Skip to main content
Top
Published in: The Cerebellum 3/2016

01-06-2016 | Original Paper

Cerebellar fMRI Activation Increases with Increasing Working Memory Demands

Authors: M. Küper, P. Kaschani, M. Thürling, M. R. Stefanescu, R. G. Burciu, S. Göricke, S. Maderwald, M. E. Ladd, H. Hautzel, D. Timmann

Published in: The Cerebellum | Issue 3/2016

Login to get access

Abstract

The aim of the present study was to explore cerebellar contributions to the central executive in n-back working memory tasks using 7-T functional magnetic imaging (fMRI). We hypothesized that cerebellar activation increased with increasing working memory demands. Activations of the cerebellar cortex and dentate nuclei were compared between 0-back (serving as a motor control task), 1-back, and 2-back working memory tasks for both verbal and abstract modalities. A block design was used. Data of 27 participants (mean age 26.6 ± 3.8 years, female/male 12:15) were included in group statistical analysis. We observed that cerebellar cortical activations increased with higher central executive demands in n-back tasks independent of task modality. As confirmed by subtraction analyses, additional bilateral activations following higher executive demands were found primarily in four distinct cerebellar areas: (i) the border region of lobule VI and crus I, (ii) inferior parts of the lateral cerebellum (lobules crus II, VIIb, VIII, IX), (iii) posterior parts of the paravermal cerebellar cortex (lobules VI, crus I, crus II), and (iv) the inferior vermis (lobules VI, VIIb, VIII, IX). Dentate activations were observed for both verbal and abstract modalities. Task-related increases were less robust and detected for the verbal n-back tasks only. These results provide further evidence that the cerebellum participates in an amodal bilateral neuronal network representing the central executive during working memory n-back tasks.
Literature
1.
go back to reference K-H E, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35:593–615.CrossRef K-H E, Chen S-HA, Ho M-HR, Desmond JE. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum Brain Mapp. 2014;35:593–615.CrossRef
2.
go back to reference Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9:375–83.CrossRefPubMed Peterburs J, Bellebaum C, Koch B, Schwarz M, Daum I. Working memory and verbal fluency deficits following cerebellar lesions: relation to interindividual differences in patient variables. Cerebellum. 2010;9:375–83.CrossRefPubMed
3.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.CrossRefPubMed Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44:489–501.CrossRefPubMed
4.
go back to reference Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.CrossRefPubMedPubMedCentral Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46:831–44.CrossRefPubMedPubMedCentral
5.
go back to reference Baddeley AD, Hitch G. Working memory. Psychol. Learn. Motiv. 1st ed. New York: Academic Press; 1974. p. 47–89. Baddeley AD, Hitch G. Working memory. Psychol. Learn. Motiv. 1st ed. New York: Academic Press; 1974. p. 47–89.
6.
go back to reference Baddeley null. The episodic buffer: a new component of working memory? Trends Cogn Sci 2000;4:417–23. Baddeley null. The episodic buffer: a new component of working memory? Trends Cogn Sci 2000;4:417–23.
7.
go back to reference Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283:1657–61.CrossRefPubMed Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283:1657–61.CrossRefPubMed
8.
go back to reference Walter H, Bretschneider V, Grön G, Zurowski B, Wunderlich AP, Tomczak R, et al. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex. 2003;39:897–911.CrossRefPubMed Walter H, Bretschneider V, Grön G, Zurowski B, Wunderlich AP, Tomczak R, et al. Evidence for quantitative domain dominance for verbal and spatial working memory in frontal and parietal cortex. Cortex. 2003;39:897–911.CrossRefPubMed
9.
go back to reference Hautzel H, Mottaghy FM, Schmidt D, Zemb M, Shah NJ, Müller-Gärtner H-W, et al. Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neurosci Lett. 2002;323:156–60.CrossRefPubMed Hautzel H, Mottaghy FM, Schmidt D, Zemb M, Shah NJ, Müller-Gärtner H-W, et al. Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neurosci Lett. 2002;323:156–60.CrossRefPubMed
10.
go back to reference Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, et al. Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage. 2012;60:830–46.CrossRefPubMedPubMedCentral Rottschy C, Langner R, Dogan I, Reetz K, Laird AR, Schulz JB, et al. Modelling neural correlates of working memory: a coordinate-based meta-analysis. NeuroImage. 2012;60:830–46.CrossRefPubMedPubMedCentral
12.
go back to reference Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp. 1993;1:293–304.CrossRef Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC. Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Hum Brain Mapp. 1993;1:293–304.CrossRef
13.
go back to reference Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. NeuroImage. 2009;47:2073–82.CrossRefPubMed Hautzel H, Mottaghy FM, Specht K, Müller H-W, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. NeuroImage. 2009;47:2073–82.CrossRefPubMed
14.
go back to reference Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. NeuroImage. 2012;62:1537–50.CrossRefPubMed Thürling M, Hautzel H, Küper M, Stefanescu MR, Maderwald S, Ladd ME, et al. Involvement of the cerebellar cortex and nuclei in verbal and visuospatial working memory: a 7 T fMRI study. NeuroImage. 2012;62:1537–50.CrossRefPubMed
15.
go back to reference Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113.CrossRefPubMed
16.
go back to reference Arnoult MD, Attneave F. The quantitative study of shape and pattern perception. Psychol Bull. 1956;53:452–71.CrossRefPubMed Arnoult MD, Attneave F. The quantitative study of shape and pattern perception. Psychol Bull. 1956;53:452–71.CrossRefPubMed
17.
go back to reference Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. NeuroImage. 2011;57:1184–91.CrossRefPubMed Thürling M, Küper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. NeuroImage. 2011;57:1184–91.CrossRefPubMed
18.
go back to reference Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38.CrossRefPubMed Diedrichsen J. A spatially unbiased atlas template of the human cerebellum. NeuroImage. 2006;33:127–38.CrossRefPubMed
19.
go back to reference Friston KJ, Frith CD, Turner R, Frackowiak RS. Characterizing evoked hemodynamics with fMRI. NeuroImage. 1995;2:157–65.CrossRefPubMed Friston KJ, Frith CD, Turner R, Frackowiak RS. Characterizing evoked hemodynamics with fMRI. NeuroImage. 1995;2:157–65.CrossRefPubMed
20.
go back to reference Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46.CrossRefPubMed Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N. A probabilistic MR atlas of the human cerebellum. NeuroImage. 2009;46:39–46.CrossRefPubMed
21.
go back to reference Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.CrossRefPubMed Schmahmann JD, Doyon J, McDonald D, Holmes C, Lavoie K, Hurwitz AS, et al. Three-dimensional MRI atlas of the human cerebellum in proportional stereotaxic space. NeuroImage. 1999;10:233–60.CrossRefPubMed
22.
go back to reference Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.CrossRefPubMed Diedrichsen J, Maderwald S, Küper M, Thürling M, Rabe K, Gizewski ER, et al. Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure. NeuroImage. 2011;54:1786–94.CrossRefPubMed
23.
go back to reference Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. NeuroImage. 2003;20:2343–56.CrossRefPubMed Hayasaka S, Nichols TE. Validating cluster size inference: random field and permutation methods. NeuroImage. 2003;20:2343–56.CrossRefPubMed
24.
go back to reference Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54:2612–22.CrossRefPubMed Küper M, Dimitrova A, Thürling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54:2612–22.CrossRefPubMed
25.
go back to reference Küper M, Thürling M, Stefanescu R, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor somatotopy in the cerebellar dentate nucleus-an fMRI study in humans. Hum Brain Mapp. 2012;33:2741–9.CrossRefPubMed Küper M, Thürling M, Stefanescu R, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor somatotopy in the cerebellar dentate nucleus-an fMRI study in humans. Hum Brain Mapp. 2012;33:2741–9.CrossRefPubMed
26.
go back to reference Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.CrossRefPubMed Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.CrossRefPubMed
28.
go back to reference Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.CrossRefPubMed Chen SHA, Desmond JE. Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia. 2005;43:1227–37.CrossRefPubMed
30.
go back to reference Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.PubMed Desmond JE, Gabrieli JD, Wagner AD, Ginier BL, Glover GH. Lobular patterns of cerebellar activation in verbal working-memory and finger-tapping tasks as revealed by functional MRI. J Neurosci. 1997;17:9675–85.PubMed
31.
go back to reference Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A. 2011;108:16068–73.CrossRefPubMedPubMedCentral Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A. 2011;108:16068–73.CrossRefPubMedPubMedCentral
32.
go back to reference Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.CrossRefPubMed Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47:59–80.CrossRefPubMed
33.
34.
go back to reference Puget S, Boddaert N, Viguier D, Kieffer V, Bulteau C, Garnett M, et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer. 2009;115:1338–47.CrossRefPubMed Puget S, Boddaert N, Viguier D, Kieffer V, Bulteau C, Garnett M, et al. Injuries to inferior vermis and dentate nuclei predict poor neurological and neuropsychological outcome in children with malignant posterior fossa tumors. Cancer. 2009;115:1338–47.CrossRefPubMed
35.
go back to reference Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.CrossRefPubMed Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med. 1988;318:1349–54.CrossRefPubMed
36.
go back to reference Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50:121–30.CrossRefPubMed Mostofsky SH, Mazzocco MM, Aakalu G, Warsofsky IS, Denckla MB, Reiss AL. Decreased cerebellar posterior vermis size in fragile X syndrome: correlation with neurocognitive performance. Neurology. 1998;50:121–30.CrossRefPubMed
37.
go back to reference Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.CrossRefPubMedPubMedCentral Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.CrossRefPubMedPubMedCentral
38.
go back to reference Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50:1087–93.CrossRefPubMed Berquin PC, Giedd JN, Jacobsen LK, Hamburger SD, Krain AL, Rapoport JL, et al. Cerebellum in attention-deficit hyperactivity disorder: a morphometric MRI study. Neurology. 1998;50:1087–93.CrossRefPubMed
39.
go back to reference Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naïve children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65:620–4.CrossRefPubMedPubMedCentral Bledsoe J, Semrud-Clikeman M, Pliszka SR. A magnetic resonance imaging study of the cerebellar vermis in chronically treated and treatment-naïve children with attention-deficit/hyperactivity disorder combined type. Biol Psychiatry. 2009;65:620–4.CrossRefPubMedPubMedCentral
40.
go back to reference Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.CrossRefPubMed Willcutt EG, Doyle AE, Nigg JT, Faraone SV, Pennington BF. Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biol Psychiatry. 2005;57:1336–46.CrossRefPubMed
41.
42.
go back to reference Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25:46–59.CrossRefPubMed Owen AM, McMillan KM, Laird AR, Bullmore E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp. 2005;25:46–59.CrossRefPubMed
43.
go back to reference Nagel IE, Preuschhof C, Li S-C, Nyberg L, Bäckman L, Lindenberger U, et al. Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. J Cogn Neurosci. 2011;23:2030–45.CrossRefPubMed Nagel IE, Preuschhof C, Li S-C, Nyberg L, Bäckman L, Lindenberger U, et al. Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. J Cogn Neurosci. 2011;23:2030–45.CrossRefPubMed
44.
go back to reference Hashimoto M, Takahara D, Hirata Y, Inoue K, Miyachi S, Nambu A, et al. Motor and non-motor projections from the cerebellum to rostrocaudally distinct sectors of the dorsal premotor cortex in macaques. Eur J Neurosci. 2010;31:1402–13.CrossRefPubMed Hashimoto M, Takahara D, Hirata Y, Inoue K, Miyachi S, Nambu A, et al. Motor and non-motor projections from the cerebellum to rostrocaudally distinct sectors of the dorsal premotor cortex in macaques. Eur J Neurosci. 2010;31:1402–13.CrossRefPubMed
45.
go back to reference Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMed Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.PubMed
46.
go back to reference Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20:214–28.CrossRefPubMedPubMedCentral Prevosto V, Graf W, Ugolini G. Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cereb Cortex. 2010;20:214–28.CrossRefPubMedPubMedCentral
47.
go back to reference Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.CrossRefPubMedPubMedCentral Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29:8586–94.CrossRefPubMedPubMedCentral
48.
go back to reference Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.CrossRefPubMedPubMedCentral Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:2322–45.CrossRefPubMedPubMedCentral
49.
go back to reference Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.CrossRefPubMedPubMedCentral Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13:151–77.CrossRefPubMedPubMedCentral
50.
go back to reference Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11:1317–29.CrossRefPubMed Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Netw. 1998;11:1317–29.CrossRefPubMed
51.
go back to reference Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci. 2003;100:5461–6.CrossRefPubMedPubMedCentral Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci. 2003;100:5461–6.CrossRefPubMedPubMedCentral
52.
go back to reference Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19:1–18.CrossRef Vandervert LR, Schimpf PH, Liu H. How working memory and the cerebellum collaborate to produce creativity and innovation. Creat Res J. 2007;19:1–18.CrossRef
53.
go back to reference Koziol LF, Lutz JT. From movement to thought: the development of executive function. Appl Neuropsychol Child. 2013;2:104–15.CrossRefPubMed Koziol LF, Lutz JT. From movement to thought: the development of executive function. Appl Neuropsychol Child. 2013;2:104–15.CrossRefPubMed
Metadata
Title
Cerebellar fMRI Activation Increases with Increasing Working Memory Demands
Authors
M. Küper
P. Kaschani
M. Thürling
M. R. Stefanescu
R. G. Burciu
S. Göricke
S. Maderwald
M. E. Ladd
H. Hautzel
D. Timmann
Publication date
01-06-2016
Publisher
Springer US
Published in
The Cerebellum / Issue 3/2016
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-015-0703-7

Other articles of this Issue 3/2016

The Cerebellum 3/2016 Go to the issue