Skip to main content
Top
Published in: Tumor Biology 6/2015

01-06-2015 | Research Article

miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1

Authors: Guangbin Wang, Bin Li, Yonghui Fu, Ming He, Jiashi Wang, Peng Shen, Lunhao Bai

Published in: Tumor Biology | Issue 6/2015

Login to get access

Abstract

Accumulating evidence has shown that microRNAs are involved in multiple processes in cancer development and progression. Recent studies have shown that miR-23a functions as an oncogene in various human cancer types, but its role in osteosarcoma remains poorly understood. Here, we demonstrated that miR-23a is frequently downregulated in osteosarcoma specimens and cell lines compared with adjacent noncancerous tissues and cell line. Bioinformatics analysis further revealed SATB1 as a potential target of miR-23a. Data from luciferase reporter assays showed that miR-23a directly binds to the 3′UTR of SATB1 messenger RNA (mRNA). Furthermore, we found that expression patterns of miR-23a were inversely correlated with those of SATB1 in osteosarcoma tissues and cell lines, and overexpression of miR-23a suppressed SATB1 expression at both transcriptional and translational levels in osteosarcoma cell lines. In functional assays, miR-23a inhibited osteosarcoma cell proliferation, which could be reversed by overexpression of SATB1. Furthermore, knockdown of SATB1 reduced osteosarcoma cell proliferation, which resembled the inhibitory effects of miR-23a overexpression. Taken together, our data provide compelling evidence that miR-23a functions as a tumor suppressor in osteosarcoma, and its inhibitory effect on tumor are mediated chiefly through downregulation of SATB1.
Literature
1.
go back to reference Ando K, Heymann MF, Stresing V, et al. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel). 2013;5(2):591–616.CrossRef Ando K, Heymann MF, Stresing V, et al. Current therapeutic strategies and novel approaches in osteosarcoma. Cancers (Basel). 2013;5(2):591–616.CrossRef
3.
go back to reference Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.CrossRefPubMed Ameres SL, Zamore PD. Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol. 2013;14(8):475–88.CrossRefPubMed
4.
go back to reference Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.CrossRefPubMedPubMedCentral Kasinski AL, Slack FJ. Epigenetics and genetics. MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nat Rev Cancer. 2011;11(12):849–64.CrossRefPubMedPubMedCentral
6.
go back to reference Sandoval J, Peiró-Chova L, Pallardó FV, et al. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn. 2013;13(5):457–71.CrossRefPubMed Sandoval J, Peiró-Chova L, Pallardó FV, et al. Epigenetic biomarkers in laboratory diagnostics: emerging approaches and opportunities. Expert Rev Mol Diagn. 2013;13(5):457–71.CrossRefPubMed
8.
go back to reference Li J, Lu X. The emerging roles of 3′untranslated regions in cancer. Cancer Lett. 2013;337(1):22–5.CrossRefPubMed Li J, Lu X. The emerging roles of 3′untranslated regions in cancer. Cancer Lett. 2013;337(1):22–5.CrossRefPubMed
9.
go back to reference Fujita PA, Rhead B, Zweig AS, et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2011;39(Database issue):D876–82.CrossRefPubMed Fujita PA, Rhead B, Zweig AS, et al. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2011;39(Database issue):D876–82.CrossRefPubMed
10.
go back to reference Huang S, He X, Ding J, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 2008;123(4):972–8.CrossRefPubMed Huang S, He X, Ding J, et al. Upregulation of miR-23a approximately 27a approximately 24 decreases transforming growth factor-beta-induced tumor-suppressive activities in human hepatocellular carcinoma cells. Int J Cancer. 2008;123(4):972–8.CrossRefPubMed
11.
go back to reference Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. 2007;67(22):11001–11. Mertens-Talcott SU, Chintharlapalli S, Li X, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. 2007;67(22):11001–11.
12.
go back to reference Lal A, Pan Y, Navarro F, et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.CrossRefPubMedPubMedCentral Lal A, Pan Y, Navarro F, et al. miR-24-mediated downregulation of H2AX suppresses DNA repair in terminally differentiated blood cells. Nat Struct Mol Biol. 2009;16(5):492–8.CrossRefPubMedPubMedCentral
13.
go back to reference Lin Z, Murtaza I, Wang K, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106(29):12103–8.CrossRefPubMedPubMedCentral Lin Z, Murtaza I, Wang K, et al. miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proc Natl Acad Sci U S A. 2009;106(29):12103–8.CrossRefPubMedPubMedCentral
14.
go back to reference Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a * 27a * 24–2 cluster and its implication in human diseases. 2010;9:232. Chhabra R, Dubey R, Saini N. Cooperative and individualistic functions of the microRNAs in the miR-23a * 27a * 24–2 cluster and its implication in human diseases. 2010;9:232.
15.
go back to reference Cao M, Seike M, Soeno C, et al. MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012;41(3):869–75.PubMedPubMedCentral Cao M, Seike M, Soeno C, et al. MiR-23a regulates TGF-β-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. 2012;41(3):869–75.PubMedPubMedCentral
17.
go back to reference Bao L, Zhao J, Dai X, et al. Correlation between miR-23a and onset of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2014;38(3):318–30.CrossRefPubMed Bao L, Zhao J, Dai X, et al. Correlation between miR-23a and onset of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2014;38(3):318–30.CrossRefPubMed
18.
19.
go back to reference Li X, Liu X, Xu W, et al. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem. 2013;288(25):18121–33.CrossRefPubMedPubMedCentral Li X, Liu X, Xu W, et al. c-MYC-regulated miR-23a/24-2/27a cluster promotes mammary carcinoma cell invasion and hepatic metastasis by targeting Sprouty2. J Biol Chem. 2013;288(25):18121–33.CrossRefPubMedPubMedCentral
20.
21.
go back to reference Zhu LH, Liu T, Tang H, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277(18):3726–34.CrossRefPubMed Zhu LH, Liu T, Tang H, et al. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010;277(18):3726–34.CrossRefPubMed
22.
go back to reference Wang WL, Yang C, Han XL, et al. MicroRNA-23a expression in paraffin-embedded specimen correlates with overall survival of diffuse large B-cell lymphoma. Med Oncol. 2014;31(4):919.CrossRefPubMed Wang WL, Yang C, Han XL, et al. MicroRNA-23a expression in paraffin-embedded specimen correlates with overall survival of diffuse large B-cell lymphoma. Med Oncol. 2014;31(4):919.CrossRefPubMed
23.
go back to reference He Y, Meng C, Shao Z, et al. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34(5):1485–96.CrossRefPubMed He Y, Meng C, Shao Z, et al. MiR-23a functions as a tumor suppressor in osteosarcoma. Cell Physiol Biochem. 2014;34(5):1485–96.CrossRefPubMed
24.
go back to reference Dickinson LA, Joh T, Kohwi Y, et al. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell. 1992;70(4):631–45.CrossRefPubMed Dickinson LA, Joh T, Kohwi Y, et al. A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell. 1992;70(4):631–45.CrossRefPubMed
25.
go back to reference Tattermusch A, Brockdorff N. A scaffold for X chromosome inactivation. 2011;130(2):247–53. Tattermusch A, Brockdorff N. A scaffold for X chromosome inactivation. 2011;130(2):247–53.
26.
go back to reference Yamaguchi H, Tateno M, Yamasaki K. Solution structure and DNA-binding mode of the matrix attachment region-binding domain of the transcription factor SATB1 that regulates the T-cell maturation. J Biol Chem. 2006;281(8):5319–27.CrossRefPubMed Yamaguchi H, Tateno M, Yamasaki K. Solution structure and DNA-binding mode of the matrix attachment region-binding domain of the transcription factor SATB1 that regulates the T-cell maturation. J Biol Chem. 2006;281(8):5319–27.CrossRefPubMed
27.
go back to reference Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem. 2005;280(26):24600–9.CrossRefPubMed Seo J, Lozano MM, Dudley JP. Nuclear matrix binding regulates SATB1-mediated transcriptional repression. J Biol Chem. 2005;280(26):24600–9.CrossRefPubMed
29.
go back to reference Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. 2003;34(1):42–51. Cai S, Han HJ, Kohwi-Shigematsu T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. 2003;34(1):42–51.
30.
go back to reference Han HJ, Russo J, Kohwi Y, et al. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.CrossRefPubMed Han HJ, Russo J, Kohwi Y, et al. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature. 2008;452(7184):187–93.CrossRefPubMed
31.
go back to reference Meng WJ, Yan H, Zhou B, et al. Correlation of SATB1 over-expression with the progression of human rectal cancer. Int J Colorectal Dis. 2011;27(2):143–50.CrossRefPubMed Meng WJ, Yan H, Zhou B, et al. Correlation of SATB1 over-expression with the progression of human rectal cancer. Int J Colorectal Dis. 2011;27(2):143–50.CrossRefPubMed
33.
go back to reference Tu W, Luo M, Wang Z, et al. Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer. Liver Int. 2012;32(7):1064–78.CrossRefPubMed Tu W, Luo M, Wang Z, et al. Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer. Liver Int. 2012;32(7):1064–78.CrossRefPubMed
34.
35.
go back to reference Han B, Luan L, Xu Z, et al. Expression and biological roles of SATB1 in human bladder cancer. Tumour Biol. 2013;34(5):2943–9.CrossRefPubMed Han B, Luan L, Xu Z, et al. Expression and biological roles of SATB1 in human bladder cancer. Tumour Biol. 2013;34(5):2943–9.CrossRefPubMed
36.
go back to reference Mao L, Yang C, Wang J, et al. SATB1 is overexpressed in metastatic prostate cancer and promotes prostate cancer cell growth and invasion. J Transl Med. 2013;11:111.CrossRefPubMedPubMedCentral Mao L, Yang C, Wang J, et al. SATB1 is overexpressed in metastatic prostate cancer and promotes prostate cancer cell growth and invasion. J Transl Med. 2013;11:111.CrossRefPubMedPubMedCentral
37.
go back to reference Zhang H, Su X, Guo L, et al. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci. 2014;11(12):1262–9.CrossRefPubMedPubMedCentral Zhang H, Su X, Guo L, et al. Silencing SATB1 inhibits the malignant phenotype and increases sensitivity of human osteosarcoma U2OS cells to arsenic trioxide. Int J Med Sci. 2014;11(12):1262–9.CrossRefPubMedPubMedCentral
38.
go back to reference Zhang H, Qu S, Li S, et al. Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells. Mol Cell Biochem. 2013;378(1–2):39–45.CrossRefPubMed Zhang H, Qu S, Li S, et al. Silencing SATB1 inhibits proliferation of human osteosarcoma U2OS cells. Mol Cell Biochem. 2013;378(1–2):39–45.CrossRefPubMed
39.
go back to reference Nagpal N, Ahmad HM, Molparia B, et al. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.CrossRefPubMed Nagpal N, Ahmad HM, Molparia B, et al. MicroRNA-191, an estrogen-responsive microRNA, functions as an oncogenic regulator in human breast cancer. Carcinogenesis. 2013;34(8):1889–99.CrossRefPubMed
40.
go back to reference Di Leva G, Piovan C, Gasparini P, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 2013;9(3):e1003311.CrossRefPubMedPubMedCentral Di Leva G, Piovan C, Gasparini P, et al. Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status. PLoS Genet. 2013;9(3):e1003311.CrossRefPubMedPubMedCentral
41.
go back to reference Elton TS, Selemon H, Elton SM, et al. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12.CrossRefPubMed Elton TS, Selemon H, Elton SM, et al. Regulation of the MIR155 host gene in physiological and pathological processes. Gene. 2013;532(1):1–12.CrossRefPubMed
42.
go back to reference Lena AM, Mancini M, Rivetti di Val Cervo P, et al. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem Biophys Res Commun. 2012;423(3):509–14.CrossRefPubMed Lena AM, Mancini M, Rivetti di Val Cervo P, et al. MicroRNA-191 triggers keratinocytes senescence by SATB1 and CDK6 downregulation. Biochem Biophys Res Commun. 2012;423(3):509–14.CrossRefPubMed
43.
go back to reference Yang S, Banerjee S, Freitas A, et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L521–9.CrossRefPubMedPubMedCentral Yang S, Banerjee S, Freitas A, et al. miR-21 regulates chronic hypoxia-induced pulmonary vascular remodeling. Am J Physiol Lung Cell Mol Physiol. 2012;302(6):L521–9.CrossRefPubMedPubMedCentral
44.
go back to reference McInnes N, Sadlon TJ, Brown CY, et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene. 2012;31(8):1045–54.CrossRefPubMed McInnes N, Sadlon TJ, Brown CY, et al. FOXP3 and FOXP3-regulated microRNAs suppress SATB1 in breast cancer cells. Oncogene. 2012;31(8):1045–54.CrossRefPubMed
45.
go back to reference Li QQ, Chen ZQ, Cao XX, et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18(1):16–25.CrossRefPubMed Li QQ, Chen ZQ, Cao XX, et al. Involvement of NF-κB/miR-448 regulatory feedback loop in chemotherapy-induced epithelial-mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18(1):16–25.CrossRefPubMed
Metadata
Title
miR-23a suppresses proliferation of osteosarcoma cells by targeting SATB1
Authors
Guangbin Wang
Bin Li
Yonghui Fu
Ming He
Jiashi Wang
Peng Shen
Lunhao Bai
Publication date
01-06-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3120-0

Other articles of this Issue 6/2015

Tumor Biology 6/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine