Skip to main content
Top
Published in: Tumor Biology 11/2014

01-11-2014 | Review

New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia

Authors: Saeid Shahrabi, Shirin Azizidoost, Mohammad Shahjahani, Fakher Rahim, Ahmad Ahmadzadeh, Najmaldin Saki

Published in: Tumor Biology | Issue 11/2014

Login to get access

Abstract

Hematoproliferative neoplasias like chronic myelogenous leukemia (CML) progressively affect bone marrow niche; however, there are only few specific clinical markers for prediction of disease progression. Here, we review the myeloproliferative niche and molecular changes including signaling pathways as well as microRNA (miRNA) in CML in order to better understand the therapeutic approaches. CML is a three-stage myeloproliferative disorder caused by reciprocal translocation between chromosome 9 and 22. There has been a new interest on treatment of this disorder. Therefore, in order to develop the appropriate therapy, an analysis of the molecular changes involved in malignant cells can be effective. A review of the signaling pathways, miRNA, and related targets can be helpful for better understanding of molecular pathogenesis of CML. Characterizing malignant cells and molecular changes with a focus on their targets may help researchers use molecular targets as effective therapeutic means for CML. On the other hand, interactions between leukemic stem cells and CML niche will help researchers investigate the causes of drug resistance in this disease.
Literature
1.
go back to reference Celso CL, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature. 2009;457(7225):92–6.PubMedCentralPubMedCrossRef Celso CL, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature. 2009;457(7225):92–6.PubMedCentralPubMedCrossRef
2.
go back to reference Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N. Bone marrow neoplastic niche in leukemia. Hematology. 2014;19(4):232–8.PubMedCrossRef Azizidoost S, Babashah S, Rahim F, Shahjahani M, Saki N. Bone marrow neoplastic niche in leukemia. Hematology. 2014;19(4):232–8.PubMedCrossRef
3.
go back to reference Yasumizu R, Toki J, Asou H, Nishino T, Komatsu Y, Ikehara S. Production of hematopoietic stem cell-chemotactic factor by bone marrow stromal cells. Blood. 1994;83(4):964–71.PubMed Yasumizu R, Toki J, Asou H, Nishino T, Komatsu Y, Ikehara S. Production of hematopoietic stem cell-chemotactic factor by bone marrow stromal cells. Blood. 1994;83(4):964–71.PubMed
4.
go back to reference Williams DA, Cancelas JA. Leukaemia: niche retreats for stem cells. Nature. 2006;444(7121):827–8.PubMedCrossRef Williams DA, Cancelas JA. Leukaemia: niche retreats for stem cells. Nature. 2006;444(7121):827–8.PubMedCrossRef
5.
go back to reference Saki N, Abroun S, Farshdousti Hagh M, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131–6.PubMedCentralPubMed Saki N, Abroun S, Farshdousti Hagh M, Asgharei F. Neoplastic bone marrow niche: hematopoietic and mesenchymal stem cells. Cell J. 2011;13(3):131–6.PubMedCentralPubMed
7.
go back to reference Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99.PubMedCentralPubMedCrossRef Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell. 2013;13(3):285–99.PubMedCentralPubMedCrossRef
8.
go back to reference Oehler VG, Yeung KY, Choi YE, Bumgarner RE, Raftery AE, Radich JP. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood. 2009;114(15):3292–8.PubMedCentralPubMedCrossRef Oehler VG, Yeung KY, Choi YE, Bumgarner RE, Raftery AE, Radich JP. The derivation of diagnostic markers of chronic myeloid leukemia progression from microarray data. Blood. 2009;114(15):3292–8.PubMedCentralPubMedCrossRef
9.
go back to reference Nwajei F, Konopleva M. The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol. 2013;2013. Nwajei F, Konopleva M. The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells. Adv Hematol. 2013;2013.
10.
go back to reference Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New Engl J Med. 2001;344(14):1031–7.PubMedCrossRef Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. New Engl J Med. 2001;344(14):1031–7.PubMedCrossRef
11.
go back to reference Gordon JE, Wong JJL, Rasko JE. MicroRNAs in myeloid malignancies. Br J Haematol. 2013;162(2):162–76.PubMedCrossRef Gordon JE, Wong JJL, Rasko JE. MicroRNAs in myeloid malignancies. Br J Haematol. 2013;162(2):162–76.PubMedCrossRef
12.
go back to reference Flamant S, Ritchie W, Guilhot J, Holst J, Bonnet ML, Chomel JC, et al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010;95(8):1325–33.PubMedCentralPubMedCrossRef Flamant S, Ritchie W, Guilhot J, Holst J, Bonnet ML, Chomel JC, et al. Micro-RNA response to imatinib mesylate in patients with chronic myeloid leukemia. Haematologica. 2010;95(8):1325–33.PubMedCentralPubMedCrossRef
13.
go back to reference Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.PubMedCentralPubMedCrossRef Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK, et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature. 2005;435(7044):969–73.PubMedCentralPubMedCrossRef
14.
go back to reference Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830–40.PubMedCrossRef Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res. 2008;6(12):1830–40.PubMedCrossRef
15.
go back to reference Melo JV, Deininger MW. Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18(3):545–68.PubMedCrossRef Melo JV, Deininger MW. Biology of chronic myelogenous leukemia-signaling pathways of initiation and transformation. Hematol Oncol Clin North Am. 2004;18(3):545–68.PubMedCrossRef
16.
go back to reference Ahmed W, Van Etten RA. Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep. 2013;8(1):71–80.PubMedCrossRef Ahmed W, Van Etten RA. Signal transduction in the chronic leukemias: implications for targeted therapies. Curr Hematol Malig Rep. 2013;8(1):71–80.PubMedCrossRef
17.
go back to reference Zhang B, Ho YW, Huang Q, Maeda T, Lin A, S-u L, et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21(4):577–92.PubMedCentralPubMedCrossRef Zhang B, Ho YW, Huang Q, Maeda T, Lin A, S-u L, et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell. 2012;21(4):577–92.PubMedCentralPubMedCrossRef
18.
go back to reference Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12(10):1175–80.PubMedCrossRef Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med. 2006;12(10):1175–80.PubMedCrossRef
19.
go back to reference Ninomiya S, Kanemura N, Tsurumi H, Kasahara S, Hara T, Yamada T, et al. Coexistence of inversion 16 and the Philadelphia chromosome comprising P190 BCR/ABL in chronic myeloid leukemia blast crisis. Int J Hematol. 2011;93(6):806–10.PubMedCrossRef Ninomiya S, Kanemura N, Tsurumi H, Kasahara S, Hara T, Yamada T, et al. Coexistence of inversion 16 and the Philadelphia chromosome comprising P190 BCR/ABL in chronic myeloid leukemia blast crisis. Int J Hematol. 2011;93(6):806–10.PubMedCrossRef
20.
go back to reference Werner M, Kaloutsi V, Buhr T, Delventhal S, Vykoupil K-F, Georgii A. Cytogenetics of chronic myelogenous leukemia (CML) correlated to the histopathology of bone marrow biopsies. Ann Hematol. 1991;63(4):201–5.PubMedCrossRef Werner M, Kaloutsi V, Buhr T, Delventhal S, Vykoupil K-F, Georgii A. Cytogenetics of chronic myelogenous leukemia (CML) correlated to the histopathology of bone marrow biopsies. Ann Hematol. 1991;63(4):201–5.PubMedCrossRef
21.
go back to reference Van der Plas D, Grosveld G, Hagemeijer A. Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML. Cancer Genet Cytogenet. 1991;52(2):143–56.PubMedCrossRef Van der Plas D, Grosveld G, Hagemeijer A. Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML. Cancer Genet Cytogenet. 1991;52(2):143–56.PubMedCrossRef
22.
go back to reference Provan A, Majer RV, Herbert A, Smith AG. del (15) (q11q15) associated with transformation of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1991;55(1):35–8.PubMedCrossRef Provan A, Majer RV, Herbert A, Smith AG. del (15) (q11q15) associated with transformation of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1991;55(1):35–8.PubMedCrossRef
23.
go back to reference Wessels J, Fibbe W, Van Der Keur D, Landegent J, Van Der Plas D, Den Ottolander G, et al. t(5; 12)(q31; p12). A clinical entity with features of both myeloid leukemia and chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1993;65(1):7–11.PubMedCrossRef Wessels J, Fibbe W, Van Der Keur D, Landegent J, Van Der Plas D, Den Ottolander G, et al. t(5; 12)(q31; p12). A clinical entity with features of both myeloid leukemia and chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1993;65(1):7–11.PubMedCrossRef
24.
go back to reference Sherrington P, Nacheva E, Fischer P, Rees J, Hoyle C, Dyer M, et al. Translocation 5;21 and interstitial deletion of chromosome 7 in a case of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1988;31(2):247–52.PubMedCrossRef Sherrington P, Nacheva E, Fischer P, Rees J, Hoyle C, Dyer M, et al. Translocation 5;21 and interstitial deletion of chromosome 7 in a case of chronic myelomonocytic leukemia. Cancer Genet Cytogenet. 1988;31(2):247–52.PubMedCrossRef
25.
go back to reference Medeiros BC, Markovic V, Kamel-Reid S, Lipton JH. Presence of t(1;14)(p13;p11.2) in Philadelphia chromosome-negative cells in a patient with chronic myeloid leukemia. Cancer Genet Cytogenet. 2007;173(1):83–4.PubMedCrossRef Medeiros BC, Markovic V, Kamel-Reid S, Lipton JH. Presence of t(1;14)(p13;p11.2) in Philadelphia chromosome-negative cells in a patient with chronic myeloid leukemia. Cancer Genet Cytogenet. 2007;173(1):83–4.PubMedCrossRef
26.
go back to reference Thompson P, Whittaker J. Translocation 3;21 in Philadelphia chromosome positive chronic myeloid leukemia at diagnosis. Cancer Genet Cytogenet. 1989;39(2):143–6.PubMedCrossRef Thompson P, Whittaker J. Translocation 3;21 in Philadelphia chromosome positive chronic myeloid leukemia at diagnosis. Cancer Genet Cytogenet. 1989;39(2):143–6.PubMedCrossRef
27.
go back to reference Vaidya S, Joshi D, Ghosh K, Chakrabarti P, Vundinti BR. A novel 5-way translocation t(9;11;13;19;22) in a case of chronic-phase chronic myeloid leukemia. Hum Pathol. 2013;44(10):2365–9.PubMedCrossRef Vaidya S, Joshi D, Ghosh K, Chakrabarti P, Vundinti BR. A novel 5-way translocation t(9;11;13;19;22) in a case of chronic-phase chronic myeloid leukemia. Hum Pathol. 2013;44(10):2365–9.PubMedCrossRef
28.
go back to reference Gerber JM, Qin L, Kowalski J, Smith BD, Griffin CA, Vala MS, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7.PubMedCentralPubMedCrossRef Gerber JM, Qin L, Kowalski J, Smith BD, Griffin CA, Vala MS, et al. Characterization of chronic myeloid leukemia stem cells. Am J Hematol. 2011;86(1):31–7.PubMedCentralPubMedCrossRef
29.
go back to reference Gerber JM, Gucwa JL, Esopi D, Gurel M, Haffner MC, Vala M, et al. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget. 2013;4(5):715.PubMedCentralPubMed Gerber JM, Gucwa JL, Esopi D, Gurel M, Haffner MC, Vala M, et al. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget. 2013;4(5):715.PubMedCentralPubMed
30.
go back to reference Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80.PubMedCrossRef Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, et al. TGF-β–FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature. 2010;463(7281):676–80.PubMedCrossRef
31.
go back to reference Corrêa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer. 2012;12(1):303.PubMedCentralPubMedCrossRef Corrêa S, Binato R, Du Rocher B, Castelo-Branco MT, Pizzatti L, Abdelhay E. Wnt/β-catenin pathway regulates ABCB1 transcription in chronic myeloid leukemia. BMC Cancer. 2012;12(1):303.PubMedCentralPubMedCrossRef
32.
go back to reference Sengupta A, Banerjee D, Chandra S, Banerji S, Ghosh R, Roy R, et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia. 2007;21(5):949–55.PubMed Sengupta A, Banerjee D, Chandra S, Banerji S, Ghosh R, Roy R, et al. Deregulation and cross talk among Sonic hedgehog, Wnt, Hox and Notch signaling in chronic myeloid leukemia progression. Leukemia. 2007;21(5):949–55.PubMed
33.
go back to reference Danisz K, Blasiak J. Role of anti-apoptotic pathways activated by BCR/ABL in the resistance of chronic myeloid leukemia cells to tyrosine kinase inhibitors. Acta Biochim Pol. 2013;60:503–14.PubMed Danisz K, Blasiak J. Role of anti-apoptotic pathways activated by BCR/ABL in the resistance of chronic myeloid leukemia cells to tyrosine kinase inhibitors. Acta Biochim Pol. 2013;60:503–14.PubMed
34.
go back to reference Yang Z, Yang C, Zhang S, Li Y, Chen J. Notch2 inhibits proliferation of chronic myeloid leukemia cells. Oncol Lett. 2013;5(4):1390–4.PubMedCentralPubMed Yang Z, Yang C, Zhang S, Li Y, Chen J. Notch2 inhibits proliferation of chronic myeloid leukemia cells. Oncol Lett. 2013;5(4):1390–4.PubMedCentralPubMed
35.
go back to reference Chang G, Zhang H, Wang J, Zhang Y, Xu H, Wang C, et al. CD44 targets Wnt/β-catenin pathway to mediate the proliferation of K562 cells. Cancer Cell Int. 2013;13(1):117.PubMedCentralPubMedCrossRef Chang G, Zhang H, Wang J, Zhang Y, Xu H, Wang C, et al. CD44 targets Wnt/β-catenin pathway to mediate the proliferation of K562 cells. Cancer Cell Int. 2013;13(1):117.PubMedCentralPubMedCrossRef
36.
go back to reference Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2010;5(2):81–7.PubMedCrossRef Helgason GV, Young GA, Holyoake TL. Targeting chronic myeloid leukemia stem cells. Curr Hematol Malig Rep. 2010;5(2):81–7.PubMedCrossRef
37.
go back to reference Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci. 2006;103(24):9136–41.PubMedCentralPubMedCrossRef Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci. 2006;103(24):9136–41.PubMedCentralPubMedCrossRef
38.
go back to reference Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506.PubMedCrossRef Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008;13(6):496–506.PubMedCrossRef
39.
go back to reference Polakova KM, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10(1):41–53.CrossRef Polakova KM, Lopotová T, Klamová H, Burda P, Trněný M, Stopka T, et al. Expression patterns of microRNAs associated with CML phases and their disease related targets. Mol Cancer. 2011;10(1):41–53.CrossRef
40.
go back to reference Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.PubMedCentralPubMedCrossRef Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, Spizzo R, et al. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts. Cell. 2010;140(5):652–65.PubMedCentralPubMedCrossRef
41.
go back to reference Albano F, Anelli L, Zagaria A, Liso V, Rocchi M, Specchia G. MIRN199B downregulation in chronic myeloid leukaemia is associated with deletions on der(9). Br J Haematol. 2009;144(2):271–3.PubMedCrossRef Albano F, Anelli L, Zagaria A, Liso V, Rocchi M, Specchia G. MIRN199B downregulation in chronic myeloid leukaemia is associated with deletions on der(9). Br J Haematol. 2009;144(2):271–3.PubMedCrossRef
42.
go back to reference Kong W, He L, Richards E, Challa S, Xu C, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2013;33(6):679–89.PubMedCentralPubMedCrossRef Kong W, He L, Richards E, Challa S, Xu C, Permuth-Wey J, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2013;33(6):679–89.PubMedCentralPubMedCrossRef
43.
go back to reference San José-Enériz E, Román-Gómez J, Jiménez-Velasco A, Garate L, Martin V, Cordeu L, et al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8(1):69–72.PubMedCentralPubMedCrossRef San José-Enériz E, Román-Gómez J, Jiménez-Velasco A, Garate L, Martin V, Cordeu L, et al. MicroRNA expression profiling in imatinib-resistant chronic myeloid leukemia patients without clinically significant ABL1-mutations. Mol Cancer. 2009;8(1):69–72.PubMedCentralPubMedCrossRef
44.
go back to reference Zhu X, Lin Z, Du J, Zhou X, Yang L, Liu G. Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia. Mol Cell Biochem. 2014;390(1–2):75–84.PubMedCrossRef Zhu X, Lin Z, Du J, Zhou X, Yang L, Liu G. Studies on microRNAs that are correlated with the cancer stem cells in chronic myeloid leukemia. Mol Cell Biochem. 2014;390(1–2):75–84.PubMedCrossRef
45.
go back to reference Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, et al. Targeting of the signal transducer Smo links microRNA‐326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133(3):579–89.PubMedCrossRef Babashah S, Sadeghizadeh M, Hajifathali A, Tavirani MR, Zomorod MS, Ghadiani M, et al. Targeting of the signal transducer Smo links microRNA‐326 to the oncogenic Hedgehog pathway in CD34+ CML stem/progenitor cells. Int J Cancer. 2013;133(3):579–89.PubMedCrossRef
46.
go back to reference Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, et al. Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109(10):4399–405.PubMedCrossRef Venturini L, Battmer K, Castoldi M, Schultheis B, Hochhaus A, Muckenthaler MU, et al. Expression of the miR-17–92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007;109(10):4399–405.PubMedCrossRef
47.
go back to reference Li Y, Wang H, Tao K, Xiao Q, Huang Z, Zhong L, et al. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res. 2013;319(8):1094–101.PubMedCrossRef Li Y, Wang H, Tao K, Xiao Q, Huang Z, Zhong L, et al. miR-29b suppresses CML cell proliferation and induces apoptosis via regulation of BCR/ABL1 protein. Exp Cell Res. 2013;319(8):1094–101.PubMedCrossRef
48.
go back to reference Yin H, Liu Y, Zheng W-L, Song Y-B. Effects of miRNA-196b overexpression on proliferation, apoptosis and survivin, Cox-2 expression of K562 cells. China Oncol. 2013;5:007. Yin H, Liu Y, Zheng W-L, Song Y-B. Effects of miRNA-196b overexpression on proliferation, apoptosis and survivin, Cox-2 expression of K562 cells. China Oncol. 2013;5:007.
49.
50.
go back to reference Chomel J, Aggoune D, Sorel N, Turhan A. [Chronic myeloid leukemia stem cells: cross-talk with the niche]. Med Sci: M/S. 2014;30(4):452–61. Chomel J, Aggoune D, Sorel N, Turhan A. [Chronic myeloid leukemia stem cells: cross-talk with the niche]. Med Sci: M/S. 2014;30(4):452–61.
51.
go back to reference Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 2014;348(1):71–6.PubMedCrossRef Corrado C, Raimondo S, Saieva L, Flugy AM, De Leo G, Alessandro R. Exosome-mediated crosstalk between chronic myelogenous leukemia cells and human bone marrow stromal cells triggers an interleukin 8-dependent survival of leukemia cells. Cancer Lett. 2014;348(1):71–6.PubMedCrossRef
Metadata
Title
New insights in cellular and molecular aspects of BM niche in chronic myelogenous leukemia
Authors
Saeid Shahrabi
Shirin Azizidoost
Mohammad Shahjahani
Fakher Rahim
Ahmad Ahmadzadeh
Najmaldin Saki
Publication date
01-11-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2610-9

Other articles of this Issue 11/2014

Tumor Biology 11/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine