Skip to main content
Top
Published in: Tumor Biology 11/2014

01-11-2014 | Research Article

Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span

Authors: Marwa Amer, M. Elhefnawi, Eman El-Ahwany, A. F. Awad, Nermen Abdel Gawad, Suher Zada, F. M. Abdel Tawab

Published in: Tumor Biology | Issue 11/2014

Login to get access

Abstract

MicroRNAs are small 19–25 nucleotides which have been shown to play important roles in the regulation of gene expression in many organisms. Downregulation or accumulation of miRNAs implies either tumor suppression or oncogenic activation. In this study, differentially expressed hsa-miR-195 in hepatocellular carcinoma (HCC) was identified and analyzed. The prediction was done using a consensus approach of tools. The validation steps were done at two different levels in silico and in vitro. FGF7, GHR, PCMT1, CITED2, PEX5, PEX13, NOVA1, AXIN2, and TSPYL2 were detected with high significant (P < 0.005). These genes are involved in important pathways in cancer like MAPK signaling pathway, Jak-STAT signaling pathways, regulation of actin cytoskeleton, angiogenesis, Wnt signaling pathway, and TGF-beta signaling pathway. In vitro target validation was done for protein-l-isoaspartate (d-aspartate) O-methyltransferase (PCMT1). The co-transfection of pmirGLO-PCMT1 and pEGP-miR-195 showed highly significant results. Firefly luciferase was detected using Lumiscensor and t test analysis was done. Firefly luciferase expression was significantly decreased (P < 0.001) in comparison to the control. The low expression of firefly luciferase validates the method of target prediction that we used in this work by working on PCMT1 as a target for miR-195. Furthermore, the rest of the predicted genes are suspected to be real targets for hsa-miR-195. These target genes control almost all the hallmarks of liver cancer which can be used as therapeutic targets in cancer treatment.
Literature
1.
go back to reference Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.PubMedCrossRef Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology. 2008;47:1223–32.PubMedCrossRef
2.
go back to reference Steel LF, Mattu TS, Mehta A, Hebestreit H, Dwek R, et al. A proteomic approach for the discovery of early detection markers of hepatocellular carcinoma. Dis Markers. 2001;17:179–89.PubMedCentralPubMedCrossRef Steel LF, Mattu TS, Mehta A, Hebestreit H, Dwek R, et al. A proteomic approach for the discovery of early detection markers of hepatocellular carcinoma. Dis Markers. 2001;17:179–89.PubMedCentralPubMedCrossRef
3.
go back to reference Moradpour D, Blum HE. Pathogenesis of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005;17:477–83.PubMedCrossRef Moradpour D, Blum HE. Pathogenesis of hepatocellular carcinoma. Eur J Gastroenterol Hepatol. 2005;17:477–83.PubMedCrossRef
4.
go back to reference Colombo M, Sangiovanni A. Etiology, natural history and treatment of hepatocellular carcinoma. Antiviral Res. 2003;60:145–50.PubMedCrossRef Colombo M, Sangiovanni A. Etiology, natural history and treatment of hepatocellular carcinoma. Antiviral Res. 2003;60:145–50.PubMedCrossRef
5.
go back to reference Lee JS, Thorgeirsson SS. Comparative and integrative functional genomics of HCC. Oncogene. 2006;25:3801–9.PubMedCrossRef Lee JS, Thorgeirsson SS. Comparative and integrative functional genomics of HCC. Oncogene. 2006;25:3801–9.PubMedCrossRef
6.
go back to reference Lemmer ER, Friedman SL, Llovet JM. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling. Semin Liver Dis. 2006;26:373–84.PubMedCrossRef Lemmer ER, Friedman SL, Llovet JM. Molecular diagnosis of chronic liver disease and hepatocellular carcinoma: the potential of gene expression profiling. Semin Liver Dis. 2006;26:373–84.PubMedCrossRef
7.
go back to reference Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.PubMedCrossRef Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM. MicroRNA expression and function in cancer. Trends Mol Med. 2006;12:580–7.PubMedCrossRef
8.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef
9.
go back to reference Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38:1375–7.PubMedCrossRef Berezikov E, Thuemmler F, van Laake LW, Kondova I, Bontrop R, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38:1375–7.PubMedCrossRef
10.
go back to reference Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 2006;16:1289–98.PubMedCentralPubMedCrossRef Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, et al. Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res. 2006;16:1289–98.PubMedCentralPubMedCrossRef
11.
go back to reference Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMed Michael MZ, O’ Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMed
13.
go back to reference Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.PubMedCentralPubMedCrossRef Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103:2257–61.PubMedCentralPubMedCrossRef
14.
go back to reference Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.PubMedCentralPubMedCrossRef Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.PubMedCentralPubMedCrossRef
15.
go back to reference Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8.PubMedCrossRef
16.
go back to reference Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.PubMedCrossRef Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9:189–98.PubMedCrossRef
17.
go back to reference Xue C, Li F, He T, Liu GP, Li Y, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinforma. 2005;6:310.CrossRef Xue C, Li F, He T, Liu GP, Li Y, et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinforma. 2005;6:310.CrossRef
18.
go back to reference Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.PubMedCrossRef Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell. 2005;120:21–4.PubMedCrossRef
21.
go back to reference Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2010;585:2087–99.PubMedCrossRef Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire. FEBS Lett. 2010;585:2087–99.PubMedCrossRef
23.
go back to reference Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169–81.PubMedCrossRef Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell. 2006;124:1169–81.PubMedCrossRef
24.
go back to reference Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.PubMedCrossRef Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432:226–30.PubMedCrossRef
25.
go back to reference Huang V, Place RF, Portnoy V, Wang J, Qi Z, et al. Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2011;40:1695–707.PubMedCentralPubMedCrossRef Huang V, Place RF, Portnoy V, Wang J, Qi Z, et al. Upregulation of cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 2011;40:1695–707.PubMedCentralPubMedCrossRef
26.
go back to reference Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.PubMedCentralPubMedCrossRef Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101:2999–3004.PubMedCentralPubMedCrossRef
27.
go back to reference Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25:13–20.PubMedCrossRef Zhao JJ, Yang J, Lin J, Yao N, Zhu Y, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009;25:13–20.PubMedCrossRef
28.
go back to reference Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology. 2009;6:18.PubMedCentralPubMedCrossRef Klase Z, Winograd R, Davis J, Carpio L, Hildreth R, et al. HIV-1 TAR miRNA protects against apoptosis by altering cellular gene expression. Retrovirology. 2009;6:18.PubMedCentralPubMedCrossRef
29.
go back to reference Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRef Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.PubMedCrossRef
30.
31.
go back to reference Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7.PubMedCrossRef Bernstein E, Kim SY, Carmell MA, Murchison EP, Alcorn H, et al. Dicer is essential for mouse development. Nat Genet. 2003;35:215–7.PubMedCrossRef
32.
go back to reference Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.PubMedCrossRef Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.PubMedCrossRef
33.
go back to reference Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.PubMedCentralPubMedCrossRef Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214.PubMedCentralPubMedCrossRef
34.
go back to reference Verghese ET, Hanby AM, Speirs V, Hughes TA. Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol. 2008;215:214–21.PubMedCrossRef Verghese ET, Hanby AM, Speirs V, Hughes TA. Small is beautiful: microRNAs and breast cancer-where are we now? J Pathol. 2008;215:214–21.PubMedCrossRef
36.
go back to reference Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.PubMedCrossRef Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, et al. Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res. 2007;67:2456–68.PubMedCrossRef
37.
go back to reference Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res. 2011;157:216–25.PubMedCrossRef Nana-Sinkam SP, Croce CM. MicroRNAs as therapeutic targets in cancer. Transl Res. 2011;157:216–25.PubMedCrossRef
38.
go back to reference Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A. 2001;98:14814–8.PubMedCentralPubMedCrossRef Chavous DA, Jackson FR, O'Connor CM. Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase. Proc Natl Acad Sci U S A. 2001;98:14814–8.PubMedCentralPubMedCrossRef
39.
go back to reference Lowenson JD, Kim E, Young SG, Clarke S. Limited accumulation of damaged proteins in l-isoaspartyl (d-aspartyl) O-methyltransferase-deficient mice. J Biol Chem. 2001;276:20695–702.PubMedCrossRef Lowenson JD, Kim E, Young SG, Clarke S. Limited accumulation of damaged proteins in l-isoaspartyl (d-aspartyl) O-methyltransferase-deficient mice. J Biol Chem. 2001;276:20695–702.PubMedCrossRef
40.
41.
go back to reference Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRef Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.PubMedCrossRef
42.
go back to reference Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.PubMedCrossRef Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.PubMedCrossRef
43.
go back to reference Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.PubMedCrossRef Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.PubMedCrossRef
44.
go back to reference Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.PubMedCrossRef Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, et al. RAS is regulated by the let-7 microRNA family. Cell. 2005;120:635–47.PubMedCrossRef
45.
go back to reference O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.PubMedCrossRef O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.PubMedCrossRef
46.
go back to reference Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008;68:2773–80.PubMedCentralPubMedCrossRef Medina R, Zaidi SK, Liu CG, Stein JL, van Wijnen AJ, et al. MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. Cancer Res. 2008;68:2773–80.PubMedCentralPubMedCrossRef
47.
go back to reference Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedCentralPubMedCrossRef Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedCentralPubMedCrossRef
48.
go back to reference Su H, Yang JR, Xu T, Huang J, Xu L, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42.PubMedCrossRef Su H, Yang JR, Xu T, Huang J, Xu L, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42.PubMedCrossRef
49.
go back to reference Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.PubMedCrossRef Xu T, Zhu Y, Xiong Y, Ge YY, Yun JP, et al. MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology. 2009;50:113–21.PubMedCrossRef
50.
go back to reference Robert M, Maluf G, Yanek K, Kong X, Kulik L, et al. Genes involved in viral carcinogenesis and tumor initiation in hepatitis c virus-induced hepatocellular carcinoma. Mol Med. 2009;15:85–94. Robert M, Maluf G, Yanek K, Kong X, Kulik L, et al. Genes involved in viral carcinogenesis and tumor initiation in hepatitis c virus-induced hepatocellular carcinoma. Mol Med. 2009;15:85–94.
51.
go back to reference Huebscher KJ, Lee J, Rovelli G, Ludin B, Matus A, et al. Protein isoaspartyl methyltransferase protects from Bax-induced apoptosis. Gene. 1999;240:333–41.PubMedCrossRef Huebscher KJ, Lee J, Rovelli G, Ludin B, Matus A, et al. Protein isoaspartyl methyltransferase protects from Bax-induced apoptosis. Gene. 1999;240:333–41.PubMedCrossRef
52.
go back to reference Kosugi S, Furuchi T, Katane M, Sekine M, Shirasawa T, et al. Suppression of protein l-isoaspartyl (d-aspartyl) methyltransferase results in hyperactivation of EGF-stimulated MEK-ERK signaling in cultured mammalian cells. Biochem Biophys Res Commun. 2008;371:22–7.PubMedCrossRef Kosugi S, Furuchi T, Katane M, Sekine M, Shirasawa T, et al. Suppression of protein l-isoaspartyl (d-aspartyl) methyltransferase results in hyperactivation of EGF-stimulated MEK-ERK signaling in cultured mammalian cells. Biochem Biophys Res Commun. 2008;371:22–7.PubMedCrossRef
53.
go back to reference Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol. 2008;23:87–94.PubMedCrossRef Huang YS, Dai Y, Yu XF, Bao SY, Yin YB, et al. Microarray analysis of microRNA expression in hepatocellular carcinoma and non-tumorous tissues without viral hepatitis. J Gastroenterol Hepatol. 2008;23:87–94.PubMedCrossRef
54.
go back to reference Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai). 2009;41:1–15.CrossRef Pei Y, Zhang T, Renault V, Zhang X. An overview of hepatocellular carcinoma study by omics-based methods. Acta Biochim Biophys Sin (Shanghai). 2009;41:1–15.CrossRef
55.
go back to reference Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11:R6.PubMedCentralPubMedCrossRef Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, et al. PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol. 2010;11:R6.PubMedCentralPubMedCrossRef
57.
go back to reference Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.PubMedCrossRef Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.PubMedCrossRef
58.
go back to reference Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18:1165–78.PubMedCentralPubMedCrossRef Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, et al. A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 2004;18:1165–78.PubMedCentralPubMedCrossRef
61.
go back to reference ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinforma. 2013;11:354–67.CrossRef ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinforma. 2013;11:354–67.CrossRef
62.
go back to reference Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163–169.PubMedCentralPubMedCrossRef Hsu SD, Lin FM, Wu WY, Liang C, Huang WC, et al. miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res. 2011;39:D163–169.PubMedCentralPubMedCrossRef
63.
66.
go back to reference Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, et al. Thermodynamics of RNA-RNA binding. Bioinformatics. 2006;22:1177–82.PubMedCrossRef Muckstein U, Tafer H, Hackermuller J, Bernhart SH, Stadler PF, et al. Thermodynamics of RNA-RNA binding. Bioinformatics. 2006;22:1177–82.PubMedCrossRef
68.
go back to reference Carver T, Bleasby A. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics. 2003;19:1837–43.PubMedCrossRef Carver T, Bleasby A. The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics. 2003;19:1837–43.PubMedCrossRef
70.
go back to reference Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36:W423–426.PubMedCentralPubMedCrossRef Okuda S, Yamada T, Hamajima M, Itoh M, Katayama T, et al. KEGG Atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 2008;36:W423–426.PubMedCentralPubMedCrossRef
71.
go back to reference Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, et al. Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One. 2009;4:e7710.PubMedCentralPubMedCrossRef Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, et al. Pathway projector: web-based zoomable pathway browser using KEGG atlas and Google Maps API. PLoS One. 2009;4:e7710.PubMedCentralPubMedCrossRef
72.
go back to reference Vastrik I, D'Eustachio P, Schmidt E, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedCentralPubMedCrossRef Vastrik I, D'Eustachio P, Schmidt E, Gopinath G, Croft D, et al. Reactome: a knowledge base of biologic pathways and processes. Genome Biol. 2007;8:R39.PubMedCentralPubMedCrossRef
73.
go back to reference da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.CrossRef
74.
go back to reference Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, et al. GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35:W186–192.PubMedCentralPubMedCrossRef Backes C, Keller A, Kuentzer J, Kneissl B, Comtesse N, et al. GeneTrail—advanced gene set enrichment analysis. Nucleic Acids Res. 2007;35:W186–192.PubMedCentralPubMedCrossRef
75.
go back to reference McLauchlan J, Lemberg MK, Hope G, Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 2002;21:3980–8.PubMedCentralPubMedCrossRef McLauchlan J, Lemberg MK, Hope G, Martoglio B. Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 2002;21:3980–8.PubMedCentralPubMedCrossRef
Metadata
Title
Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span
Authors
Marwa Amer
M. Elhefnawi
Eman El-Ahwany
A. F. Awad
Nermen Abdel Gawad
Suher Zada
F. M. Abdel Tawab
Publication date
01-11-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 11/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2445-4

Other articles of this Issue 11/2014

Tumor Biology 11/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine