Skip to main content
Top
Published in: Journal of Nuclear Cardiology 2/2011

Open Access 01-04-2011 | Original Article

Motion frozen 18F-FDG cardiac PET

Authors: Ludovic Le Meunier, PhD, Piotr J. Slomka, PhD, Damini Dey, PhD, Amit Ramesh, MSc, Louis E. J. Thomson, MBChB, FRACP, Sean W. Hayes, MD, John D. Friedman, MD, Victor Cheng, MD, Guido Germano, PhD, Daniel S. Berman, MD

Published in: Journal of Nuclear Cardiology | Issue 2/2011

Login to get access

Abstract

Background

PET reconstruction incorporating spatially variant 3D Point Spread Function (PSF) improves contrast and image resolution. “Cardiac Motion Frozen” (CMF) processing eliminates the influence of cardiac motion in static summed images. We have evaluated the combined use of CMF- and PSF-based reconstruction for high-resolution cardiac PET.

Methods

Static and 16-bin ECG-gated images of 20 patients referred for 18F-FDG myocardial viability scans were obtained on a Siemens Biograph-64. CMF was applied to the gated images reconstructed with PSF. Myocardium to blood contrast, maximum left ventricle (LV) counts to defect contrast, contrast-to-noise (CNR) and wall thickness with standard reconstruction (2D-AWOSEM), PSF, ED-gated PSF, and CMF-PSF were compared.

Results

The measured wall thickness was 18.9 ± 5.2 mm for 2D-AWOSEM, 16.6 ± 4.5 mm for PSF, and 13.8 ± 3.9 mm for CMF-PSF reconstructed images (all P < .05). The CMF-PSF myocardium to blood and maximum LV counts to defect contrasts (5.7 ± 2.7, 10.0 ± 5.7) were higher than for 2D-AWOSEM (3.5 ± 1.4, 6.5 ± 3.1) and for PSF (3.9 ± 1.7, 7.7 ± 3.7) (CMF vs all other, P < .05). The CNR for CMF-PSF (26.3 ± 17.5) was comparable to PSF (29.1 ± 18.3), but higher than for ED-gated dataset (13.7 ± 8.8, P < .05).

Conclusion

Combined CMF-PSF reconstruction increased myocardium to blood contrast, maximum LV counts to defect contrast and maintained equivalent noise when compared to static summed 2D-AWOSEM and PSF reconstruction.
Literature
1.
go back to reference Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907-21.PubMedCrossRef Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging 2006;25:907-21.PubMedCrossRef
2.
go back to reference Le Meunier L, Slomka P, Dey D, Ramesh A, Thomson L, Hayes S, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-26.PubMedCrossRef Le Meunier L, Slomka P, Dey D, Ramesh A, Thomson L, Hayes S, et al. Enhanced definition PET for cardiac imaging. J Nucl Cardiol 2010;17:414-26.PubMedCrossRef
3.
go back to reference Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128-34.PubMed Slomka PJ, Nishina H, Berman DS, Kang X, Akincioglu C, Friedman JD, et al. “Motion-frozen” display and quantification of myocardial perfusion. J Nucl Med 2004;45:1128-34.PubMed
4.
go back to reference Kudo T. Metabolic imaging using PET. Eur J Nucl Med Mol Imaging 2007;34:49-61.CrossRef Kudo T. Metabolic imaging using PET. Eur J Nucl Med Mol Imaging 2007;34:49-61.CrossRef
5.
go back to reference Jonsson C, Odh R, Schnell PO, Larsson SA. A comparison of the imaging properties of a 3-and 4-ring biograph PET scanner using a novel extended NEMA phantom. IEEE Nucl Sci Symp Conf Rec 2007;4:2865-7. Jonsson C, Odh R, Schnell PO, Larsson SA. A comparison of the imaging properties of a 3-and 4-ring biograph PET scanner using a novel extended NEMA phantom. IEEE Nucl Sci Symp Conf Rec 2007;4:2865-7.
6.
go back to reference Townsend D, Jakoby B, Long M, Carr C, Hubner K, Guglielmo C, et al. Performance and clinical workflow of a new combined PET/CT scanner. J Nucl Med 2007;48:437. Townsend D, Jakoby B, Long M, Carr C, Hubner K, Guglielmo C, et al. Performance and clinical workflow of a new combined PET/CT scanner. J Nucl Med 2007;48:437.
7.
go back to reference Kadrmas D, Casey M, Conti M, Jakoby B, Lois C, Townsend D. Impact of time-of-flight on PET tumor detection. J Nucl Med 2009;50:1315.PubMedCrossRef Kadrmas D, Casey M, Conti M, Jakoby B, Lois C, Townsend D. Impact of time-of-flight on PET tumor detection. J Nucl Med 2009;50:1315.PubMedCrossRef
8.
go back to reference Slomka P, Dorbala S, Berman D, Gerlach J, Germano G, DiCarli M. Automated quantification and normal limits for myocardial perfusion stress/rest Rb-82 PET/CT. J Nucl Med 2009;50:1164.CrossRef Slomka P, Dorbala S, Berman D, Gerlach J, Germano G, DiCarli M. Automated quantification and normal limits for myocardial perfusion stress/rest Rb-82 PET/CT. J Nucl Med 2009;50:1164.CrossRef
9.
go back to reference Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. 2002. p. 539-42 Cerqueira M, Weissman N, Dilsizian V, Jacobs A, Kaul S, Laskey W et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. 2002. p. 539-42
10.
go back to reference Suzuki Y, Slomka P, Wolak A, Ohba M, Suzuki S, De Yang L, et al. Motion-frozen myocardial perfusion SPECT improves detection of coronary artery disease in obese patients. J Nucl Med 2008;49:1075.PubMedCrossRef Suzuki Y, Slomka P, Wolak A, Ohba M, Suzuki S, De Yang L, et al. Motion-frozen myocardial perfusion SPECT improves detection of coronary artery disease in obese patients. J Nucl Med 2008;49:1075.PubMedCrossRef
11.
go back to reference Kaul S, Wismer G, Brady T, Johnston D, Weyman A, Okada R, et al. Measurement of normal left heart dimensions using optimally oriented MR images. Am J Roentgenol 1986;146:75. Kaul S, Wismer G, Brady T, Johnston D, Weyman A, Okada R, et al. Measurement of normal left heart dimensions using optimally oriented MR images. Am J Roentgenol 1986;146:75.
12.
go back to reference Yu M, Guaraldi M, Mistry M, Kagan M, McDonald J, Drew K, et al. BMS-747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.PubMedCrossRef Yu M, Guaraldi M, Mistry M, Kagan M, McDonald J, Drew K, et al. BMS-747158-02: A novel PET myocardial perfusion imaging agent. J Nucl Cardiol 2007;14:789-98.PubMedCrossRef
13.
go back to reference Le Meunier L, Slomka P, Ramesh A, Thomson L, Hayes S, Tamarappoo B, et al. Enhanced dual gated cardiac perfusion PET using a new F-18 imaging agent (BMS747158). J Nucl Med 2010;51:522. Le Meunier L, Slomka P, Ramesh A, Thomson L, Hayes S, Tamarappoo B, et al. Enhanced dual gated cardiac perfusion PET using a new F-18 imaging agent (BMS747158). J Nucl Med 2010;51:522.
Metadata
Title
Motion frozen 18F-FDG cardiac PET
Authors
Ludovic Le Meunier, PhD
Piotr J. Slomka, PhD
Damini Dey, PhD
Amit Ramesh, MSc
Louis E. J. Thomson, MBChB, FRACP
Sean W. Hayes, MD
John D. Friedman, MD
Victor Cheng, MD
Guido Germano, PhD
Daniel S. Berman, MD
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Journal of Nuclear Cardiology / Issue 2/2011
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-010-9322-3

Other articles of this Issue 2/2011

Journal of Nuclear Cardiology 2/2011 Go to the issue