Skip to main content
Top
Published in: Tumor Biology 6/2014

01-06-2014 | Research Article

EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2

Authors: Shaoyi Li, Yun Gao, Weining Ma, Wenchang Guo, Gang Zhou, Tianci Cheng, Yunhui Liu

Published in: Tumor Biology | Issue 6/2014

Login to get access

Abstract

Glioblastoma is the most common and most aggressive malignant primary brain tumor in humans, accounting for 52 % of all functional tissue brain tumor cases and 20 % of all intracranial tumors. The typical treatment involves a combination of chemotherapy, radiation, and surgery, whereas it still achieves fairly poor patient survival. Ginsenoside Rh2 has been reported to have a therapeutic effect on some tumors, but its effect on glioblastoma has not been extensively evaluated. Here, we show that ginsenoside Rh2 can substantially inhibit the growth of glioblastoma in vitro and in vivo in a mouse model. Moreover, the inhibition of the tumor growth appears to result from combined effects on decreased tumor cell proliferation and increased tumor cell apoptosis. Further analyses suggest that ginsenoside Rh2 may have its antiglioblastoma effect through inhibition of the epidermal growth factor receptor (EGFR) signaling pathway in tumor cells. In a lose-of-function experiment, recombinant EGFR was given together with ginsenoside Rh2 to the tumor cells in vitro and in vivo, which completely blocked the antitumor effects of ginsenoside Rh2. Thus, our data not only reveal an anti-glioblastoma effect of ginsenoside Rh2 but also demonstrate that this effect may function via inhibition of EGFR signaling in glioblastoma cells.
Literature
1.
2.
go back to reference Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.PubMedCentralCrossRefPubMed Tian XX, Chan JY, Pang JC, Chen J, He JH, To TS, et al. Altered expression of the suppressors PML and p53 in glioblastoma cells with the antisense-EGF-receptor. Br J Cancer. 1999;81:994–1001.PubMedCentralCrossRefPubMed
3.
go back to reference Tsatas D, Kanagasundaram V, Kaye A, Novak U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMed Tsatas D, Kanagasundaram V, Kaye A, Novak U. EGF receptor modifies cellular responses to hyaluronan in glioblastoma cell lines. J Clin Neurosci. 2002;9:282–8.CrossRefPubMed
4.
go back to reference Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor zd1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMed Stea B, Falsey R, Kislin K, Patel J, Glanzberg H, Carey S, et al. Time and dose-dependent radiosensitization of the glioblastoma multiforme U251 cells by the EGF receptor tyrosine kinase inhibitor zd1839 (‘iressa’). Cancer Lett. 2003;202:43–51.CrossRefPubMed
5.
go back to reference Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMed Carpentier C, Laigle-Donadey F, Marie Y, Auger N, Benouaich-Amiel A, Lejeune J, et al. Polymorphism in Sp1 recognition site of the EGF receptor gene promoter and risk of glioblastoma. Neurology. 2006;67:872–4.CrossRefPubMed
6.
go back to reference Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded rna eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.PubMedCentralCrossRefPubMed Shir A, Ogris M, Wagner E, Levitzki A. EGF receptor-targeted synthetic double-stranded rna eliminates glioblastoma, breast cancer, and adenocarcinoma tumors in mice. PLoS Med. 2006;3:e6.PubMedCentralCrossRefPubMed
7.
go back to reference Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 A/G EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMed Vauleon E, Auger N, Benouaich-Amiel A, Laigle-Donadey F, Kaloshi G, Lejeune J, et al. The 61 A/G EGF polymorphism is functional but is neither a prognostic marker nor a risk factor for glioblastoma. Cancer Genet Cytogenet. 2007;172:33–7.CrossRefPubMed
8.
go back to reference Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMed Stish BJ, Oh S, Vallera DA. Anti-glioblastoma effect of a recombinant bispecific cytotoxin cotargeting human IL-13 and EGF receptors in a mouse xenograft model. J Neurooncol. 2008;87:51–61.CrossRefPubMed
9.
go back to reference Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMed Gadji M, Crous AM, Fortin D, Krcek J, Torchia M, Mai S, et al. EGF receptor inhibitors in the treatment of glioblastoma multiform: old clinical allies and newly emerging therapeutic concepts. Eur J Pharmacol. 2009;625:23–30.CrossRefPubMed
10.
go back to reference Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated egf receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.PubMedCentralCrossRefPubMed Ozer BH, Wiepz GJ, Bertics PJ. Activity and cellular localization of an oncogenic glioblastoma multiforme-associated egf receptor mutant possessing a duplicated kinase domain. Oncogene. 2010;29:855–64.PubMedCentralCrossRefPubMed
11.
go back to reference Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro Oncol. 2010;12:815–21.PubMedCentralCrossRefPubMed Sjostrom S, Andersson U, Liu Y, Brannstrom T, Broholm H, Johansen C, et al. Genetic variations in EGF and EGFR and glioblastoma outcome. Neuro Oncol. 2010;12:815–21.PubMedCentralCrossRefPubMed
12.
go back to reference Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant III supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.PubMedCentralCrossRefPubMed Hu J, Jo M, Cavenee WK, Furnari F, VandenBerg SR, Gonias SL. Crosstalk between the urokinase-type plasminogen activator receptor and EGF receptor variant III supports survival and growth of glioblastoma cells. Proc Natl Acad Sci U S A. 2011;108:15984–9.PubMedCentralCrossRefPubMed
13.
go back to reference Fenton TR, Nathanson D, Ponte de Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to egf receptor inhibitors in glioblastoma mediated by phosphorylation of the pten tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.PubMedCentralCrossRefPubMed Fenton TR, Nathanson D, Ponte de Albuquerque C, Kuga D, Iwanami A, Dang J, et al. Resistance to egf receptor inhibitors in glioblastoma mediated by phosphorylation of the pten tumor suppressor at tyrosine 240. Proc Natl Acad Sci U S A. 2012;109:14164–9.PubMedCentralCrossRefPubMed
14.
go back to reference Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-SubA. PLoS One. 2012;7:e52265.PubMedCentralCrossRefPubMed Prabhu A, Sarcar B, Kahali S, Shan Y, Chinnaiyan P. Targeting the unfolded protein response in glioblastoma cells with the fusion protein EGF-SubA. PLoS One. 2012;7:e52265.PubMedCentralCrossRefPubMed
15.
go back to reference Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMed Cornez I, Joel M, Tasken K, Langmoen IA, Glover JC, Berge T. EGF signalling and rapamycin-mediated mtor inhibition in glioblastoma multiforme evaluated by phospho-specific flow cytometry. J Neurooncol. 2013;112:49–57.CrossRefPubMed
16.
go back to reference Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, et al. Targeting a glioblastoma cancer stem cell population defined by EGF receptor variant III. Cancer Res. 2013. doi:10.1158/0008-5472.CAN-13-1407. Emlet DR, Gupta P, Holgado-Madruga M, Del Vecchio CA, Mitra SS, Han SY, et al. Targeting a glioblastoma cancer stem cell population defined by EGF receptor variant III. Cancer Res. 2013. doi:10.​1158/​0008-5472.​CAN-13-1407.
17.
go back to reference Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.PubMedCentralCrossRefPubMed Zheng Y, Yang W, Aldape K, He J, Lu Z. Epidermal growth factor (EGF)-enhanced vascular cell adhesion molecule-1 (VCAM-1) expression promotes macrophage and glioblastoma cell interaction and tumor cell invasion. J Biol Chem. 2013;288:31488–95.PubMedCentralCrossRefPubMed
18.
go back to reference Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMed Kikuchi Y, Sasa H, Kita T, Hirata J, Tode T, Nagata I. Inhibition of human ovarian cancer cell proliferation in vitro by ginsenoside Rh2 and adjuvant effects to cisplatin in vivo. Anticancer Drugs. 1991;2:63–7.CrossRefPubMed
19.
go back to reference Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [inhibitory effects of oral administration of ginsenoside Rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai zasshi. 1993;45:1275–82.PubMed Tode T, Kikuchi Y, Hirata J, Kita T, Imaizumi E. Nagata I: [inhibitory effects of oral administration of ginsenoside Rh2 on tumor growth in nude mice bearing serous cyst adenocarcinoma of the human ovary]. Nihon Sanka Fujinka Gakkai zasshi. 1993;45:1275–82.PubMed
20.
go back to reference Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMed Tode T, Kikuchi Y, Kita T, Hirata J, Imaizumi E, Nagata I. Inhibitory effects by oral administration of ginsenoside Rh2 on the growth of human ovarian cancer cells in nude mice. J Cancer Res Clin Oncol. 1993;120:24–6.CrossRefPubMed
21.
go back to reference Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMed Nakata H, Kikuchi Y, Tode T, Hirata J, Kita T, Ishii K, et al. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 1998;89:733–40.CrossRefPubMed
22.
go back to reference Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.PubMedCentralCrossRefPubMed Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY. Effects of ginsenoside Rh2 on growth and migration of pancreatic cancer cells. World J Gastroenterol. 2013;19:1582–92.PubMedCentralCrossRefPubMed
23.
go back to reference Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMed Liu J, Shimizu K, Yu H, Zhang C, Jin F, Kondo R. Stereospecificity of hydroxyl group at C-20 in antiproliferative action of ginsenoside Rh2 on prostate cancer cells. Fitoterapia. 2010;81:902–5.CrossRefPubMed
24.
go back to reference Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.PubMedCentralCrossRefPubMed Li B, Zhao J, Wang CZ, Searle J, He TC, Yuan CS, et al. Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett. 2011;301:185–92.PubMedCentralCrossRefPubMed
25.
go back to reference Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMed Oh M, Choi YH, Choi S, Chung H, Kim K, Kim SI, et al. Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells. Int J Oncol. 1999;14:869–75.PubMed
26.
go back to reference Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.PubMedCentralCrossRefPubMed Choi S, Kim TW, Singh SV. Ginsenoside Rh2-mediated G1 phase cell cycle arrest in human breast cancer cells is caused by p15 Ink4B and p27 Kip1-dependent inhibition of cyclin-dependent kinases. Pharm Res. 2009;26:2280–8.PubMedCentralCrossRefPubMed
27.
go back to reference Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.PubMed Giard DJ, Aaronson SA, Todaro GJ, Arnstein P, Kersey JH, Dosik H, et al. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973;51:1417–23.PubMed
28.
go back to reference Shir A, Levitzki A. Inhibition of glioma growth by tumor-specific activation of double-stranded RNA-dependent protein kinase PKR. Nat Biotechnol. 2002;20:895–900.CrossRefPubMed Shir A, Levitzki A. Inhibition of glioma growth by tumor-specific activation of double-stranded RNA-dependent protein kinase PKR. Nat Biotechnol. 2002;20:895–900.CrossRefPubMed
29.
go back to reference Moore A, Donahue CJ, Bauer KD, Mather JP. Simultaneous measurement of cell cycle and apoptotic cell death. Methods Cell Biol. 1998;57:265–78.CrossRefPubMed Moore A, Donahue CJ, Bauer KD, Mather JP. Simultaneous measurement of cell cycle and apoptotic cell death. Methods Cell Biol. 1998;57:265–78.CrossRefPubMed
30.
go back to reference Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMed Schlegel J, Merdes A, Stumm G, Albert FK, Forsting M, Hynes N, et al. Amplification of the epidermal-growth-factor-receptor gene correlates with different growth behaviour in human glioblastoma. Int J Cancer. 1994;56:72–7.CrossRefPubMed
Metadata
Title
EGFR signaling-dependent inhibition of glioblastoma growth by ginsenoside Rh2
Authors
Shaoyi Li
Yun Gao
Weining Ma
Wenchang Guo
Gang Zhou
Tianci Cheng
Yunhui Liu
Publication date
01-06-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 6/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-1739-x

Other articles of this Issue 6/2014

Tumor Biology 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine