. 2012, 33 (11): 2007-2017. 10.1093/carcin/bgs232.CrossRefPubMedPubMedCentral
41.
go back to reference Frazier DP, Kendig RD, Kai F, Maglic D, Sugiyama T, Morgan RL, Fry EA, Lagedrost SJ, Sui G, Inoue K: Dmp1 physically interacts with p53 and positively regulates p53′s stability, nuclear localization, and function. Cancer Res. 2012, 72 (7): 1740-1750. 10.1158/0008-5472.CAN-11-2410.CrossRefPubMedPubMedCentral Frazier DP, Kendig RD, Kai F, Maglic D, Sugiyama T, Morgan RL, Fry EA, Lagedrost SJ, Sui G, Inoue K: Dmp1 physically interacts with p53 and positively regulates p53′s stability, nuclear localization, and function. Cancer Res. 2012, 72 (7): 1740-1750. 10.1158/0008-5472.CAN-11-2410.CrossRefPubMedPubMedCentral
42.
go back to reference Sun Y, Rigas B: The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res. 2008, 68 (20): 8269-8277. 10.1158/0008-5472.CAN-08-2010.CrossRefPubMedPubMedCentral Sun Y, Rigas B: The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res. 2008, 68 (20): 8269-8277. 10.1158/0008-5472.CAN-08-2010.CrossRefPubMedPubMedCentral
43.
go back to reference Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, Kato K, Noguchi S: High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res. 2005, 11 (23): 8425-8430. 10.1158/1078-0432.CCR-05-0449.CrossRefPubMed Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, Kato K, Noguchi S: High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res. 2005, 11 (23): 8425-8430. 10.1158/1078-0432.CCR-05-0449.CrossRefPubMed
44.
go back to reference Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J: NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 2013, 4: 2299-PubMed Yamamoto M, Taguchi Y, Ito-Kureha T, Semba K, Yamaguchi N, Inoue J: NF-kappaB non-cell-autonomously regulates cancer stem cell populations in the basal-like breast cancer subtype. Nat Commun. 2013, 4: 2299-PubMed
Metadata
Title
Phospho-aspirin (MDC-22) inhibits breast cancer in preclinical animal models: an effect mediated by EGFR inhibition, p53 acetylation and oxidative stress
Authors
Liqun Huang
Chi C Wong
Gerardo G Mackenzie
Yu Sun
Ka Wing Cheng
Kvetoslava Vrankova
Ninche Alston
Nengtai Ouyang
Basil Rigas
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2014
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-14-141

Other articles of this Issue 1/2014

BMC Cancer 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine