Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 6/2022

03-05-2022 | Arterial Occlusive Disease | Original Article

LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation

Authors: Liang Li, Wei Xie

Published in: Journal of Cardiovascular Translational Research | Issue 6/2022

Login to get access

Abstract

LncRNA HDAC11-AS1 (HDAC11-AS1) is the natural antisense transcript of HDAC11, a key enzyme for DNA histone deacetylation. We evaluated the role of HDAC11-AS1 in atherosclerosis. In this research, we found that HDAC11-AS1 ameliorated blood lipid levels and atherosclerosis in high fat-dieted apoE−/− mice by regulating HDAC11 negatively. The change in blood lipid levels is related to the expression of LPL, which is enhanced by HDAC11-AS1 through regulating adropin histone deacetylation in vitro and in vivo. In conclusion, HDAC11-AS1 plays an anti-atherogenic role through adropin to induce LPL expressions, thereby enhancing TG metabolism. The results are valuable for the further development of HDAC11-AS1 and its clinical applications. It provides a new clinical therapeutic target for cardiovascular disease treatment.
Literature
3.
go back to reference Ayyappa, K. A., Shatwan, I., Bodhini, D., Bramwell, L. R., Ramya, K., Sudha, V., Anjana, R. M., Lovegrove, J. A., Mohan, V., Radha, V., & Vimaleswaran, K. S. (2017). High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutrition & Metabolism (London), 14, 8. https://doi.org/10.1186/s12986-016-0155-1CrossRef Ayyappa, K. A., Shatwan, I., Bodhini, D., Bramwell, L. R., Ramya, K., Sudha, V., Anjana, R. M., Lovegrove, J. A., Mohan, V., Radha, V., & Vimaleswaran, K. S. (2017). High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutrition & Metabolism (London), 14, 8. https://​doi.​org/​10.​1186/​s12986-016-0155-1CrossRef
4.
go back to reference Nakajima, K., Tokita, Y., Sakamaki, K., Shimomura, Y., Kobayashi, J., Kamachi, K., Tanaka, A., Stanhope, K. L., Havel, P. J., Wang, T., Machida, T., & Murakami, M. (2017). Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clinica Chimica Acta, 465, 45–52. https://doi.org/10.1016/j.cca.2016.12.011CrossRef Nakajima, K., Tokita, Y., Sakamaki, K., Shimomura, Y., Kobayashi, J., Kamachi, K., Tanaka, A., Stanhope, K. L., Havel, P. J., Wang, T., Machida, T., & Murakami, M. (2017). Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clinica Chimica Acta, 465, 45–52. https://​doi.​org/​10.​1016/​j.​cca.​2016.​12.​011CrossRef
11.
go back to reference Yosaee, S., Soltani, S., Sekhavati, E., & Jazayeri, S. (2016). Adropin- a novel biomarker of heart disease: A systematic review article. Iranian Journal of Public Health, 45, 1568–1576. Yosaee, S., Soltani, S., Sekhavati, E., & Jazayeri, S. (2016). Adropin- a novel biomarker of heart disease: A systematic review article. Iranian Journal of Public Health, 45, 1568–1576.
15.
go back to reference Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi M., Mori, Y. Hirano T., & Watanabe T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051293 Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi M., Mori, Y. Hirano T., & Watanabe T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences, 19(5). https://​doi.​org/​10.​3390/​ijms19051293
18.
go back to reference Watts, B. R., Wittmann, S., Wery, M., Gautier, C., Kus, K., Birot, A., Heo, D. H., Kilchert, C., Morillon, A., & Vasiljeva, L. (2018). Histone deacetylation promotes transcriptional silencing at facultative heterochromatin. Nucleic Acids Research, 46, 5426–5440. https://doi.org/10.1093/nar/gky232CrossRef Watts, B. R., Wittmann, S., Wery, M., Gautier, C., Kus, K., Birot, A., Heo, D. H., Kilchert, C., Morillon, A., & Vasiljeva, L. (2018). Histone deacetylation promotes transcriptional silencing at facultative heterochromatin. Nucleic Acids Research, 46, 5426–5440. https://​doi.​org/​10.​1093/​nar/​gky232CrossRef
20.
22.
go back to reference Sahakian, E., Powers, J. J., Chen, J., Deng, S. L., Cheng, F., Distler, A., Woods, D. M., Rock-Klotz, J., Sodre, A. L., Youn, J. I., Woan, K. V., Villagra, A., Gabrilovich, D., Sotomayor, E. M., & Pinilla-Ibarz, J. (2015). Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 63, 579–585. https://doi.org/10.1016/j.molimm.2014.08.002CrossRef Sahakian, E., Powers, J. J., Chen, J., Deng, S. L., Cheng, F., Distler, A., Woods, D. M., Rock-Klotz, J., Sodre, A. L., Youn, J. I., Woan, K. V., Villagra, A., Gabrilovich, D., Sotomayor, E. M., & Pinilla-Ibarz, J. (2015). Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 63, 579–585. https://​doi.​org/​10.​1016/​j.​molimm.​2014.​08.​002CrossRef
23.
go back to reference Stammler, D., Eigenbrod, T., Menz, S., Frick, J. S., Sweet, M. J., Shakespear, M. R., Jantsch, J., Siegert, I., Wolfle, S., Langer, J. D., Oehme, I., Schaefer, L., Fischer, A., Knievel, J., Heeg, K., Dalpke, A. H., & Bode, K. A. (2015). Inhibition of histone deacetylases permits lipopolysaccharide-mediated secretion of bioactive IL-1beta via a caspase-1-independent mechanism. The Journal of Immunology, 195, 5421–5431. https://doi.org/10.4049/jimmunol.1501195CrossRef Stammler, D., Eigenbrod, T., Menz, S., Frick, J. S., Sweet, M. J., Shakespear, M. R., Jantsch, J., Siegert, I., Wolfle, S., Langer, J. D., Oehme, I., Schaefer, L., Fischer, A., Knievel, J., Heeg, K., Dalpke, A. H., & Bode, K. A. (2015). Inhibition of histone deacetylases permits lipopolysaccharide-mediated secretion of bioactive IL-1beta via a caspase-1-independent mechanism. The Journal of Immunology, 195, 5421–5431. https://​doi.​org/​10.​4049/​jimmunol.​1501195CrossRef
28.
go back to reference Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., Jose, P. A., Zeng, C., & Zhou, L. (2016). Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724. https://doi.org/10.1093/cvr/cvw022CrossRef Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., Jose, P. A., Zeng, C., & Zhou, L. (2016). Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724. https://​doi.​org/​10.​1093/​cvr/​cvw022CrossRef
30.
go back to reference Shang, P., Chen, G., Zu, G., Song, X., Jiao, P., You, G., Zhao, J., Li, H., & Zhou, H. (2019). Long noncoding RNA expression analysis reveals the regulatory effects of nitinol-based nanotubular coatings on human coronary artery endothelial cells. International Journal of Nanomedicine, 14, 3297–3309. https://doi.org/10.2147/IJN.S204067CrossRef Shang, P., Chen, G., Zu, G., Song, X., Jiao, P., You, G., Zhao, J., Li, H., & Zhou, H. (2019). Long noncoding RNA expression analysis reveals the regulatory effects of nitinol-based nanotubular coatings on human coronary artery endothelial cells. International Journal of Nanomedicine, 14, 3297–3309. https://​doi.​org/​10.​2147/​IJN.​S204067CrossRef
33.
go back to reference Jadaliha, M., Gholamalamdari, O., Tang, W., Zhang, Y., Petracovici, A., Hao, Q., Tariq, A., Kim, T. G., Holton, S. E., Singh, D. K., Li, X. L., Freier, S. M., Ambs, S., Bhargava, R., Lal, A., Prasanth, S. G., Ma, J., & Prasanth, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14, e1007802. https://doi.org/10.1371/journal.pgen.1007802CrossRef Jadaliha, M., Gholamalamdari, O., Tang, W., Zhang, Y., Petracovici, A., Hao, Q., Tariq, A., Kim, T. G., Holton, S. E., Singh, D. K., Li, X. L., Freier, S. M., Ambs, S., Bhargava, R., Lal, A., Prasanth, S. G., Ma, J., & Prasanth, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14, e1007802. https://​doi.​org/​10.​1371/​journal.​pgen.​1007802CrossRef
36.
go back to reference Kim, D. Y., Kim, M. S., Sa, B. K., Kim, M. B., & Hwang, J. K. (2012). Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. International Journal of Molecular Sciences, 13, 994–1005. https://doi.org/10.3390/ijms13010994CrossRef Kim, D. Y., Kim, M. S., Sa, B. K., Kim, M. B., & Hwang, J. K. (2012). Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. International Journal of Molecular Sciences, 13, 994–1005. https://​doi.​org/​10.​3390/​ijms13010994CrossRef
38.
go back to reference Rodrigues, S. C., Pantaleao, L. C., Nogueira, T. C., Gomes, P. R., Albuquerque, G. G., Nachbar, R. T., Torres-Leal, F. L., Caperuto, L. C., Lellis-Santos, C., Anhe, G. F., & Bordin, S. (2014). Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1146–R1156. https://doi.org/10.1152/ajpregu.00513.2013CrossRef Rodrigues, S. C., Pantaleao, L. C., Nogueira, T. C., Gomes, P. R., Albuquerque, G. G., Nachbar, R. T., Torres-Leal, F. L., Caperuto, L. C., Lellis-Santos, C., Anhe, G. F., & Bordin, S. (2014). Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1146–R1156. https://​doi.​org/​10.​1152/​ajpregu.​00513.​2013CrossRef
40.
go back to reference He, W., Liang, B., Wang, C., Li, S., Zhao, Y., Huang, Q., Liu, Z., Yao, Z., Wu, Q., Liao, W., Zhang, S., Liu, Y., Xiang, Y., Liu, J., & Shi, M. (2019). MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 38, 4637–4654. https://doi.org/10.1038/s41388-019-0747-0CrossRef He, W., Liang, B., Wang, C., Li, S., Zhao, Y., Huang, Q., Liu, Z., Yao, Z., Wu, Q., Liao, W., Zhang, S., Liu, Y., Xiang, Y., Liu, J., & Shi, M. (2019). MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 38, 4637–4654. https://​doi.​org/​10.​1038/​s41388-019-0747-0CrossRef
44.
go back to reference Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675CrossRef Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​114.​011675CrossRef
46.
go back to reference Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., Lin, Y. H., Liu, D., Londono, P., Song, K., Pino, M. F. Sparks, L. M., Smith, S. R., Scherer, P. E., Collins, S., Seto, E., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15). https://doi.org/10.1172/jci.insight.120159 Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., Lin, Y. H., Liu, D., Londono, P., Song, K., Pino, M. F. Sparks, L. M., Smith, S. R., Scherer, P. E., Collins, S., Seto, E., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15). https://​doi.​org/​10.​1172/​jci.​insight.​120159
49.
go back to reference Butler, A. A., Tam, C. S., Stanhope, K. L., Wolfe, B. M., Ali, M. R., O’Keeffe, M., St-Onge, M. P., Ravussin, E., & Havel, P. J. (2012). Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. Journal of Clinical Endocrinology and Metabolism, 97, 3783–3791. https://doi.org/10.1210/jc.2012-2194CrossRef Butler, A. A., Tam, C. S., Stanhope, K. L., Wolfe, B. M., Ali, M. R., O’Keeffe, M., St-Onge, M. P., Ravussin, E., & Havel, P. J. (2012). Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. Journal of Clinical Endocrinology and Metabolism, 97, 3783–3791. https://​doi.​org/​10.​1210/​jc.​2012-2194CrossRef
50.
go back to reference Ganesh Kumar, K., Zhang, J., Gao, S., Rossi, J., McGuinness, O. P., Halem, H. H., Culler, M. D., Mynatt, R. L., & Butler, A. A. (2012). Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 20, 1394–1402. https://doi.org/10.1038/oby.2012.31CrossRef Ganesh Kumar, K., Zhang, J., Gao, S., Rossi, J., McGuinness, O. P., Halem, H. H., Culler, M. D., Mynatt, R. L., & Butler, A. A. (2012). Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 20, 1394–1402. https://​doi.​org/​10.​1038/​oby.​2012.​31CrossRef
Metadata
Title
LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation
Authors
Liang Li
Wei Xie
Publication date
03-05-2022
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 6/2022
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-022-10248-7

Other articles of this Issue 6/2022

Journal of Cardiovascular Translational Research 6/2022 Go to the issue