Skip to main content
Top
Published in: Journal of Cardiovascular Translational Research 1/2015

01-02-2015

Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 1

Author: Ares Pasipoularides

Published in: Journal of Cardiovascular Translational Research | Issue 1/2015

Login to get access

Abstract

Epigenetic mechanisms are fundamental in cardiac adaptations, remodeling, reverse remodeling, and disease. This two-article series proposes that variable forces associated with diastolic RV/LV rotatory intraventricular flows can exert physiologically and clinically important, albeit still unappreciated, epigenetic actions influencing functional and morphological cardiac adaptations and/or maladaptations. Taken in toto, the two-part survey formulates a new paradigm in which intraventricular diastolic filling vortex-associated forces play a fundamental epigenetic role, and examines how heart cells react to these forces. The objectives are to provide a perspective on vortical epigenetic effects, to introduce emerging ideas, and to suggest directions of multidisciplinary translational research. The main goal is to make pertinent biophysics and cytomechanical dynamic systems concepts accessible to interested translational and clinical cardiologists. I recognize that the diversity of the epigenetic problems can give rise to a diversity of approaches and multifaceted specialized research undertakings. Specificity may dominate the picture. However, I take a contrasting approach. Are there concepts that are central enough that they should be developed in some detail? Broadness competes with specificity. Would, however, this viewpoint allow for a more encompassing view that may otherwise be lost by generation of fragmented results? Part 1 serves as a general introduction, focusing on background concepts, on intracardiac vortex imaging methods, and on diastolic filling vortex-associated forces acting epigenetically on RV/LV endocardium and myocardium. Part 2 will describe pertinent available pluridisciplinary knowledge/research relating to mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations and to their epigenetic actions on myocardial and ventricular function and adaptations.
Literature
1.
go back to reference Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton, CT: People's Medical Publishing House. 960 p. Pasipoularides, A. (2010). Heart's vortex: intracardiac blood flow phenomena. Shelton, CT: People's Medical Publishing House. 960 p.
2.
go back to reference Shirodkar, A. V., & Marsden, P. A. (2011). Epigenetics in cardiovascular disease. Current Opinion in Cardiology, 26, 209–15.CrossRefPubMed Shirodkar, A. V., & Marsden, P. A. (2011). Epigenetics in cardiovascular disease. Current Opinion in Cardiology, 26, 209–15.CrossRefPubMed
3.
go back to reference Brutsaert, D. L. (2003). Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews, 83, 59–115.PubMed Brutsaert, D. L. (2003). Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiological Reviews, 83, 59–115.PubMed
5.
go back to reference Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–69.PubMed Pasipoularides, A. (2012). Diastolic filling vortex forces and cardiac adaptations: probing the epigenetic nexus. Hellenic Journal of Cardiology, 53, 458–69.PubMed
6.
go back to reference Bernard C. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Baillière; 1878-1879, 2 vols. 404 p. and 564 p. Bernard C. Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux. Paris: Baillière; 1878-1879, 2 vols. 404 p. and 564 p.
7.
go back to reference Waddington, C. H. (1940). Organisers and genes. Cambridge, UK: Cambridge University Press. 160 p. Waddington, C. H. (1940). Organisers and genes. Cambridge, UK: Cambridge University Press. 160 p.
8.
go back to reference Pasipoularides A (2015) Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, In press. Pasipoularides A (2015) Fluid dynamics of ventricular filling in heart failure: overlooked problems of RV/LV chamber dilatation. Hellenic Journal of Cardiology, In press.
9.
go back to reference Pasipoularides, A. (2013). Right and left ventricular diastolic pressure-volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–52.CrossRefPubMedCentralPubMed Pasipoularides, A. (2013). Right and left ventricular diastolic pressure-volume relations: a comprehensive review. Journal of Cardiovascular Translational Research, 6, 239–52.CrossRefPubMedCentralPubMed
10.
go back to reference Pasipoularides, A. (2014). Historical continuity in the methodology of modern medical science: Leonardo leads the way. International Journal of Cardiology, 171, 103–115.CrossRefPubMed Pasipoularides, A. (2014). Historical continuity in the methodology of modern medical science: Leonardo leads the way. International Journal of Cardiology, 171, 103–115.CrossRefPubMed
11.
go back to reference Keele, K. D. (1952). Leonardo da Vinci on the Movement of the Heart and Blood. London: JB Lippincott. Keele, K. D. (1952). Leonardo da Vinci on the Movement of the Heart and Blood. London: JB Lippincott.
12.
go back to reference Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology Heart & Circulatory Physiology, 284, H1064–72. Pasipoularides, A., Shu, M., Shah, A., Womack, M. S., & Glower, D. D. (2003). Diastolic right ventricular filling vortex in normal and volume overload states. American Journal of Physiology Heart & Circulatory Physiology, 284, H1064–72.
13.
go back to reference Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology Heart & Circulatory Physiology, 285, H1956–65. Pasipoularides, A., Shu, M., Shah, A., Tucconi, A., & Glower, D. D. (2003). RV instantaneous intraventricular diastolic pressure and velocity distributions in normal and volume overload awake dog disease models. American Journal of Physiology Heart & Circulatory Physiology, 285, H1956–65.
15.
16.
go back to reference Pasipoularides, A., Palacios, I., Frist, W., Rosenthal, S., Newell, J. B., & Powell, W. J., Jr. (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 248, R54–62. Pasipoularides, A., Palacios, I., Frist, W., Rosenthal, S., Newell, J. B., & Powell, W. J., Jr. (1985). Contribution of activation-inactivation dynamics to the impairment of relaxation in hypoxic cat papillary muscle. American Journal of Physiology Regulatory Integrative & Comparative Physiology, 248, R54–62.
17.
go back to reference Mann, D., Bogaev, R., & Buckberg, G. (2010). Cardiac remodelling and myocardial recovery: lost in translation. European Journal of Heart Failure, 12, 789–796.CrossRefPubMed Mann, D., Bogaev, R., & Buckberg, G. (2010). Cardiac remodelling and myocardial recovery: lost in translation. European Journal of Heart Failure, 12, 789–796.CrossRefPubMed
18.
go back to reference Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. [Review]. Hellenic Journal of Cardiology, 52, 416–26.PubMed Pasipoularides, A. (2011). Fluid dynamic aspects of ejection in hypertrophic cardiomyopathy. [Review]. Hellenic Journal of Cardiology, 52, 416–26.PubMed
19.
go back to reference Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. American Heart Journal, 162, 798–810.CrossRefPubMed Pasipoularides, A. (2011). LV twisting-and-untwisting in HCM: ejection begets filling. Diastolic functional aspects of HCM. American Heart Journal, 162, 798–810.CrossRefPubMed
20.
go back to reference Annunziato, A. (2008). DNA packaging: nucleosomes and chromatin. Nature Education, 1(1), 26. Annunziato, A. (2008). DNA packaging: nucleosomes and chromatin. Nature Education, 1(1), 26.
21.
go back to reference Morris, K. V., & Mattick, J. S. (2014). The rise of regulatory RNA. Nature Reviews Genetics, 15, 423–37. Morris, K. V., & Mattick, J. S. (2014). The rise of regulatory RNA. Nature Reviews Genetics, 15, 423–37.
22.
go back to reference Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143), 407–12.CrossRefPubMed Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447(7143), 407–12.CrossRefPubMed
23.
go back to reference Issa, J. P. (2002). Epigenetic variation and human disease. Journal of Nutrition, 132, 2388S–92S. Issa, J. P. (2002). Epigenetic variation and human disease. Journal of Nutrition, 132, 2388S–92S.
24.
go back to reference Luo, J., & Konofagou, E. E. (2011). Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study. Ultrasound in Medicine and Biology, 37, 980–95. Luo, J., & Konofagou, E. E. (2011). Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study. Ultrasound in Medicine and Biology, 37, 980–95.
25.
go back to reference Bermejo, J., Benito, Y., Alhama, M., et al. (2014). Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol, 306, H718–29.CrossRefPubMedCentralPubMed Bermejo, J., Benito, Y., Alhama, M., et al. (2014). Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol, 306, H718–29.CrossRefPubMedCentralPubMed
26.
go back to reference Cloutier, G., Chen, D., & Durand, L. G. (2003). A new clutter rejection algorithm for Doppler ultrasound. IEEE Transactions on Medical Imaging, 22, 530–8.CrossRefPubMed Cloutier, G., Chen, D., & Durand, L. G. (2003). A new clutter rejection algorithm for Doppler ultrasound. IEEE Transactions on Medical Imaging, 22, 530–8.CrossRefPubMed
27.
go back to reference Uejima, T., Koike, A., Sawada, H., et al. (2010). A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound in Medicine and Biology, 36, 772–88. Uejima, T., Koike, A., Sawada, H., et al. (2010). A new echocardiographic method for identifying vortex flow in the left ventricle: numerical validation. Ultrasound in Medicine and Biology, 36, 772–88.
28.
go back to reference Lu J, Li W, Zhong Y, Luo A, Xie S, Yin L. Intuitive visualization and quantification of intraventricular convection in acute ischemic left ventricular failure during early diastole using color Doppler-based echocardiographic vector flow mapping. International Journal of Cardiovascular Imaging 2011; PMID: 21814809. Lu J, Li W, Zhong Y, Luo A, Xie S, Yin L. Intuitive visualization and quantification of intraventricular convection in acute ischemic left ventricular failure during early diastole using color Doppler-based echocardiographic vector flow mapping. International Journal of Cardiovascular Imaging 2011; PMID: 21814809.
29.
go back to reference Rodríguez Muñoz, D., Moya Mur, J. L., Fernández-Golfín, C., et al. (2014). Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography. doi:10.1111/echo.12584. Rodríguez Muñoz, D., Moya Mur, J. L., Fernández-Golfín, C., et al. (2014). Left ventricular vortices as observed by vector flow mapping: main determinants and their relation to left ventricular filling. Echocardiography. doi:10.​1111/​echo.​12584.
30.
go back to reference Hong, G. R., Kim, M., Pedrizzetti, G., & Vannan, M. A. (2013). Current clinical application of intracardiac flow analysis using echocardiography. Journal of Cardiovascular Ultrasound, 21, 155–62. Hong, G. R., Kim, M., Pedrizzetti, G., & Vannan, M. A. (2013). Current clinical application of intracardiac flow analysis using echocardiography. Journal of Cardiovascular Ultrasound, 21, 155–62.
31.
go back to reference Westerdale, J., Belohlavek, M., McMahon, E. M., Jiamsripong, P., Heys, J. J., & Milano, M. (2011). Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. Journal of Ultrasound in Medicine, 30, 187–95.PubMed Westerdale, J., Belohlavek, M., McMahon, E. M., Jiamsripong, P., Heys, J. J., & Milano, M. (2011). Flow velocity vector fields by ultrasound particle imaging velocimetry: in vitro comparison with optical flow velocimetry. Journal of Ultrasound in Medicine, 30, 187–95.PubMed
32.
go back to reference Sengupta, P. P., Burke, R., Khandheria, B. K., & Belohlavek, M. (2008). Following the flow in chambers. Heart Failure Clinics, 4, 325–32.CrossRefPubMed Sengupta, P. P., Burke, R., Khandheria, B. K., & Belohlavek, M. (2008). Following the flow in chambers. Heart Failure Clinics, 4, 325–32.CrossRefPubMed
33.
go back to reference Pierrakos, O., Vlachos, P. P., & Telionis, D. P. (2004). Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. Journal of Biomechanical Engineering, 126, 714–26.CrossRefPubMed Pierrakos, O., Vlachos, P. P., & Telionis, D. P. (2004). Time-resolved DPIV analysis of vortex dynamics in a left ventricular model through bileaflet mechanical and porcine heart valve prostheses. Journal of Biomechanical Engineering, 126, 714–26.CrossRefPubMed
34.
go back to reference Zhang, F. X., Lanning, C., Mazzaro, L., et al. (2011). In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. Ultrasound in Medicine and Biology, 37, 450–64. Zhang, F. X., Lanning, C., Mazzaro, L., et al. (2011). In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging. Ultrasound in Medicine and Biology, 37, 450–64.
35.
go back to reference Kheradvar, A., Houle, H., Pedrizzetti, G., et al. (2010). Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. Journal of the American Society of Echocardiography, 23, 86–94.CrossRefPubMed Kheradvar, A., Houle, H., Pedrizzetti, G., et al. (2010). Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. Journal of the American Society of Echocardiography, 23, 86–94.CrossRefPubMed
36.
go back to reference Hong, G. R., Pedrizzetti, G., Tonti, G., et al. (2008). Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging, 1, 705–17. Hong, G. R., Pedrizzetti, G., Tonti, G., et al. (2008). Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC Cardiovasc Imaging, 1, 705–17.
37.
go back to reference Scarano, F. (2013). Tomographic PIV: principles and practice. Measurement Science and Technology, 24, 1–28.CrossRef Scarano, F. (2013). Tomographic PIV: principles and practice. Measurement Science and Technology, 24, 1–28.CrossRef
38.
go back to reference Pelc, N. J., Bernstein, M. A., Shimakawa, A., & Glover, G. H. (1991). Encoding strategies for three-direction phase-contrast MR imaging of flow. Journal of Magnetic Resonance Imaging, 1, 405–413.CrossRefPubMed Pelc, N. J., Bernstein, M. A., Shimakawa, A., & Glover, G. H. (1991). Encoding strategies for three-direction phase-contrast MR imaging of flow. Journal of Magnetic Resonance Imaging, 1, 405–413.CrossRefPubMed
39.
go back to reference Gatehouse, P. D., Keegan, J., Crowe, L. A., et al. (2005). Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. European Radiology, 15, 2172–84.CrossRefPubMed Gatehouse, P. D., Keegan, J., Crowe, L. A., et al. (2005). Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. European Radiology, 15, 2172–84.CrossRefPubMed
40.
go back to reference Markl, M., Kilner, P. J., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13, 7.CrossRefPubMedCentralPubMed Markl, M., Kilner, P. J., & Ebbers, T. (2011). Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 13, 7.CrossRefPubMedCentralPubMed
41.
go back to reference Eriksson, J., Carlhall, C. J., Dyverfeldt, P., Engvall, J., Bolger, A. F., & Ebbers, T. (2010). Semiautomatic quantification of 4D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance, 12, 9.CrossRefPubMedCentralPubMed Eriksson, J., Carlhall, C. J., Dyverfeldt, P., Engvall, J., Bolger, A. F., & Ebbers, T. (2010). Semiautomatic quantification of 4D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance, 12, 9.CrossRefPubMedCentralPubMed
42.
go back to reference Madore, B., Hoge, W. S., Chao, T. C., Zientara, G. P., & Chu, R. (2011). Retrospectively gated cardiac cine imaging with temporal and spatial acceleration. Magnetic Resonance Imaging, 29, 457–69.CrossRefPubMedCentralPubMed Madore, B., Hoge, W. S., Chao, T. C., Zientara, G. P., & Chu, R. (2011). Retrospectively gated cardiac cine imaging with temporal and spatial acceleration. Magnetic Resonance Imaging, 29, 457–69.CrossRefPubMedCentralPubMed
43.
go back to reference Carlhäll, C. J., & Bolger, A. (2010). Passing strange: flow in the failing ventricle. Circulation. Heart Failure, 3, 326–31.CrossRefPubMed Carlhäll, C. J., & Bolger, A. (2010). Passing strange: flow in the failing ventricle. Circulation. Heart Failure, 3, 326–31.CrossRefPubMed
44.
go back to reference Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., & Wieben, O. (2012). 4D flow MRI. Journal of Magnetic Resonance Imaging, 36, 1015–36.CrossRefPubMed Markl, M., Frydrychowicz, A., Kozerke, S., Hope, M., & Wieben, O. (2012). 4D flow MRI. Journal of Magnetic Resonance Imaging, 36, 1015–36.CrossRefPubMed
45.
go back to reference Hope, M. D., Sedlic, T., & Dyverfeldt, P. (2013). Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging, 28, 217–30.CrossRefPubMed Hope, M. D., Sedlic, T., & Dyverfeldt, P. (2013). Cardiothoracic magnetic resonance flow imaging. Journal of Thoracic Imaging, 28, 217–30.CrossRefPubMed
47.
go back to reference Calkoen, E. E., Roest, A. A., van der Geest, R. J., de Roos, A., & Westenberg, J. J. (2014). Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: new applications. Journal of Thoracic Imaging, 29, 185–96.CrossRefPubMed Calkoen, E. E., Roest, A. A., van der Geest, R. J., de Roos, A., & Westenberg, J. J. (2014). Cardiovascular function and flow by 4-dimensional magnetic resonance imaging techniques: new applications. Journal of Thoracic Imaging, 29, 185–96.CrossRefPubMed
48.
go back to reference Pasipoularides, A. (2008). Invited commentary: functional Imaging (FI) combines imaging datasets and computational fluid dynamics to simulate cardiac flows. Journal of Applied Physiology, 105, 1015.CrossRefPubMed Pasipoularides, A. (2008). Invited commentary: functional Imaging (FI) combines imaging datasets and computational fluid dynamics to simulate cardiac flows. Journal of Applied Physiology, 105, 1015.CrossRefPubMed
49.
go back to reference Pasipoularides, A. D., Shu, M., Womack, M. S., Shah, A., Von Ramm, O., & Glower, D. D. (2003). RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. American Journal of Physiology Heart & Circulatory Physiology, 284, H56–H65. Pasipoularides, A. D., Shu, M., Womack, M. S., Shah, A., Von Ramm, O., & Glower, D. D. (2003). RV functional imaging: 3-D echo-derived dynamic geometry and flow field simulations. American Journal of Physiology Heart & Circulatory Physiology, 284, H56–H65.
50.
go back to reference Georgiadis, J. G., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of left ventricular ejection. Annals of Biomedical Engineering, 20, 81–97.CrossRefPubMed Georgiadis, J. G., Wang, M., & Pasipoularides, A. (1992). Computational fluid dynamics of left ventricular ejection. Annals of Biomedical Engineering, 20, 81–97.CrossRefPubMed
51.
go back to reference Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. [Review]. Journal of the American College of Cardiology, 15, 859–82.CrossRefPubMed Pasipoularides, A. (1990). Clinical assessment of ventricular ejection dynamics with and without outflow obstruction. [Review]. Journal of the American College of Cardiology, 15, 859–82.CrossRefPubMed
52.
go back to reference Pasipoularides, A. (1992). Cardiac mechanics: basic and clinical contemporary research. Annals of Biomedical Engineering, 20, 3–17.CrossRefPubMed Pasipoularides, A. (1992). Cardiac mechanics: basic and clinical contemporary research. Annals of Biomedical Engineering, 20, 3–17.CrossRefPubMed
53.
go back to reference Bellhouse, B. J. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovascular Research, 6, 199–210.CrossRefPubMed Bellhouse, B. J. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovascular Research, 6, 199–210.CrossRefPubMed
54.
go back to reference Taylor, D. E. M., & Wade, J. D. (1973). Pattern of blood flow within the heart: a stable system. Cardiovascular Research, 7, 14–21.CrossRefPubMed Taylor, D. E. M., & Wade, J. D. (1973). Pattern of blood flow within the heart: a stable system. Cardiovascular Research, 7, 14–21.CrossRefPubMed
55.
go back to reference Fredriksson, A. G., Zajac, J., Eriksson, J., et al. (2011). 4-D blood flow in the human right ventricle. American Journal of Physiology Heart & Circulatory Physiology, 301, H2344–50. Fredriksson, A. G., Zajac, J., Eriksson, J., et al. (2011). 4-D blood flow in the human right ventricle. American Journal of Physiology Heart & Circulatory Physiology, 301, H2344–50.
56.
go back to reference Faludi, R., Szulik, M., D’hooge, J., et al. (2010). Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. Journal of Thoracic and Cardiovascular Surgery, 139, 1501–10.CrossRefPubMed Faludi, R., Szulik, M., D’hooge, J., et al. (2010). Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. Journal of Thoracic and Cardiovascular Surgery, 139, 1501–10.CrossRefPubMed
57.
go back to reference Doenst, T., Spiegel, K., Reik, M., et al. (2009). Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Annals of Thoracic Surgery, 87, 1187–95. Doenst, T., Spiegel, K., Reik, M., et al. (2009). Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Annals of Thoracic Surgery, 87, 1187–95.
58.
go back to reference Bolger, A. F., Heiberg, E., Karlsson, M., et al. (2007). Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 9, 741–7.CrossRefPubMed Bolger, A. F., Heiberg, E., Karlsson, M., et al. (2007). Transit of blood flow through the human left ventricle mapped by cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 9, 741–7.CrossRefPubMed
59.
go back to reference Saber, N. R., Wood, N. B., Gosman, A. D., et al. (2003). Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Annals of Biomedical Engineering, 31, 42–52.CrossRefPubMed Saber, N. R., Wood, N. B., Gosman, A. D., et al. (2003). Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Annals of Biomedical Engineering, 31, 42–52.CrossRefPubMed
60.
go back to reference Kilner, P. J., Yang, G. Z., Wilkes, A. J., Mohiaddin, R. H., Firmin, D. N., & Yacoub, M. H. (2000). Asymmetric redirection of flow through the heart. Nature, 404, 759–61.CrossRefPubMed Kilner, P. J., Yang, G. Z., Wilkes, A. J., Mohiaddin, R. H., Firmin, D. N., & Yacoub, M. H. (2000). Asymmetric redirection of flow through the heart. Nature, 404, 759–61.CrossRefPubMed
61.
go back to reference Charonko, J. J., Kumar, R., Stewart, K., Little, W. C., & Vlachos, P. P. (2013). Vortices formed on the mitral valve tips aid normal left ventricular filling. Annals of Biomedical Engineering, 41, 1049–1061. Charonko, J. J., Kumar, R., Stewart, K., Little, W. C., & Vlachos, P. P. (2013). Vortices formed on the mitral valve tips aid normal left ventricular filling. Annals of Biomedical Engineering, 41, 1049–1061.
62.
go back to reference Blaauw, E., Lorenzen-Schmidt, I., Babiker, F. A., et al. (2013). Stretch-induced upregulation of connective tissue growth factor in rabbit cardiomyocytes. Journal of Cardiovascular Translational Research , 6, 861–9. Blaauw, E., Lorenzen-Schmidt, I., Babiker, F. A., et al. (2013). Stretch-induced upregulation of connective tissue growth factor in rabbit cardiomyocytes. Journal of Cardiovascular Translational Research , 6, 861–9.
63.
go back to reference Lunkenheimer, P. P., Niederer, P., Sanchez-Quintana, D., Murillo, M., & Smerup, M. (2013). Models of ventricular structure and function reviewed for clinical cardiologists. Journal of Cardiovascular Translational Research, 6, 176–86.CrossRefPubMed Lunkenheimer, P. P., Niederer, P., Sanchez-Quintana, D., Murillo, M., & Smerup, M. (2013). Models of ventricular structure and function reviewed for clinical cardiologists. Journal of Cardiovascular Translational Research, 6, 176–86.CrossRefPubMed
64.
go back to reference Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91, 1103–13.CrossRefPubMed Manabe, I., Shindo, T., & Nagai, R. (2002). Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circulation Research, 91, 1103–13.CrossRefPubMed
65.
go back to reference Lajiness, J. D., & Conway, S. J. (2012). The dynamic role of cardiac fibroblasts in development and disease. Journal of Cardiovascular Translational Research, 5, 739–48.CrossRefPubMedCentralPubMed Lajiness, J. D., & Conway, S. J. (2012). The dynamic role of cardiac fibroblasts in development and disease. Journal of Cardiovascular Translational Research, 5, 739–48.CrossRefPubMedCentralPubMed
66.
go back to reference Martin, M. L., & Blaxall, B. C. (2012). Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? Journal of Cardiovascular Translational Research, 5(6), 768–82.CrossRefPubMedCentralPubMed Martin, M. L., & Blaxall, B. C. (2012). Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? Journal of Cardiovascular Translational Research, 5(6), 768–82.CrossRefPubMedCentralPubMed
67.
go back to reference Janmey, P. A., & Weitz, D. A. (2004). Dealing with mechanics: mechanisms of force transduction in cells. Trends in Biochemical Sciences, 29, 364–70.CrossRefPubMed Janmey, P. A., & Weitz, D. A. (2004). Dealing with mechanics: mechanisms of force transduction in cells. Trends in Biochemical Sciences, 29, 364–70.CrossRefPubMed
68.
go back to reference Groenendijk, B. C. W., Van der Heiden, K., Hierck, B. P., & Poelmann, R. E. (2007). The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology, 22, 380–89.CrossRefPubMed Groenendijk, B. C. W., Van der Heiden, K., Hierck, B. P., & Poelmann, R. E. (2007). The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous ligation model. Physiology, 22, 380–89.CrossRefPubMed
69.
go back to reference Hove, J. R., Köster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–7.CrossRefPubMed Hove, J. R., Köster, R. W., Forouhar, A. S., Acevedo-Bolton, G., Fraser, S. E., & Gharib, M. (2003). Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 421, 172–7.CrossRefPubMed
70.
go back to reference Holtzman, N. G., Schoenebeck, J. J., Tsai, H. J., & Yelon, D. (2007). Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development, 134, 2379–86.CrossRefPubMed Holtzman, N. G., Schoenebeck, J. J., Tsai, H. J., & Yelon, D. (2007). Endocardium is necessary for cardiomyocyte movement during heart tube assembly. Development, 134, 2379–86.CrossRefPubMed
71.
go back to reference Love, A. C. (2007). Functional homology and homology of function: biological concepts and philosophical consequences. Biology Philososophy, 22, 691–708.CrossRef Love, A. C. (2007). Functional homology and homology of function: biological concepts and philosophical consequences. Biology Philososophy, 22, 691–708.CrossRef
72.
go back to reference Milgrom-Hoffman, M., Harrelson, Z., Ferrara, N., Zelzer, E., Evans, S. M., & Tzahor, E. (2011). The heart endocardium is derived from vascular endothelial progenitors. Development, 138, 4777–87.CrossRefPubMedCentralPubMed Milgrom-Hoffman, M., Harrelson, Z., Ferrara, N., Zelzer, E., Evans, S. M., & Tzahor, E. (2011). The heart endocardium is derived from vascular endothelial progenitors. Development, 138, 4777–87.CrossRefPubMedCentralPubMed
73.
go back to reference Li, K., Rouleau, J. L., Andries, L., & Brutsaert, D. L. (1993). Effect of dysfunctional vascular endothelium on myocardial performance in isolated papillary muscles. Circulation Research, 72, 768–77.CrossRefPubMed Li, K., Rouleau, J. L., Andries, L., & Brutsaert, D. L. (1993). Effect of dysfunctional vascular endothelium on myocardial performance in isolated papillary muscles. Circulation Research, 72, 768–77.CrossRefPubMed
Metadata
Title
Mechanotransduction Mechanisms for Intraventricular Diastolic Vortex Forces and Myocardial Deformations: Part 1
Author
Ares Pasipoularides
Publication date
01-02-2015
Publisher
Springer US
Published in
Journal of Cardiovascular Translational Research / Issue 1/2015
Print ISSN: 1937-5387
Electronic ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-015-9611-y

Other articles of this Issue 1/2015

Journal of Cardiovascular Translational Research 1/2015 Go to the issue